Stochastic Arnold diffusion of deterministic systems

V. Kaloshin

May 25, 2017

Plan of the talk

- Motivation:

Plan of the talk

- Motivation:
- Hamiltonian systems

Plan of the talk

- Motivation:
- Hamiltonian systems and failure of ergodicity - Examples of mixed behavior: Bunimovich mushroom, the Solar system systems.

Plan of the talk

- Motivation:
- Hamiltonian systems and failure of ergodicity
- Systems with mixed behavior: quasiperiodic and stochastic. system systems.

Plan of the talk

- Motivation:
- Hamiltonian systems and failure of ergodicity
- Systems with mixed behavior: quasiperiodic and stochastic.
- Examples of mixed behavior: Bunimovich mushroom, the Solar system systems.

Plan of the talk

- Motivation:
- Hamiltonian systems and failure of ergodicity
- Systems with mixed behavior: quasiperiodic and stochastic.
- Examples of mixed behavior: Bunimovich mushroom, the Solar system systems.
- (Nearly) integrable Hamiltonian, KAM theory, Arnold diffusion.
- Quasiperiodic (KAM) behavior away from Kirkwood gaps

Plan of the talk

- Motivation:
- Hamiltonian systems and failure of ergodicity
- Systems with mixed behavior: quasiperiodic and stochastic.
- Examples of mixed behavior: Bunimovich mushroom, the Solar system systems.
- (Nearly) integrable Hamiltonian, KAM theory, Arnold diffusion.
- The first example: the Asteroid belt and Kirkwood gaps.
 - Stochastic behavior in Kirkwood aaps

Plan of the talk

- Motivation:
- Hamiltonian systems and failure of ergodicity
- Systems with mixed behavior: quasiperiodic and stochastic.
- Examples of mixed behavior: Bunimovich mushroom, the Solar system systems.
- (Nearly) integrable Hamiltonian, KAM theory, Arnold diffusion.
- The first example: the Asteroid belt and Kirkwood gaps.
- Quasiperiodic (KAM) behavior away from Kirkwood gaps
\square
the pendulum \times rotor + small coupling

Plan of the talk

- Motivation:
- Hamiltonian systems and failure of ergodicity
- Systems with mixed behavior: quasiperiodic and stochastic.
- Examples of mixed behavior: Bunimovich mushroom, the Solar system systems.
- (Nearly) integrable Hamiltonian, KAM theory, Arnold diffusion.
- The first example: the Asteroid belt and Kirkwood gaps.
- Quasiperiodic (KAM) behavior away from Kirkwood gaps
- Stochastic behavior in Kirkwood gaps

- Our result about

Plan of the talk

- Motivation:
- Hamiltonian systems and failure of ergodicity
- Systems with mixed behavior: quasiperiodic and stochastic.
- Examples of mixed behavior: Bunimovich mushroom, the Solar system systems.
- (Nearly) integrable Hamiltonian, KAM theory, Arnold diffusion.
- The first example: the Asteroid belt and Kirkwood gaps.
- Quasiperiodic (KAM) behavior away from Kirkwood gaps
- Stochastic behavior in Kirkwood gaps
- The second (Arnold's) example: the pendulum \times rotor + small coupling.

Plan of the talk

- Motivation:
- Hamiltonian systems and failure of ergodicity
- Systems with mixed behavior: quasiperiodic and stochastic.
- Examples of mixed behavior: Bunimovich mushroom, the Solar system systems.
- (Nearly) integrable Hamiltonian, KAM theory, Arnold diffusion.
- The first example: the Asteroid belt and Kirkwood gaps.
- Quasiperiodic (KAM) behavior away from Kirkwood gaps
- Stochastic behavior in Kirkwood gaps
- The second (Arnold's) example: the pendulum \times rotor + small coupling.
- Our result about stochastic diffusion inside instability layers.

Hamiltonian systems and Ergodicity

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$.

Hamiltonian systems and Ergodicity

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$.

for some potential $U(x)$.

Hamiltonian systems and Ergodicity

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$. Let Φ_{H} be the Hamiltonian flow of H

$$
\left\{\begin{array}{l}
\dot{q}=\partial_{p} H \\
\dot{p}=-\partial_{q} H
\end{array}\right.
$$

Hamiltonian systems and Ergodicity

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$. Let Φ_{H} be the Hamiltonian flow of H

$$
\left\{\begin{array}{l}
\dot{q}=\partial_{p} H \\
\dot{p}=-\partial_{q} H .
\end{array}\right.
$$

For example, $n=1$ and

$$
H(p, q)=\text { Kinetic energy }+ \text { Potential energy }=\frac{p^{2}}{2}+U(q)
$$

for some potential $U(x)$.

Hamiltonian systems and Ergodicity

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$. Let Φ_{H} be the Hamiltonian flow of H

$$
\left\{\begin{array}{l}
\dot{q}=\partial_{p} H \\
\dot{p}=-\partial_{q} H .
\end{array}\right.
$$

For example, $n=1$ and

$$
H(p, q)=\text { Kinetic energy }+ \text { Potential energy }=\frac{p^{2}}{2}+U(q)
$$

for some potential $U(x)$.

Hamiltonian systems and Ergodicity

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$. Let Φ_{H} be the Hamiltonian flow of H.

$$
\left\{\begin{array}{l}
\dot{q}=\partial_{p} H=p \\
\dot{p}=-\partial_{q} H=-\nabla U(q)
\end{array}\right.
$$

For example, $n=1$ and $H(p, q)=$ Kinetic energy + Potential energy $=\frac{p^{2}}{2}+U(q)$ for some potential $U(x)$.

Hamiltonian systems and Ergodicity

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$. Let Φ_{H} be the Hamiltonian flow of H.

$$
\left\{\begin{array}{l}
\dot{q}=\partial_{p} H=p \\
\dot{p}=-\partial_{q} H=-\nabla U(q)
\end{array}\right.
$$

For example, $n=1$ and
$H(p, q)=$ Kinetic energy + Potential energy $=\frac{p^{2}}{2}+U(q)$ for some potential $U(x)$.
Denote by Φ_{H}^{t} the time t flow. Let $S_{E}=\left\{(q, p) \in \mathbb{R}^{2 n}: H(q, p)=E\right\}$ be an energy surface. Assume S_{E} is compact.

Hamiltonian systems and Ergodicity

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$. Let Φ_{H} be the Hamiltonian flow of H.

$$
\left\{\begin{array}{l}
\dot{q}=\partial_{p} H=p \\
\dot{p}=-\partial_{q} H=-\nabla U(q)
\end{array}\right.
$$

For example, $n=1$ and
$H(p, q)=$ Kinetic energy + Potential energy $=\frac{p^{2}}{2}+U(q)$ for some potential $U(x)$.
Denote by Φ_{H}^{t} the time t flow. Let $S_{E}=\left\{(q, p) \in \mathbb{R}^{2 n}: H(q, p)=E\right\}$ be an energy surface. Assume S_{E} is compact.

- Φ_{H}^{t} preserves energy $H(q, p)=H\left(\Phi_{H}^{t}(q, p)\right)=E$;

Hamiltonian systems and Ergodicity

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$. Let Φ_{H} be the Hamiltonian flow of H.

$$
\left\{\begin{array}{l}
\dot{q}=\partial_{p} H=p \\
\dot{p}=-\partial_{q} H=-\nabla U(q)
\end{array}\right.
$$

For example, $n=1$ and
$H(p, q)=$ Kinetic energy + Potential energy $=\frac{p^{2}}{2}+U(q)$ for some potential $U(x)$.
Denote by Φ_{H}^{t} the time t flow. Let $S_{E}=\left\{(q, p) \in \mathbb{R}^{2 n}: H(q, p)=E\right\}$ be an energy surface. Assume S_{E} is compact.

- Φ_{H}^{t} preserves energy $H(q, p)=H\left(\Phi_{H}^{t}(q, p)\right)=E$;
- Φ_{H}^{t} preserves volume $d q d p$.

Hamiltonian systems and Ergodicity

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$. Let Φ_{H} be the Hamiltonian flow of H.

$$
\left\{\begin{array}{l}
\dot{q}=\partial_{p} H=p \\
\dot{p}=-\partial_{q} H=-\nabla U(q)
\end{array}\right.
$$

For example, $n=1$ and
$H(p, q)=$ Kinetic energy + Potential energy $=\frac{p^{2}}{2}+U(q)$ for some potential $U(x)$.
Denote by Φ_{H}^{t} the time t flow. Let $S_{E}=\left\{(q, p) \in \mathbb{R}^{2 n}: H(q, p)=E\right\}$ be an energy surface. Assume S_{E} is compact.

- Φ_{H}^{t} preserves energy $H(q, p)=H\left(\Phi_{H}^{t}(q, p)\right)=E$;
- Φ_{H}^{t} preserves volume $d q d p$.

