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Plan of the talk

Motivation:

Hamiltonian systems and failure of ergodicity
Systems with mixed behavior: quasiperiodic and stochastic.
Examples of mixed behavior: Bunimovich mushroom, the Solar
system systems.
(Nearly) integrable Hamiltonian, KAM theory, Arnold diffusion.

The first example: the Asteroid belt and Kirkwood gaps.

Quasiperiodic (KAM) behavior away from Kirkwood gaps
Stochastic behavior in Kirkwood gaps

The second (Arnold’s) example:
the pendulum × rotor + small coupling.

Our result about stochastic diffusion inside instability layers.
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Hamiltonian systems and Ergodicity

Let H : R2n → R be a smooth function, (q,p) ∈ Rn × Rn. Let ΦH be the
Hamiltonian flow of H {

q̇ = ∂pH
ṗ = −∂qH.

For example, n = 1 and

H(p,q) = Kinetic energy + Potential energy =
p2

2
+ U(q)

for some potential U(x).
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ṗ = −∂qH.

For example, n = 1 and

H(p,q) = Kinetic energy + Potential energy =
p2

2
+ U(q)

for some potential U(x).

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 3 / 66



Hamiltonian systems and Ergodicity

Let H : R2n → R be a smooth function, (q,p) ∈ Rn × Rn. Let ΦH be the
Hamiltonian flow of H {

q̇ = ∂pH
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Φt
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Φt
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Ergodic Hypothesis (Boltzmann, Maxwell) Is
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Fermi-Pasta-Ulam paradox and failure of Ergodicity

Numerical doubts (Fermi-Pasta-Ulam ’53) Chains of nonlinear
springs

ün = k(un+1 − 2un + un−1) + α(un+1 − un)2 + α(un − un−1)2

the α-term — nonlinearity. Most “small” solutions are
quasi-periodic!

KAM theory gave mathematical proof that ergodicity fails! (to be
discussed)
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Problems on solving ODEs.

ẋ = f (x), x ∈ M — a manifold.

A tiny fraction of differential equations have explicit solutions.
Most ODEs have sensitive dependence on initial conditions,
i.e. for some (Lyapunov exponent) d > 0
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ẋ = f (x), x ∈ M — a manifold.

A tiny fraction of differential equations have explicit solutions.
Most ODEs have sensitive dependence on initial conditions,
i.e. for some (Lyapunov exponent) d > 0

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 6 / 66



Problems on solving ODEs.
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Problems on solving ODEs.

ẋ = f (x), x ∈ M — a manifold.

A tiny fraction of differential equations have explicit solutions.
Most ODEs have sensitive dependence on initial conditions,
i.e. for some (Lyapunov exponent) d > 0

Figure: No practical hope to describe an individual solution!
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Enselmble of solutions of ODEs.

ẋ = f (x), x ∈ M — a manifold, e.g. Rn,Tn...

Consider an emseble of initial conditions. For example, a
grid of initial conditions in a region of the phase space.
Then study statistics of evolution of this ensemble.

More generally, consider a probability measure µ of initial
conditions. Then study distributions of the pushforward of
this measure µ.

Modified goal: Analyze long time behavior statistically.
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Ergodic systems and systems with mixed behavior

{
q̇ = ∂pH
ṗ = −∂qH

(q,p) ∈ R2n

Let µ be the volume and the flow is volume preserving.

The system is ergodic if for a µ-almost every initial condition
long time behavior is the same, i.e. time and space
averages coincide.

The system has mixed behavior if there are at least two sets
of positive µ-measure of initial conditions with different long
time behavior.
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Mixed Behavior: Bunimovich Mushroom
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Laskar simulations on instability of the Solar system
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Laskar simulations on instability of the Solar system

Figure: Venus and Earth collide
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Laskar simulations on instability of the Solar system

Figure: Venus and Earth collide Mars and Earth collide
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Integrable systems & action-angles coordinates

Let H : R2n → R be a Hamiltonian, ϕ ∈ Tn be angle, I ∈ Rn be action.

A Hamiltonian system is Arnold-Liouville integrable if for an open set
U ⊂ Rn there exists a symplectic map Φ : Tn × U → R 2n s. t.
H ◦ Φ(ϕ, I) depends only on I and{

ϕ̇ = ∂I(H ◦ Φ)(I) = ω(I),
İ = 0.

(ϕ, I)–action-angle coordinates

In particular, Φ(Tn × U) is foliated by invariant n-dimensional tori and
on each torus Tn × I0 the flow is linear.
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Integrable systems

Rotor: ϕ̇ = r , ṙ = 0, H = r2

2 , (ϕ, r) ∈ 2πT× R.

Pendulum: q̇ = p, ṗ = sin q, H = r2

2 − cos q, (q,p) ∈ 2πT× R.

Harmonic oscillator: q̇ = p, ṗ = −kq or H = p2

2 + kq2

2 .
Motion in a central force field: q̈ = F (‖q‖)q.
Newtonial two body problem.
Newtonian two center problem.
Lagrange’s top, Kovaleskaya’s top, Euler’s top.
Toda lattice: chain · · · < x0 < x1 < . . . with the neighbor
interaction

∑
i exp(xi − xi+1)

Calogero-Moser system: chain of harmonic oscillators with a
neighbor repulsive interaction.
A geodesic flow on an n-dim’l ellipsoid with different main axes.
A geodesic flow on a surface of revolution.

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 28 / 66



Integrable systems

Rotor: ϕ̇ = r , ṙ = 0, H = r2
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2 − cos q, (q,p) ∈ 2πT× R.