Hamiltonian systems and Ergodicity

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function, $(q, p) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$. Let Φ_{H} be the Hamiltonian flow of H.

$$
\left\{\begin{array}{l}
\dot{q}=\partial_{p} H=p \\
\dot{p}=-\partial_{q} H=-\nabla U(q)
\end{array}\right.
$$

For example, $n=1$ and
$H(p, q)=$ Kinetic energy + Potential energy $=\frac{p^{2}}{2}+U(q)$ for some potential $U(x)$.
Denote by Φ_{H}^{t} the time t flow. Let $S_{E}=\left\{(q, p) \in \mathbb{R}^{2 n}: H(q, p)=E\right\}$ be an energy surface. Assume S_{E} is compact.

- Φ_{H}^{t} preserves energy $H(q, p)=H\left(\Phi_{H}^{t}(q, p)\right)=E$;
- Φ_{H}^{t} preserves volume $d q d p$.

Ergodic Hypothesis (Boltzmann, Maxwell) Is generically Φ_{H}^{t} ergodic on S_{E} ?

Fermi-Pasta-Ulam paradox and failure of Ergodicity

Numerical doubts (Fermi-Pasta-Ulam '53)

Chains of nonlinear

Fermi-Pasta-Ulam paradox and failure of Ergodicity

Numerical doubts (Fermi-Pasta-Ulam '53) Chains of nonlinear springs

Fermi-Pasta-Ulam paradox and failure of Ergodicity

Numerical doubts (Fermi-Pasta-Ulam '53) Chains of nonlinear springs

the α-term - nonlinearity.

Fermi-Pasta-Ulam paradox and failure of Ergodicity

Numerical doubts (Fermi-Pasta-Ulam '53) Chains of nonlinear springs

$$
\begin{aligned}
& \ddot{u}_{n}=k\left(u_{n+1}-2 u_{n}+u_{n-1}\right)+\alpha\left(u_{n+1}-u_{n}\right)^{2}+\alpha\left(u_{n}-u_{n-1}\right)^{2}
\end{aligned}
$$

the α-term - nonlinearity. Most "small" solutions are quasi-periodic!
gave mathematical proof that ergodicity fails!

Fermi-Pasta-Ulam paradox and failure of Ergodicity

Numerical doubts (Fermi-Pasta-Ulam '53) Chains of nonlinear springs

$$
\begin{aligned}
& \ddot{u}_{n}=k\left(u_{n+1}-2 u_{n}+u_{n-1}\right)+\alpha\left(u_{n+1}-u_{n}\right)^{2}+\alpha\left(u_{n}-u_{n-1}\right)^{2}
\end{aligned}
$$

the α-term - nonlinearity. Most "small" solutions are quasi-periodic!
gave mathematical proof that ergodicity fails! (to be

Fermi-Pasta-Ulam paradox and failure of Ergodicity

Numerical doubts (Fermi-Pasta-Ulam '53) Chains of nonlinear springs

$$
\begin{gathered}
\ddot{u}_{n}=k\left(u_{n+1}-2 u_{n}+u_{n-1}\right)+\alpha\left(u_{n+1}-u_{n}\right)^{2}+\alpha\left(u_{n}-u_{n-1}\right)^{2}
\end{gathered}
$$

the α-term - nonlinearity. Most "small" solutions are quasi-periodic!

KAM theory gave mathematical proof that ergodicity fails!

Fermi-Pasta-Ulam paradox and failure of Ergodicity

Numerical doubts (Fermi-Pasta-Ulam '53) Chains of nonlinear springs

$$
\begin{gathered}
\ddot{u}_{n}=k\left(u_{n+1}-2 u_{n}+u_{n-1}\right)+\alpha\left(u_{n+1}-u_{n}\right)^{2}+\alpha\left(u_{n}-u_{n-1}\right)^{2}
\end{gathered}
$$

the α-term - nonlinearity. Most "small" solutions are quasi-periodic!

KAM theory gave mathematical proof that ergodicity fails! (to be discussed)

Problems on solving ODEs.

$$
\dot{x}=f(x), \quad x \in M \text { - a manifold. }
$$

Problems on solving ODEs.

$$
\dot{x}=f(x), \quad x \in M \text { - a manifold. }
$$

- A tiny fraction of differential equations have explicit solutions.

Problems on solving ODEs.

$$
\dot{x}=f(x), \quad x \in M \text { - a manifold }
$$

- A tiny fraction of differential equations have explicit solutions.
- Most ODEs have sensitive dependence on initial conditions, i.e.

Problems on solving ODEs.

$$
\dot{x}=f(x), \quad x \in M \text { - a manifold. }
$$

- A tiny fraction of differential equations have explicit solutions.
- Most ODEs have sensitive dependence on initial conditions, i.e. for some (Lyapunov exponent) $d>0$

Problems on solving ODEs.

$$
\dot{x}=f(x), \quad x \in M \text { - a manifold. }
$$

- A tiny fraction of differential equations have explicit solutions.
- Most ODEs have sensitive dependence on initial conditions, i.e. for some (Lyapunov exponent) $d>0$

Problems on solving ODEs.

$$
\dot{x}=f(x), \quad x \in M \text { - a manifold. }
$$

- A tiny fraction of differential equations have explicit solutions.
- Most ODEs have sensitive dependence on initial conditions, i.e. for some (Lyapunov exponent) $d>0$

Figure: No practical hope to describe an individual solution!

Enselmble of solutions of ODEs.

$$
\dot{x}=f(x), \quad x \in M \text { - a manifold, e.g. } \mathbb{R}^{n}, \mathbb{T}^{n} \ldots
$$

- Consider an emseble of initial conditions.

Enselmble of solutions of ODEs.

$$
\dot{x}=f(x), \quad x \in M \text { - a manifold, e.g. } \mathbb{R}^{n}, \mathbb{T}^{n} \ldots
$$

- Consider an emseble of initial conditions. For example, a grid of initial conditions in a region of the phase space.

More generally, consider a probability measure μ of initial

Enselmble of solutions of ODEs.

$$
\dot{x}=f(x), \quad x \in M \text { - a manifold, e.g. } \mathbb{R}^{n}, \mathbb{T}^{n} \ldots
$$

- Consider an emseble of initial conditions. For example, a grid of initial conditions in a region of the phase space. Then study statistics of evolution of this ensemble.
\square

Enselmble of solutions of ODEs.

$$
\dot{x}=f(x), \quad x \in M \text { - a manifold, e.g. } \mathbb{R}^{n}, \mathbb{T}^{n} \ldots
$$

- Consider an emseble of initial conditions. For example, a grid of initial conditions in a region of the phase space. Then study statistics of evolution of this ensemble.
- More generally, consider a probability measure μ of initial conditions.

Modified goal: Analyze long time behavior stati

Enselmble of solutions of ODEs.

$$
\dot{x}=f(x), \quad x \in M \text { - a manifold, e.g. } \mathbb{R}^{n}, \mathbb{T}^{n} \ldots
$$

- Consider an emseble of initial conditions. For example, a grid of initial conditions in a region of the phase space. Then study statistics of evolution of this ensemble.
- More generally, consider a probability measure μ of initial conditions. Then study distributions of the pushforward of this measure μ.

Modified goal: Analyze long time behavior

Enselmble of solutions of ODEs.

$$
\dot{x}=f(x), \quad x \in M \text { - a manifold, e.g. } \mathbb{R}^{n}, \mathbb{T}^{n} \ldots
$$

- Consider an emseble of initial conditions. For example, a grid of initial conditions in a region of the phase space. Then study statistics of evolution of this ensemble.
- More generally, consider a probability measure μ of initial conditions. Then study distributions of the pushforward of this measure μ.
- Modified goal: Analyze long time behavior statistically.

Ergodic systems and systems with mixed behavior

$$
\left\{\begin{array}{l}
\dot{q}=\partial_{\rho} H \\
\dot{p}=-\partial_{q} H
\end{array} \quad(q, p) \in \mathbb{R}^{2 n}\right.
$$

Let μ be the volume and the flow is volume preserving.

Ergodic systems and systems with mixed behavior

$$
\left\{\begin{array}{l}
\dot{q}=\partial_{\rho} H \\
\dot{p}=-\partial_{q} H
\end{array} \quad(q, p) \in \mathbb{R}^{2 n}\right.
$$

Let μ be the volume and the flow is volume preserving.

- The system is ergodic if for a μ-almost every initial condition long time behavior is the same,

Ergodic systems and systems with mixed behavior

$$
\left\{\begin{array}{l}
\dot{q}=\partial_{\rho} H \\
\dot{p}=-\partial_{q} H
\end{array} \quad(q, p) \in \mathbb{R}^{2 n}\right.
$$

Let μ be the volume and the flow is volume preserving.

- The system is ergodic if for a μ-almost every initial condition long time behavior is the same, i.e. time and space averages coincide.

Ergodic systems and systems with mixed behavior

$$
\left\{\begin{array}{l}
\dot{q}=\partial_{p} H \\
\dot{p}=-\partial_{q} H
\end{array} \quad(q, p) \in \mathbb{R}^{2 n}\right.
$$

Let μ be the volume and the flow is volume preserving.

- The system is ergodic if for a μ-almost every initial condition long time behavior is the same, i.e. time and space averages coincide.
- The system has mixed behavior if there are at least two sets of positive μ-measure of initial conditions with different long time behavior.

Mixed Behavior: Bunimovich Mushroom

Laskar simulations on instability of the Solar system

B BC NEWS

'Tiny chance' of planet collision

By Pallab Ghosh

Science correspondent, BBC News
Astronomers calculate there is a tiny chance that Mars or Venus could collide with Earth - though it would not happen for at least a billion years.

Astronomers had thought that the orbits of the planets were predictable. But 20 years ago, researchers showed that there were slight fluctuations in their paths.

The researchers carried out more than 2,500 simulations. They found that in some, Mars and Venus collided with the Earth.
"It will be complete devastation," said Professor Laskar.
"The planet is coming in at 10 km per second - 10 times the speed of a bullet - and of course Mars is much more massive than a bullet."

Professor Laskar's calculations also show that there is a possibility of Mercury crashing into Venus. But in that scenario, the Earth would not be significantly affected.

Laskar simulations on instability of the Solar system

Figure: Venus and Earth collide

Laskar simulations on instability of the Solar system

Figure: Venus and Earth collide

Mars and Earth collide

Integrable systems \& action-angles coordinates

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a Hamiltonian, $\varphi \in \mathbb{T}^{n}$ be angle, $I \in \mathbb{R}^{n}$ be action. A Hamiltonian system is Arnold-Liouville integrable if for an open set $U)$ is foliated by invariant n-dimensional tori and on each torus $I^{n} \times I_{0}$ the flow is linear.

Integrable systems \& action-angles coordinates

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a Hamiltonian, $\varphi \in \mathbb{T}^{n}$ be angle, $I \in \mathbb{R}^{n}$ be action.
A Hamiltonian system is Arnold-Liouville integrable if for an open set $U \subset \mathbb{R}^{n}$ there exists a symplectic map $\Phi: \mathbb{T}^{n} \times U \rightarrow \mathbb{R}^{2 n}$ s. t. $H \circ \Phi(\varphi, I)$ depends only on I

Integrable systems \& action-angles coordinates

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a Hamiltonian, $\varphi \in \mathbb{T}^{n}$ be angle, $I \in \mathbb{R}^{n}$ be action.
A Hamiltonian system is Arnold-Liouville integrable if for an open set $U \subset \mathbb{R}^{n}$ there exists a symplectic map $\Phi: \mathbb{T}^{n} \times U \rightarrow \mathbb{R}^{2 n}$ s. t. $H \circ \Phi(\varphi, I)$ depends only on I and

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l}(H \circ \Phi)(I)=\omega(I) \\
\dot{l}=0
\end{array}\right.
$$

(φ, I)-action-angle coordinates

In particular, $\Phi\left(\mathbb{T}^{n} \times U\right)$ is foliated by invariant n-dimensional tori and on each torus $\mathbb{T}^{n} \times I_{0}$ the flow is linear.

Integrable systems \& action-angles coordinates

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a Hamiltonian, $\varphi \in \mathbb{T}^{n}$ be angle, $I \in \mathbb{R}^{n}$ be action.
A Hamiltonian system is Arnold-Liouville integrable if for an open set $U \subset \mathbb{R}^{n}$ there exists a symplectic map $\Phi: \mathbb{T}^{n} \times U \rightarrow \mathbb{R}^{2 n}$ s. t. $H \circ \Phi(\varphi, I)$ depends only on I and

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l}(H \circ \Phi)(I)=\omega(I), \\
l=0
\end{array}\right.
$$

(φ, I)-action-angle coordinates

In particular, $\Phi\left(\mathbb{T}^{n} \times U\right)$ is foliated by invariant n-dimensional tori and on each torus $\mathbb{T}^{n} \times I_{0}$ the flow is linear.

Integrable systems \& action-angles coordinates

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a Hamiltonian, $\varphi \in \mathbb{T}^{n}$ be angle, $I \in \mathbb{R}^{n}$ be action.
A Hamiltonian system is Arnold-Liouville integrable if for an open set $U \subset \mathbb{R}^{n}$ there exists a symplectic map $\Phi: \mathbb{T}^{n} \times U \rightarrow \mathbb{R}^{2 n}$ s. t. $H \circ \Phi(\varphi, I)$ depends only on I and

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l}(H \circ \Phi)(I)=\omega(I), \\
l=0
\end{array}\right.
$$

(φ, I)-action-angle coordinates

In particular, $\Phi\left(\mathbb{T}^{n} \times U\right)$ is foliated by invariant n-dimensional tori and on each torus $\mathbb{T}^{n} \times I_{0}$ the flow is linear.

Integrable systems \& action-angles coordinates

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a Hamiltonian, $\varphi \in \mathbb{T}^{n}$ be angle, $I \in \mathbb{R}^{n}$ be action.
A Hamiltonian system is Arnold-Liouville integrable if for an open set $U \subset \mathbb{R}^{n}$ there exists a symplectic map $\Phi: \mathbb{T}^{n} \times U \rightarrow \mathbb{R}^{2 n}$ s. t. $H \circ \Phi(\varphi, I)$ depends only on I and

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l}(H \circ \Phi)(I)=\omega(I) \\
l=0
\end{array}\right.
$$

(φ, I)-action-angle coordinates

In particular, $\Phi\left(\mathbb{T}^{n} \times U\right)$ is foliated by invariant n-dimensional tori and on each torus $\mathbb{T}^{n} \times I_{0}$ the flow is linear.

Integrable systems \& action-angles coordinates

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a Hamiltonian, $\varphi \in \mathbb{T}^{n}$ be angle, $I \in \mathbb{R}^{n}$ be action.
A Hamiltonian system is Arnold-Liouville integrable if for an open set $U \subset \mathbb{R}^{n}$ there exists a symplectic map $\Phi: \mathbb{T}^{n} \times U \rightarrow \mathbb{R}^{2 n}$ s. t. $H \circ \Phi(\varphi, I)$ depends only on I and

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l}(H \circ \Phi)(I)=\omega(I) \\
l=0
\end{array}\right.
$$

(φ, I)-action-angle coordinates

In particular, $\Phi\left(\mathbb{T}^{n} \times U\right)$ is foliated by invariant n-dimensional tori and on each torus $\mathbb{T}^{n} \times I_{0}$ the flow is linear.

Integrable systems \& action-angles coordinates

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a Hamiltonian, $\varphi \in \mathbb{T}^{n}$ be angle, $I \in \mathbb{R}^{n}$ be action.
A Hamiltonian system is Arnold-Liouville integrable if for an open set $U \subset \mathbb{R}^{n}$ there exists a symplectic map $\Phi: \mathbb{T}^{n} \times U \rightarrow \mathbb{R}^{2 n}$ s. t. $H \circ \Phi(\varphi, I)$ depends only on I and

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l}(H \circ \Phi)(I)=\omega(I) \\
l=0
\end{array}\right.
$$

(φ, I)-action-angle coordinates

In particular, $\Phi\left(\mathbb{T}^{n} \times U\right)$ is foliated by invariant n-dimensional tori and on each torus $\mathbb{T}^{n} \times I_{0}$ the flow is linear.

Integrable systems \& action-angles coordinates

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a Hamiltonian, $\varphi \in \mathbb{T}^{n}$ be angle, $I \in \mathbb{R}^{n}$ be action.
A Hamiltonian system is Arnold-Liouville integrable if for an open set $U \subset \mathbb{R}^{n}$ there exists a symplectic map $\Phi: \mathbb{T}^{n} \times U \rightarrow \mathbb{R}^{2 n}$ s. t. $H \circ \Phi(\varphi, I)$ depends only on I and

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l}(H \circ \Phi)(I)=\omega(I) \\
l=0
\end{array}\right.
$$

(φ, I)-action-angle coordinates

In particular, $\Phi\left(\mathbb{T}^{n} \times U\right)$ is foliated by invariant n-dimensional tori and on each torus $\mathbb{T}^{n} \times I_{0}$ the flow is linear.

Integrable systems \& action-angles coordinates

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a Hamiltonian, $\varphi \in \mathbb{T}^{n}$ be angle, $I \in \mathbb{R}^{n}$ be action.
A Hamiltonian system is Arnold-Liouville integrable if for an open set $U \subset \mathbb{R}^{n}$ there exists a symplectic map $\Phi: \mathbb{T}^{n} \times U \rightarrow \mathbb{R}^{2 n}$ s. t. $H \circ \Phi(\varphi, I)$ depends only on I and

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l}(H \circ \Phi)(I)=\omega(I) \\
\dot{I}=0
\end{array}\right.
$$

(φ, I)-action-angle coordinates

In particular, $\Phi\left(\mathbb{T}^{n} \times U\right)$ is foliated by invariant n-dimensional tori and on each torus $\mathbb{T}^{n} \times I_{0}$ the flow is linear.

Integrable systems \& action-angles coordinates

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a Hamiltonian, $\varphi \in \mathbb{T}^{n}$ be angle, $I \in \mathbb{R}^{n}$ be action.
A Hamiltonian system is Arnold-Liouville integrable if for an open set $U \subset \mathbb{R}^{n}$ there exists a symplectic map $\Phi: \mathbb{T}^{n} \times U \rightarrow \mathbb{R}^{2 n}$ s. t. $H \circ \Phi(\varphi, I)$ depends only on I and

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l}(H \circ \Phi)(I)=\omega(I) \\
\dot{I}=0
\end{array}\right.
$$

(φ, I)-action-angle coordinates

In particular, $\Phi\left(\mathbb{T}^{n} \times U\right)$ is foliated by invariant n-dimensional tori and on each torus $\mathbb{T}^{n} \times I_{0}$ the flow is linear.