Harmonic oscillator: q̇ = p, ṗ = −kq or H = p2
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2 + kq2

2 .
Motion in a central force field: q̈ = F (‖q‖)q.
Newtonial two body problem.
Newtonian two center problem.
Lagrange’s top, Kovaleskaya’s top, Euler’s top.
Toda lattice: chain · · · < x0 < x1 < . . . with the neighbor
interaction

∑
i exp(xi − xi+1)

Calogero-Moser system: chain of harmonic oscillators with a
neighbor repulsive interaction.
A geodesic flow on an n-dim’l ellipsoid with different main axes.
A geodesic flow on a surface of revolution.

V. Kaloshin (University of Maryland) Arnold diffusion May 25, 2017 29 / 66



Integrable systems

Rotor: ϕ̇ = r , ṙ = 0, H = r2
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KAM Theorem and explanation of failure of ergodicity

Let H0(I) have non-degenerate Hessian, I ∈ Rn, e.g. H0(I) =
∑

I2
j /2.

KAM Theorem Let Hε(ϕ, I) = H0(I) + εH1(ϕ, I) be a smooth
perturbation. Then with probability 1−O(

√
ε) an initial condition in

Tn × Bn has a quasiperiodic orbit. Moreover, Tn × Bn is laminated by
invariant n-dimensional tori with a linear flow on each.
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Arnold’s Conjecture

Arnold conjecture For a generic perturbation Hε(ϕ, I) =
H0(I) + εH1(ϕ, I) does there exist “diffusing orbits” whose action
component I(t) can “travel” O(1), i.e. |I(t)− I(0)| > O(1) for some
t > 0? In particular, such orbits (if exist) are not quasiperiodic.{

ϕ̇ = ∂IH0(I)+ε∂IH1(ϕ, I),
İ = −ε∂ϕH1(ϕ, I).
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Arnold diffusion

{
ϕ̇ = ∂IH0(I)+ε∂IH1(ϕ, I),
İ = −ε∂ϕH1(ϕ, I).

Due to “stochastic nature of nonlinear oscillations” Chirikov
coined the term for behavior of action inside stochastic layers —
Arnold diffusion.

Inside stochastic layers action models a stochastic process.

Physical examples: electrons in magnetic bottles, interaction of
the electron-positron beams, electrons in the geomagnetic field,
the Asteroid belt in the Solar system, the Solar System.
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Is the Solar System stable?

Is the Solar System stable, i.e. shall we have the same pictures of
orbits 106 years later? 109 years later?
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The Asteroid belt

The Asteroid belt is the region of the Solar System located roughly
between the orbits of Mars and Jupiter.
It is occupied by over a million of asteroids with diameter at least 1km.
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The Deterministic Model: the Sun-Jupiter-Asteroid

Total mass of the Asteroid belt is 4% of the Earth’s moon.
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Kirkwood gaps in the Asteroid Belt
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Kirkwood gaps in the Asteroid Belt

Kirkwood gap occurs at mean-motion resonance, i.e. when period of
Jupiter and of Asteroid are in small rational relation, e.g. 3:1, 5:2, 7:3.
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Wisdom ’82, ’85, Neishtadt ’87 explanation of 3:1 Kirkwood gaps

Fejoz-Guadia-K-Roldan ’11 an alternative mechanism for small Jupiter
eccentricity.
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Numerics and Chirikov’s diffusion conjecture

K-Roldan Fix mass ratio µ, small Jupiter eccentr eJ , Asteroid’s a3/2
A (0) = 1

3 ,

eA(0) = e∗. Pick 104 initial angles. Run Tt = t
µ2e2

J
. Plot histogram for eA(T ).
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0 σ(es)dws, where dws is
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rotor
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2
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where q, ϕ, t ∈ T are angles, p, r ∈ R.
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Chirikov’s conjecture: Inside stochastic layer r(t ε−2 ln 1/ε) behaves
as a stochastic diffusion process x(t).
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Numerics for Arnold’s example

(K-Roldan) Fix r = r∗. Pick 106 initial conditions: (pi ,qi) near 0,
ϕi ∈ T. Run Tt = tε−2 log 1/ε, ε = 0.01.
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Main Result

Hε(p,q, r , ϕ, t) =
r2

2
+

p2

2
+ (cos q − 1) + εPN(q, ϕ, t),

where PN is a trigonometric polynomial, N ≥ 2. Let r0 ∈ R, δ(r0) be the
δ-measure at r0, Πr be the projection on r , Tt = tε−2 log 1/ε.

Main Result For an open set UN of PN ’s the Hamiltonian Hε has a
probability measure νε supported in a stochastic layer such that
Πrνε = δ(r0) for some r0 ∈ R and the distribution of the push forward
φ∗Tνε = ν∗ projected to r , i.e. Πrν

∗, weakly converges, as ε→ 0, to the
distribution of a diffusion process

rt = r0 +

∫ t

0
σ(rs) dws,

where σ(r) is a smooth computable function, depending only on PN .

Castejon-Guardia-K’17,Guardia-K-J.Zhang’15, K-J.Zhang-K.Zhang’15.
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Concluding remarks

Conjecturally mixed behavior is present in the Kirkwood
gaps of the Asteroid belt.

Conjecturally a typical nearly integrable system exhibits
mixed behavior with both quasi-periodic and stochastic
behaviors having positive measure.

For Arnold’s example a form of mixed behavior is
established!
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The end

Thanks!
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