Integrable systems

- Rotor: $\dot{\varphi}=r, \dot{r}=0, H=\frac{r^{2}}{2},(\varphi, r) \in 2 \pi \mathbb{T} \times \mathbb{R}$.

Integrable systems

- Rotor: $\dot{\varphi}=r, \dot{r}=0, H=\frac{r^{2}}{2},(\varphi, r) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Pendulum: $\dot{q}=p, \dot{p}=\sin q, H=\frac{r^{2}}{2}-\cos q,(q, p) \in 2 \pi \mathbb{T} \times \mathbb{R}$.

Integrable systems

- Rotor: $\dot{\varphi}=r, \dot{r}=0, H=\frac{r^{2}}{2},(\varphi, r) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Pendulum: $\dot{q}=p, \dot{p}=\sin q, H=\frac{r^{2}}{2}-\cos q,(q, p) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator: $\dot{q}=p, \dot{p}=-k q$ or $H=\frac{p^{2}}{2}+\frac{k q^{2}}{2}$.

Integrable systems

- Rotor: $\dot{\varphi}=r, \dot{r}=0, H=\frac{r^{2}}{2},(\varphi, r) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Pendulum: $\dot{q}=p, \dot{p}=\sin q, H=\frac{r^{2}}{2}-\cos q,(q, p) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator: $\dot{q}=p, \dot{p}=-k q$ or $H=\frac{p^{2}}{2}+\frac{k q^{2}}{2}$.
- Motion in a central force field: $\ddot{q}=F(\|q\|) q$.

Integrable systems

- Rotor: $\dot{\varphi}=r, \dot{r}=0, H=\frac{r^{2}}{2},(\varphi, r) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Pendulum: $\dot{q}=p, \dot{p}=\sin q, H=\frac{r^{2}}{2}-\cos q,(q, p) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator: $\dot{q}=p, \dot{p}=-k q$ or $H=\frac{p^{2}}{2}+\frac{k q^{2}}{2}$.
- Motion in a central force field: $\ddot{q}=F(\|q\|) q$.
- Newtonial two body problem.

Integrable systems

- Rotor: $\dot{\varphi}=r, \dot{r}=0, H=\frac{r^{2}}{2},(\varphi, r) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Pendulum: $\dot{q}=p, \dot{p}=\sin q, H=\frac{r^{2}}{2}-\cos q,(q, p) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator: $\dot{q}=p, \dot{p}=-k q$ or $H=\frac{p^{2}}{2}+\frac{k q^{2}}{2}$.
- Motion in a central force field: $\ddot{q}=F(\|q\|) q$.
- Newtonial two body problem.
- Newtonian two center problem.

Integrable systems

- Rotor: $\dot{\varphi}=r, \dot{r}=0, H=\frac{r^{2}}{2},(\varphi, r) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Pendulum: $\dot{q}=p, \dot{p}=\sin q, H=\frac{r^{2}}{2}-\cos q,(q, p) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator: $\dot{q}=p, \dot{p}=-k q$ or $H=\frac{p^{2}}{2}+\frac{k q^{2}}{2}$.
- Motion in a central force field: $\ddot{q}=F(\|q\|) q$.
- Newtonial two body problem.
- Newtonian two center problem.
- Lagrange's top,

Integrable systems

- Rotor: $\dot{\varphi}=r, \dot{r}=0, H=\frac{r^{2}}{2},(\varphi, r) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Pendulum: $\dot{q}=p, \dot{p}=\sin q, H=\frac{r^{2}}{2}-\cos q,(q, p) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator: $\dot{q}=p, \dot{p}=-k q$ or $H=\frac{p^{2}}{2}+\frac{k q^{2}}{2}$.
- Motion in a central force field: $\ddot{q}=F(\|q\|) q$.
- Newtonial two body problem.
- Newtonian two center problem.
- Lagrange's top, Kovaleskaya's top,
interaction $\sum_{i} \exp \left(x_{i}-x_{i+1}\right)$

Integrable systems

- Rotor: $\dot{\varphi}=r, \dot{r}=0, H=\frac{r^{2}}{2},(\varphi, r) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Pendulum: $\dot{q}=p, \dot{p}=\sin q, H=\frac{r^{2}}{2}-\cos q,(q, p) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator: $\dot{q}=p, \dot{p}=-k q$ or $H=\frac{p^{2}}{2}+\frac{k q^{2}}{2}$.
- Motion in a central force field: $\ddot{q}=F(\|q\|) q$.
- Newtonial two body problem.
- Newtonian two center problem.
- Lagrange's top, Kovaleskaya's top, Euler's top.
interaction $\sum_{i} \exp \left(x_{i}-x_{i+1}\right)$
Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.

Integrable systems

- Rotor: $\dot{\varphi}=r, \dot{r}=0, H=\frac{r^{2}}{2},(\varphi, r) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Pendulum: $\dot{q}=p, \dot{p}=\sin q, H=\frac{r^{2}}{2}-\cos q,(q, p) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator: $\dot{q}=p, \dot{p}=-k q$ or $H=\frac{p^{2}}{2}+\frac{k q^{2}}{2}$.
- Motion in a central force field: $\ddot{q}=F(\|q\|) q$.
- Newtonial two body problem.
- Newtonian two center problem.
- Lagrange's top, Kovaleskaya's top, Euler's top.
- Toda lattice: chain $\cdots<x_{0}<x_{1}<\ldots$ with the neighbor interaction $\sum_{i} \exp \left(x_{i}-x_{i+1}\right)$
neighbor repulsive interaction.

Integrable systems

- Rotor: $\dot{\varphi}=r, \dot{r}=0, H=\frac{r^{2}}{2},(\varphi, r) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Pendulum: $\dot{q}=p, \dot{p}=\sin q, H=\frac{r^{2}}{2}-\cos q,(q, p) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator: $\dot{q}=p, \dot{p}=-k q$ or $H=\frac{p^{2}}{2}+\frac{k q^{2}}{2}$.
- Motion in a central force field: $\ddot{q}=F(\|q\|) q$.
- Newtonial two body problem.
- Newtonian two center problem.
- Lagrange's top, Kovaleskaya's top, Euler's top.
- Toda lattice: chain $\cdots<x_{0}<x_{1}<\ldots$ with the neighbor interaction $\sum_{i} \exp \left(x_{i}-x_{i+1}\right)$
- Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.

A geodesic flow on a surface of revolution.

Integrable systems

- Rotor: $\dot{\varphi}=r, \dot{r}=0, H=\frac{r^{2}}{2},(\varphi, r) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Pendulum: $\dot{q}=p, \dot{p}=\sin q, H=\frac{r^{2}}{2}-\cos q,(q, p) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator: $\dot{q}=p, \dot{p}=-k q$ or $H=\frac{p^{2}}{2}+\frac{k q^{2}}{2}$.
- Motion in a central force field: $\ddot{q}=F(\|q\|) q$.
- Newtonial two body problem.
- Newtonian two center problem.
- Lagrange's top, Kovaleskaya's top, Euler's top.
- Toda lattice: chain $\cdots<x_{0}<x_{1}<\ldots$ with the neighbor interaction $\sum_{i} \exp \left(x_{i}-x_{i+1}\right)$
- Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.
- A geodesic flow on an n-dim'l ellipsoid with different main axes.

Integrable systems

- Rotor: $\dot{\varphi}=r, \dot{r}=0, H=\frac{r^{2}}{2},(\varphi, r) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Pendulum: $\dot{q}=p, \dot{p}=\sin q, H=\frac{r^{2}}{2}-\cos q,(q, p) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator: $\dot{q}=p, \dot{p}=-k q$ or $H=\frac{p^{2}}{2}+\frac{k q^{2}}{2}$.
- Motion in a central force field: $\ddot{q}=F(\|q\|) q$.
- Newtonial two body problem.
- Newtonian two center problem.
- Lagrange's top, Kovaleskaya's top, Euler's top.
- Toda lattice: chain $\cdots<x_{0}<x_{1}<\ldots$ with the neighbor interaction $\sum_{i} \exp \left(x_{i}-x_{i+1}\right)$
- Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.
- A geodesic flow on an n-dim'l ellipsoid with different main axes.
- A geodesic flow on a surface of revolution.

Integrable systems

- Rotor: $\dot{\varphi}=r, \dot{r}=0, H=\frac{r^{2}}{2},(\varphi, r) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Pendulum: $\dot{q}=p, \dot{p}=\sin q, H=\frac{r^{2}}{2}-\cos q,(q, p) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator: $\dot{q}=p, \dot{p}=-k q$ or $H=\frac{p^{2}}{2}+\frac{k q^{2}}{2}$.
- Motion in a central force field: $\ddot{q}=F(\|q\|) q$.
- Newtonial two body problem.
- Newtonian two center problem.
- Lagrange's top, Kovaleskaya's top, Euler's top.
- Toda lattice: chain $\cdots<x_{0}<x_{1}<\ldots$ with the neighbor interaction $\sum_{i} \exp \left(x_{i}-x_{i+1}\right)$
- Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.
- A geodesic flow on an n-dim'l ellipsoid with different main axes.
- A geodesic flow on a surface of revolution.

Integrable systems

- Rotor: $\dot{\varphi}=r, \dot{r}=0, H=\frac{r^{2}}{2},(\varphi, r) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Pendulum: $\dot{q}=p, \dot{p}=\sin q, H=\frac{r^{2}}{2}-\cos q,(q, p) \in 2 \pi \mathbb{T} \times \mathbb{R}$.
- Harmonic oscillator: $\dot{q}=p, \dot{p}=-k q$ or $H=\frac{p^{2}}{2}+\frac{k q^{2}}{2}$.
- Motion in a central force field: $\ddot{q}=F(\|q\|) q$.
- Newtonial two body problem.
- Newtonian two center problem.
- Lagrange's top, Kovaleskaya's top, Euler's top.
- Toda lattice: chain $\cdots<x_{0}<x_{1}<\ldots$ with the neighbor interaction $\sum_{i} \exp \left(x_{i}-x_{i+1}\right)$
- Calogero-Moser system: chain of harmonic oscillators with a neighbor repulsive interaction.
- A geodesic flow on an n-dim'l ellipsoid with different main axes.
- A geodesic flow on a surface of revolution.

KAM Theorem and explanation of failure of ergodicity

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum l_{j}^{2} / 2$.

KAM Theorem and explanation of failure of ergodicity

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum I_{j}^{2} / 2$.
KAM Theorem Let $H_{\varepsilon}(\varphi, I)=H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ be a smooth perturbation. Then with probability $1-O(\sqrt{\varepsilon})$ an initial condition in $\mathbb{T}^{n} \times B^{n}$ has a quasiperiodic orbit. Moreover, $\mathbb{T}^{n} \times B^{n}$

KAM Theorem and explanation of failure of ergodicity

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum l_{j}^{2} / 2$.
KAM Theorem Let $H_{\varepsilon}(\varphi, I)=H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ be a smooth perturbation. Then with probability $1-O(\sqrt{\varepsilon})$ an initial condition in $\mathbb{T}^{n} \times B^{n}$ has a quasiperiodic orbit. Moreover, $\mathbb{T}^{n} \times B^{n}$ is laminated by invariant n-dimensional tori

KAM Theorem and explanation of failure of ergodicity

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum I_{j}^{2} / 2$.
KAM Theorem Let $H_{\varepsilon}(\varphi, I)=H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ be a smooth perturbation. Then with probability $1-O(\sqrt{\varepsilon})$ an initial condition in $\mathbb{T}^{n} \times B^{n}$ has a quasiperiodic orbit. Moreover, $\mathbb{T}^{n} \times B^{n}$ is laminated by invariant n-dimensional tori with a linear flow on each.

KAM Theorem and explanation of failure of ergodicity

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum I_{j}^{2} / 2$.
KAM Theorem Let $H_{\varepsilon}(\varphi, I)=H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ be a smooth perturbation. Then with probability $1-O(\sqrt{\varepsilon})$ an initial condition in $\mathbb{T}^{n} \times B^{n}$ has a quasiperiodic orbit. Moreover, $\mathbb{T}^{n} \times B^{n}$ is laminated by invariant n-dimensional tori with a linear flow on each.

KAM Theorem and explanation of failure of ergodicity

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum I_{j}^{2} / 2$.
KAM Theorem Let $H_{\varepsilon}(\varphi, I)=H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ be a smooth perturbation. Then with probability $1-O(\sqrt{\varepsilon})$ an initial condition in $\mathbb{T}^{n} \times B^{n}$ has a quasiperiodic orbit. Moreover, $\mathbb{T}^{n} \times B^{n}$ is laminated by invariant n-dimensional tori with a linear flow on each.

KAM Theorem and

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum l_{j}^{2} / 2$.
KAM Theorem Let $H_{\varepsilon}(\varphi, I)=H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ be a smooth perturbation. Then with probability $1-O(\sqrt{\varepsilon})$ an initial condition in $\mathbb{T}^{n} \times B^{n}$ has a quasiperiodic orbit. Moreover, $\mathbb{T}^{n} \times B^{n}$ is laminated by invariant n-dimensional tori with a linear flow on each.

KAM Theorem and

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum l_{j}^{2} / 2$.
KAM Theorem Let $H_{\varepsilon}(\varphi, I)=H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ be a smooth perturbation. Then with probability $1-O(\sqrt{\varepsilon})$ an initial condition in $\mathbb{T}^{n} \times B^{n}$ has a quasiperiodic orbit. Moreover, $\mathbb{T}^{n} \times B^{n}$ is laminated by invariant n-dimensional tori with a linear flow on each.

KAM Theorem and

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum l_{j}^{2} / 2$.
KAM Theorem Let $H_{\varepsilon}(\varphi, I)=H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ be a smooth perturbation. Then with probability $1-O(\sqrt{\varepsilon})$ an initial condition in $\mathbb{T}^{n} \times B^{n}$ has a quasiperiodic orbit. Moreover, $\mathbb{T}^{n} \times B^{n}$ is laminated by invariant n-dimensional tori with a linear flow on each.

KAM Theorem and

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum l_{j}^{2} / 2$.
KAM Theorem Let $H_{\varepsilon}(\varphi, I)=H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ be a smooth perturbation. Then with probability $1-O(\sqrt{\varepsilon})$ an initial condition in $\mathbb{T}^{n} \times B^{n}$ has a quasiperiodic orbit. Moreover, $\mathbb{T}^{n} \times B^{n}$ is laminated by invariant n-dimensional tori with a linear flow on each.

KAM Theorem and

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum I_{j}^{2} / 2$.
KAM Theorem Let $H_{\varepsilon}(\varphi, I)=H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ be a smooth perturbation. Then with probability $1-O(\sqrt{\varepsilon})$ an initial condition in $\mathbb{T}^{n} \times B^{n}$ has a quasiperiodic orbit. Moreover, $\mathbb{T}^{n} \times B^{n}$ is laminated by invariant n-dimensional tori with a linear flow on each.

KAM Theorem and

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum I_{j}^{2} / 2$.
KAM Theorem Let $H_{\varepsilon}(\varphi, I)=H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ be a smooth perturbation. Then with probability $1-O(\sqrt{\varepsilon})$ an initial condition in $\mathbb{T}^{n} \times B^{n}$ has a quasiperiodic orbit. Moreover, $\mathbb{T}^{n} \times B^{n}$ is laminated by invariant n-dimensional tori with a linear flow on each.

KAM Theorem and

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum I_{j}^{2} / 2$.
KAM Theorem Let $H_{\varepsilon}(\varphi, I)=H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ be a smooth perturbation. Then with probability $1-O(\sqrt{\varepsilon})$ an initial condition in $\mathbb{T}^{n} \times B^{n}$ has a quasiperiodic orbit. Moreover, $\mathbb{T}^{n} \times B^{n}$ is laminated by invariant n-dimensional tori with a linear flow on each.

KAM Theorem and

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum I_{j}^{2} / 2$.
KAM Theorem Let $H_{\varepsilon}(\varphi, I)=H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ be a smooth perturbation. Then with probability $1-O(\sqrt{\varepsilon})$ an initial condition in $\mathbb{T}^{n} \times B^{n}$ has a quasiperiodic orbit. Moreover, $\mathbb{T}^{n} \times B^{n}$ is laminated by invariant n-dimensional tori with a linear flow on each.

KAM Theorem and

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum l_{j}^{2} / 2$.
KAM Theorem Let $H_{\varepsilon}(\varphi, I)=H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ be a smooth perturbation. Then with probability $1-O(\sqrt{\varepsilon})$ an initial condition in $\mathbb{T}^{n} \times B^{n}$ has a quasiperiodic orbit. Moreover, $\mathbb{T}^{n} \times B^{n}$ is laminated by invariant n-dimensional tori with a linear flow on each.

Width
$\sim \sqrt{\varepsilon}$

Stochastic layers

KAM Theorem and

Let $H_{0}(I)$ have non-degenerate Hessian, $I \in \mathbb{R}^{n}$, e.g. $H_{0}(I)=\sum l_{j}^{2} / 2$.
KAM Theorem Let $H_{\varepsilon}(\varphi, I)=H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ be a smooth perturbation. Then with probability $1-O(\sqrt{\varepsilon})$ an initial condition in $\mathbb{T}^{n} \times B^{n}$ has a quasiperiodic orbit. Moreover, $\mathbb{T}^{n} \times B^{n}$ is laminated by invariant n-dimensional tori with a linear flow on each.

Width
$\sim \sqrt{\varepsilon}$

Stochastic layers

Arnold's Conjecture

```
Soviet Mathematics-Doklady 5 581-5 (1964)
```


INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. I. ARNOL'D

Arnold conjecture For a generic perturbation $H_{\varepsilon}(\varphi, I)=$ $H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ does there exist "diffusing orbits" whose action component $I(t)$ can "travel" $O(1)$, i.e. $|I(t)-I(0)|>O(1)$ for some $t>0$?

Arnold's Conjecture

```
Soviet Mathematics-Doklady 5 581-5 (1964)
```

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
V. I. ARNOL'D

Arnold conjecture For a generic perturbation $H_{\varepsilon}(\varphi, I)=$ $H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ does there exist "diffusing orbits" whose action component $I(t)$ can "travel" $O(1)$, i.e. $|I(t)-I(0)|>O(1)$ for some $t>0$? In particular, such orbits (if exist) are not quasiperiodic.

Arnold's Conjecture

```
Soviet Mathematics-Doklady 5 581-5 (1964)
```

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
V. I. ARNOL'D

Arnold conjecture For a generic perturbation $H_{\varepsilon}(\varphi, I)=$ $H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ does there exist "diffusing orbits" whose action component $I(t)$ can "travel" $O(1)$, i.e. $|I(t)-I(0)|>O(1)$ for some $t>0$? In particular, such orbits (if exist) are not quasiperiodic.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I) \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, I)
\end{array}\right.
$$

Arnold's Conjecture

```
Soviet Mathematics-Doklady 5 581-5 (1964)
```

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
V. I. ARNOL'D

Arnold conjecture For a generic perturbation $H_{\varepsilon}(\varphi, I)=$ $H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ does there exist "diffusing orbits" whose action component $I(t)$ can "travel" $O(1)$, i.e. $|I(t)-I(0)|>O(1)$ for some $t>0$? In particular, such orbits (if exist) are not quasiperiodic.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I) \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, I)
\end{array}\right.
$$

Arnold's Conjecture

Soviet Mathematics-Doklady 5 581-5 (1964)
instability of dynamical systems with several degrees of freedom
V. I. ARNOL'D

Arnold conjecture For a generic perturbation $H_{\varepsilon}(\varphi, I)=$ $H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ does there exist "diffusing orbits" whose action component $I(t)$ can "travel" $O(1)$, i.e. $|I(t)-I(0)|>O(1)$ for some $t>0$? In particular, such orbits (if exist) are not quasiperiodic.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, l) .
\end{array}\right.
$$

Arnold's Conjecture

Soviet Mathematics-Doklady 5 581-5 (1964)
instability of dynamical systems with several degrees of freedom
V. I. ARNOL'D

Arnold conjecture For a generic perturbation $H_{\varepsilon}(\varphi, I)=$ $H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ does there exist "diffusing orbits" whose action component $I(t)$ can "travel" $O(1)$, i.e. $|I(t)-I(0)|>O(1)$ for some $t>0$? In particular, such orbits (if exist) are not quasiperiodic.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, l) .
\end{array}\right.
$$

Kaloshin-Zhang '12 Convex $H_{0}, n=3$, based on Mather's work.

Arnold's Conjecture

Soviet Mathematics-Doklady 5 581-5 (1964)
instability of dynamical systems with several degrees of freedom
V. I. ARNOL'D

Arnold conjecture For a generic perturbation $H_{\varepsilon}(\varphi, I)=$ $H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ does there exist "diffusing orbits" whose action component $I(t)$ can "travel" $O(1)$, i.e. $|I(t)-I(0)|>O(1)$ for some $t>0$? In particular, such orbits (if exist) are not quasiperiodic.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, l) .
\end{array}\right.
$$

Kaloshin-Zhang '12 Convex $H_{0}, n=3$, based on Mather's work. Alternative approaches Cheng'13, J.-P. Marco'15.

Arnold's Conjecture

Soviet Mathematics-Doklady 5 581-5 (1964)
instability of dynamical systems with several degrees of freedom
V. I. ARNOL'D

Arnold conjecture For a generic perturbation $H_{\varepsilon}(\varphi, I)=$ $H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ does there exist "diffusing orbits" whose action component $I(t)$ can "travel" $O(1)$, i.e. $|I(t)-I(0)|>O(1)$ for some $t>0$? In particular, such orbits (if exist) are not quasiperiodic.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, l) .
\end{array}\right.
$$

Kaloshin-Zhang '12 Convex $H_{0}, n=3$, based on Mather's work. Alternative approaches Cheng'13, J.-P. Marco'15.

Arnold's Conjecture

Soviet Mathematics-Doklady 5 581-5 (1964)
instability of dynamical systems with several degrees of freedom
V. I. ARNOL'D

Arnold conjecture For a generic perturbation $H_{\varepsilon}(\varphi, I)=$ $H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ does there exist "diffusing orbits" whose action component $I(t)$ can "travel" $O(1)$, i.e. $|I(t)-I(0)|>O(1)$ for some $t>0$? In particular, such orbits (if exist) are not quasiperiodic.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{1} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, I) .
\end{array}\right.
$$

Kaloshin-Zhang '12 Convex $H_{0}, n=3$, based on Mather's work. Alternative approaches Cheng'13, J.-P. Marco'15.

Arnold's Conjecture

Soviet Mathematics-Doklady 5 581-5 (1964)
instability of dynamical systems with several degrees of freedom
V. I. ARNOL'D

Arnold conjecture For a generic perturbation $H_{\varepsilon}(\varphi, I)=$ $H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ does there exist "diffusing orbits" whose action component $I(t)$ can "travel" $O(1)$, i.e. $|I(t)-I(0)|>O(1)$ for some $t>0$? In particular, such orbits (if exist) are not quasiperiodic.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{1} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, I) .
\end{array}\right.
$$

Kaloshin-Zhang '12 Convex $H_{0}, n=3$, based on Mather's work. Alternative approaches Cheng'13, J.-P. Marco'15.

Arnold's Conjecture

Soviet Mathematics-Doklady 5 581-5 (1964)
instability of dynamical systems with several degrees of freedom
V. I. ARNOL'D

Arnold conjecture For a generic perturbation $H_{\varepsilon}(\varphi, I)=$ $H_{0}(I)+\varepsilon H_{1}(\varphi, I)$ does there exist "diffusing orbits" whose action component $I(t)$ can "travel" $O(1)$, i.e. $|I(t)-I(0)|>O(1)$ for some $t>0$? In particular, such orbits (if exist) are not quasiperiodic.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{1} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, I) .
\end{array}\right.
$$

Kaloshin-Zhang '12 Convex $H_{0}, n=3$, based on Mather's work. Alternative approaches Cheng'13, J.-P. Marco'15.

Arnold diffusion

PHYSICS REPORTS (Review Section of Physics Letters) 52, No. 5 (1979) 263-379. NORTH-HOLLAND PUBLISHING COMPANY

A UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS
Boris V. CHIRIKOV
Institute of Nuclear Physics, 630090 Novosibirsk, U.S.S.R.

Due to "stochastic nature of nonlinear oscillations" Chirikov coined the term for behavior of action inside stochastic layers -

 Arnold diffusion.
Arnold diffusion

PHYSICS REPORTS (Review Section of Physics Letters) 52, No. 5 (1979) 263-379. NORTH-HOLLAND PUBLISHING COMPANY

A UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS

Boris V. CHIRIKOV
Institute of Nuclear Physics, 630090 Novosibirsk, U.S.S.R.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, I) .
\end{array}\right.
$$

Due to "stochastic nature of nonlinear oscillations" Chirikov coined the term for behavior of action inside stochastic layers

 Arnold diffusion.
Arnold diffusion

A UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS
Boris V. CHIRIKOV
Institute of Nuclear Physics, 630090 Novosibirsk, U.S.S.R.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, I) .
\end{array}\right.
$$

Due to "stochastic nature of nonlinear oscillations" Chirikov coined the term for behavior of action inside stochastic layers Arnold diffusion.

Inside stochastic layers action models a stochastic process.

Arnold diffusion

A UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS
Boris V. CHIRIKOV
Institute of Nuclear Physics, 630090 Novosibirsk, U.S.S.R.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, I) .
\end{array}\right.
$$

Due to "stochastic nature of nonlinear oscillations" Chirikov coined the term for behavior of action inside stochastic layers Arnold diffusion.

Inside stochastic layers action models a stochastic process.
Physical examples

Arnold diffusion

A UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS
Boris V. CHIRIKOV
Institute of Nuclear Physics, 630090 Novosibirsk, U.S.S.R.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, I) .
\end{array}\right.
$$

Due to "stochastic nature of nonlinear oscillations" Chirikov coined the term for behavior of action inside stochastic layers Arnold diffusion.

Inside stochastic layers action models a stochastic process.
Physical examples: electrons in magnetic bottles:

Arnold diffusion

PHYSICS REPORTS (Review Section of Physics Letters) 52, No. 5 (1979) 263-379. NORTH-HOLLAND PUBLISHING COMPANY

A UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS
Boris V. CHIRIKOV
Institute of Nuclear Physics, 630090 Novosibirsk, U.S.S.R.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, I) .
\end{array}\right.
$$

Due to "stochastic nature of nonlinear oscillations" Chirikov coined the term for behavior of action inside stochastic layers Arnold diffusion.

Inside stochastic layers action models a stochastic process.
Physical examples:

Arnold diffusion

A UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS
Boris V. CHIRIKOV
Institute of Nuclear Physics, 630090 Novosibirsk, U.S.S.R.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, I) .
\end{array}\right.
$$

Due to "stochastic nature of nonlinear oscillations" Chirikov coined the term for behavior of action inside stochastic layers Arnold diffusion.

Inside stochastic layers action models a stochastic process.
Physical examples: electrons in magnetic bottles,

Arnold diffusion

A UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS
Boris V. CHIRIKOV
Institute of Nuclear Physics, 630090 Novosibirsk, U.S.S.R.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, I) .
\end{array}\right.
$$

Due to "stochastic nature of nonlinear oscillations" Chirikov coined the term for behavior of action inside stochastic layers Arnold diffusion.

Inside stochastic layers action models a stochastic process.
Physical examples: electrons in magnetic bottles, interaction of the electron-positron beams,

Arnold diffusion

A UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS
Boris V. CHIRIKOV
Institute of Nuclear Physics, 630090 Novosibirsk, U.S.S.R.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, I) .
\end{array}\right.
$$

Due to "stochastic nature of nonlinear oscillations" Chirikov coined the term for behavior of action inside stochastic layers Arnold diffusion.

Inside stochastic layers action models a stochastic process.
Physical examples: electrons in magnetic bottles, interaction of the electron-positron beams, electrons in the geomagnetic field,

Arnold diffusion

A UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS
Boris V. CHIRIKOV
Institute of Nuclear Physics, 630090 Novosibirsk, U.S.S.R.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, l), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, l) .
\end{array}\right.
$$

Due to "stochastic nature of nonlinear oscillations" Chirikov coined the term for behavior of action inside stochastic layers Arnold diffusion.

Inside stochastic layers action models a stochastic process.
Physical examples: electrons in magnetic bottles, interaction of the electron-positron beams, electrons in the geomagnetic field, the Asteroid belt in the Solar system,

Arnold diffusion

A UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS
Boris V. CHIRIKOV
Institute of Nuclear Physics, 630090 Novosibirsk, U.S.S.R.

$$
\left\{\begin{array}{l}
\dot{\varphi}=\partial_{l} H_{0}(I)+\varepsilon \partial_{l} H_{1}(\varphi, I), \\
\dot{I}=-\varepsilon \partial_{\varphi} H_{1}(\varphi, I) .
\end{array}\right.
$$

Due to "stochastic nature of nonlinear oscillations" Chirikov coined the term for behavior of action inside stochastic layers Arnold diffusion.

Inside stochastic layers action models a stochastic process.
Physical examples: electrons in magnetic bottles, interaction of the electron-positron beams, electrons in the geomagnetic field, the Asteroid belt in the Solar system, the Solar System.

Is the Solar System stable?


```
Is the Solar System stable, i.e. shall we have the same pictures of
orbits 106}\mathrm{ vears later? 109}\mathrm{ vears later?
```


Is the Solar System stable?

Is the Solar System stable, i.e. shall we have the same pictures of orbits 10^{6} years later? 10^{9} years later?

Is the Solar System stable?

Is the Solar System stable, i.e. shall we have the same pictures of orbits 10^{6} years later? 10^{9} years later?

Is the Solar System stable?

Is the Solar System stable, i.e. shall we have the same pictures of orbits 10^{6} years later? 10^{9} years later?

The Asteroid belt

The Asteroid belt is the region of the Solar System located roughly between the orbits of Mars and Jupiter.

The Asteroid belt

The Asteroid belt is the region of the Solar System located roughly between the orbits of Mars and Jupiter. It is occupied by over a million of asteroids with diameter at least 1 km .

The Asteroid belt

The Asteroid belt is the region of the Solar System located roughly between the orbits of Mars and Jupiter. It is occupied by over a million of asteroids with diameter at least 1 km .

The Asteroid belt

The Asteroid belt is the region of the Solar System located roughly between the orbits of Mars and Jupiter. It is occupied by over a million of asteroids with diameter at least 1 km .

The Deterministic Model: the Sun-Jupiter-Asteroid

Total mass of the Asteroid belt is 4\% of the Earth's moon.

The Deterministic Model: the Sun-Jupiter-Asteroid

Total mass of the Asteroid belt is 4\% of the Earth's moon.

The Deterministic Model: the Sun-Jupiter-Asteroid

Total mass of the Asteroid belt is 4\% of the Earth's moon.

Kirkwood gaps in the Asteroid Belt

Moser: Is the Solar System Stable? The Math Intelligencer, 78

Kirkwood gaps in the Asteroid Belt

Moser: Is the Solar System Stable? The Math Intelligencer, 78

Kirkwood gaps in the Asteroid Belt

Moser: Is the Solar System Stable? The Math Intelligencer, 78

Kirkwood gaps in the Asteroid Belt

Moser: Is the Solar System Stable? The Math Intelligencer, 78

Kirkwood gaps in the Asteroid Belt

Moser: Is the Solar System Stable?
 The Math Intelligencer, 78

Kirkwood gaps in the Asteroid Belt

Moser: Is the Solar System Stable?
 The Math Intelligencer, 78

Kirkwood gaps in the Asteroid Belt

Moser: Is the Solar System Stable?
 The Math Intelligencer, 78

\overbrace{a}^{n}

Kirkwood gap occurs at mean-motion resonance, i.e. when period of Jupiter and of Asteroid are in small rational relation, e.g. 3:1, 5:2, 7:3.

Wisdom '82, '85, Neishtadt '87 explanation of 3:1 Kirkwood gaps

Kirkwood gaps in the Asteroid Belt

Moser: Īs the Solar System Stable?
The Math Intelligencer, 78

Kirkwood gap occurs at mean-motion resonance, i.e. when period of Jupiter and of Asteroid are in small rational relation, e.g. 3:1, 5:2, 7:3.

Wisdom '82, '85, Neishtadt '87 explanation of 3:1 Kirkwood gaps
\square

Kirkwood gaps in the Asteroid Belt

Moser: Īs the Solar System Stable?
The Math Intelligencer, 78

Kirkwood gap occurs at mean-motion resonance, i.e. when period of Jupiter and of Asteroid are in small rational relation, e.g. 3:1, 5:2, 7:3.

Wisdom '82, '85, Neishtadt '87 explanation of 3:1 Kirkwood gaps
\square

Kirkwood gaps in the Asteroid Belt

Moser: Is the Solar System Stable?
 The Math Intelligencer, 78

Kirkwood gap occurs at mean-motion resonance, i.e. when period of Jupiter and of Asteroid are in small rational relation, e.g. 3:1, 5:2, 7:3.

Wisdom '82, '85, Neishtadt '87 explanation of 3:1 Kirkwood gaps

Fejoz-Guadia-K-Roldan '11 an alternative mechanism for small Jupiter eccentricity.

Numerics and Chirikov's diffusion conjecture

K-Roldan Fix mass ratio μ, small Jupiter eccentr e_{J},

Numerics and Chirikov's diffusion conjecture

K-RoIdan Fix mass ratio μ, small Jupiter eccentr \boldsymbol{e}_{J}, Asteroid's $a_{A}^{3 / 2}(0)=\frac{1}{3}$,

Numerics and Chirikov's diffusion conjecture

K-Roldan Fix mass ratio μ, small Jupiter eccentr e_{J}, Asteroid's $a_{A}^{3 / 2}(0)=\frac{1}{3}$, $e_{A}(0)=e^{*}$.

Numerics and Chirikov's diffusion conjecture

K-Roldan Fix mass ratio μ, small Jupiter eccentr \boldsymbol{e}_{J}, Asteroid's $a_{A}^{3 / 2}(0)=\frac{1}{3}$, $e_{A}(0)=e^{*}$. Pick 10^{4} initial angles.

Numerics and Chirikov's diffusion conjecture

K-Roldan Fix mass ratio μ, small Jupiter eccentr \boldsymbol{e}_{J}, Asteroid's $a_{A}^{3 / 2}(0)=\frac{1}{3}$, $e_{A}(0)=e^{*}$. Pick 10^{4} initial angles. Run $T_{t}=\frac{t}{\mu^{2} e_{J}^{2}}$.

Numerics and Chirikov's diffusion conjecture

K-Roldan Fix mass ratio μ, small Jupiter eccentr e_{J}, Asteroid's $a_{A}^{3 / 2}(0)=\frac{1}{3}$, $e_{A}(0)=e^{*}$. Pick 10^{4} initial angles. Run $T_{t}=\frac{t}{\mu^{2} e_{J}^{2}}$. Plot histogram for $e_{A}(T)$.

Numerics and Chirikov's diffusion conjecture

K-Roldan Fix mass ratio μ, small Jupiter eccentr e_{J}, Asteroid's $a_{A}^{3 / 2}(0)=\frac{1}{3}$, $e_{A}(0)=e^{*}$. Pick 10^{4} initial angles. Run $T_{t}=\frac{t}{\mu^{2} e_{J}^{2}}$. Plot histogram for $e_{A}(T)$.

Numerics and Chirikov's diffusion conjecture

K-Roldan Fix mass ratio μ, small Jupiter eccentr e_{J}, Asteroid's $a_{A}^{3 / 2}(0)=\frac{1}{3}$, $e_{A}(0)=e^{*}$. Pick 10^{4} initial angles. Run $T_{t}=\frac{t}{\mu^{2} e_{J}^{2}}$. Plot histogram for $e_{A}\left(T_{t}\right)$.

Diffusion conjecture Inside Kirkwood gaps as $\mu \rightarrow 0$ distributions of eccentricity $e_{A}\left(T_{t}\right)$ in a certain time scale weakly converge to
\qquad the white noise and $\sigma(e)$ is a smooth function.

Numerics and Chirikov's diffusion conjecture

K-Roldan Fix mass ratio μ, small Jupiter eccentr e_{J}, Asteroid's $a_{A}^{3 / 2}(0)=\frac{1}{3}$, $e_{A}(0)=e^{*}$. Pick 10^{4} initial angles. Run $T_{t}=\frac{t}{\mu^{2} e_{J}^{2}}$. Plot histogram for $e_{A}\left(T_{t}\right)$.

Diffusion conjecture Inside Kirkwood gaps as $\mu \rightarrow 0$ distributions of eccentricity $e_{A}\left(T_{t}\right)$ in a certain time scale weakly converge to
\qquad the white noise and $\sigma(e)$ is a smooth function.

Numerics and Chirikov's diffusion conjecture

K-Roldan Fix mass ratio μ, small Jupiter eccentr e_{J}, Asteroid's $a_{A}^{3 / 2}(0)=\frac{1}{3}$, $e_{A}(0)=e^{*}$. Pick 10^{4} initial angles. Run $T_{t}=\frac{t}{\mu^{2} e_{J}^{2}}$. Plot histogram for $e_{A}\left(T_{t}\right)$.

Diffusion conjecture Inside Kirkwood gaps as $\mu \rightarrow 0$ distributions of eccentricity $e_{A}\left(T_{t}\right)$ in a certain time scale weakly converge to distributions of a diffusion process $e_{t}=e_{0}+\int_{0}^{t} \sigma\left(e_{s}\right) d w_{s}$, where $d w_{s}$ is the white noise and $\sigma(e)$ is a smooth function.

Numerics and Chirikov's diffusion conjecture

K-Roldan Fix mass ratio μ, small Jupiter eccentr e_{J}, Asteroid's $a_{A}^{3 / 2}(0)=\frac{1}{3}$, $e_{A}(0)=e^{*}$. Pick 10^{4} initial angles. Run $T_{t}=\frac{t}{\mu^{2} e_{J}^{2}}$. Plot histogram for $e_{A}\left(T_{t}\right)$.

Diffusion conjecture Inside Kirkwood gaps as $\mu \rightarrow 0$ distributions of eccentricity $e_{A}\left(T_{t}\right)$ in a certain time scale weakly converge to distributions of a diffusion process $e_{t}=e_{0}+\int_{0}^{t} \sigma\left(e_{s}\right) d w_{s}$, where $d w_{s}$ is the white noise and $\sigma(e)$ is a smooth function.

Numerics and Chirikov's diffusion conjecture

K-Roldan Fix mass ratio μ, small Jupiter eccentr e_{J}, Asteroid's $a_{A}^{3 / 2}(0)=\frac{1}{3}$, $e_{A}(0)=e^{*}$. Pick 10^{4} initial angles. Run $T_{t}=\frac{t}{\mu^{2} e_{J}^{2}}$. Plot histogram for $e_{A}\left(T_{t}\right)$.

Diffusion conjecture Inside Kirkwood gaps as $\mu \rightarrow 0$ distributions of eccentricity $e_{A}\left(T_{t}\right)$ in a certain time scale weakly converge to distributions of a diffusion process $e_{t}=e_{0}+\int_{0}^{t} \sigma\left(e_{s}\right) d w_{s}$, where $d w_{s}$ is the white noise and $\sigma(e)$ is a smooth function.

Numerics and Chirikov's diffusion conjecture

K-Roldan Fix mass ratio μ, small Jupiter eccentr e_{J}, Asteroid's $a_{A}^{3 / 2}(0)=\frac{1}{3}$, $e_{A}(0)=e^{*}$. Pick 10^{4} initial angles. Run $T_{t}=\frac{t}{\mu^{2} e_{J}^{2}}$. Plot histogram for $e_{A}\left(T_{t}\right)$.

Diffusion conjecture Inside Kirkwood gaps as $\mu \rightarrow 0$ distributions of eccentricity $e_{A}\left(T_{t}\right)$ in a certain time scale weakly converge to distributions of a diffusion process $e_{t}=e_{0}+\int_{0}^{t} \sigma\left(e_{s}\right) d w_{s}$, where $d w_{s}$ is the white noise and $\sigma(e)$ is a smooth function.

Numerics and Chirikov's diffusion conjecture

K-Roldan Fix mass ratio μ, small Jupiter eccentr e_{J}, Asteroid's $a_{A}^{3 / 2}(0)=\frac{1}{3}$, $e_{A}(0)=e^{*}$. Pick 10^{4} initial angles. Run $T_{t}=\frac{t}{\mu^{2} e_{J}^{2}}$. Plot histogram for $e_{A}\left(T_{t}\right)$.

Diffusion conjecture Inside Kirkwood gaps as $\mu \rightarrow 0$ distributions of eccentricity $e_{A}\left(T_{t}\right)$ in a certain time scale weakly converge to distributions of a diffusion process $e_{t}=e_{0}+\int_{0}^{t} \sigma\left(e_{s}\right) d w_{s}$, where $d w_{s}$ is the white noise and $\sigma(e)$ is a smooth function.

Numerics and Chirikov's diffusion conjecture

K-Roldan Fix mass ratio μ, small Jupiter eccentr e_{J}, Asteroid's $a_{A}^{3 / 2}(0)=\frac{1}{3}$, $e_{A}(0)=e^{*}$. Pick 10^{4} initial angles. Run $T_{t}=\frac{t}{\mu^{2} e_{J}^{2}}$. Plot histogram for $e_{A}\left(T_{t}\right)$.

Diffusion conjecture Inside Kirkwood gaps as $\mu \rightarrow 0$ distributions of eccentricity $e_{A}\left(T_{t}\right)$ in a certain time scale weakly converge to distributions of a diffusion process $e_{t}=e_{0}+\int_{0}^{t} \sigma\left(e_{s}\right) d w_{s}$, where $d w_{s}$ is the white noise and $\sigma(e)$ is a smooth function.

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
V. I. ARNOL'D
\square

Mathematical Pendulum

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. I. ARNOL'D
$H_{0}(p, q, r, \varphi, t)=\underbrace{\frac{r^{2}}{2}}_{\text {rotor }}+\underbrace{\frac{p^{2}}{2}+(\cos q-1)}_{\text {pendulum }}$,
where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Mathematical Pendulum

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. I. ARNOL'D
$H_{0}(p, q, r, \varphi, t)=\underbrace{\frac{r^{2}}{2}}_{\text {rotor }}+\underbrace{\frac{p^{2}}{2}+(\cos q-1)}_{\text {pendulum }}$,
where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Mathematical Pendulum

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. I. ARNOL'D
$H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+(\cos q-1)+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)$,
where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Mathematical Pendulum

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

V. I. ARNOL'D
$H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+(\cos q-1)+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)$,
where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Mathematical Pendulum

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
V. I. ARNOL'D
$H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)$,
where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Mathematical Pendulum

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
V. I. ARNOL'D
$H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)$,
where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Mathematical Pendulum

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
V. I. ARNOL'D
$H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)$,
where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Mathematical Pendulum

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
V. I. ARNOL'D
$H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)$,
where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Mathematical Pendulum

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
Y. I. ARNOL'D
$H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)$,
where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Mathematical Pendulum

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
Y. I. ARNOL'D
$H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)$,
where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Mathematical Pendulum

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
Y. I. ARNOL'D
$H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)$,
where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Mathematical Pendulum

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
Y. I. ARNOL'D
$H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)$,
where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Mathematical Pendulum

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
Y. I. ARNOL'D
$H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)$,
where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
Y. I. ARNOL'D
$H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)$,
where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Arnold's example

```
Soviet Mathematics-Doklady 5 581-5 (1964)
```


INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Mathematical Pendulūm

Arnold's Conjecture "Diffusing" orbits $|r(t)-r(0)|>1$ exist.

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
Y. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
Y. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
y. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard, Berti,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

WNSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
y. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard, Berti, Bessi,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
Y. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard, Berti, Bessi, Cheng,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
Y. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard, Berti, Bessi, Cheng, Delshams,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
Y. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard, Berti, Bessi, Cheng, Delshams, de la Llave,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEYERAL DEGREES OF FREEDOM
v. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard, Berti, Bessi, Cheng, Delshams, de la Llave, Gallavotti,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
y. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard, Berti, Bessi, Cheng, Delshams, de la Llave, Gallavotti, Gelfreich,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
y. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard, Berti, Bessi, Cheng, Delshams, de la Llave, Gallavotti, Gelfreich, Lochak,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
y. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard, Berti, Bessi, Cheng, Delshams, de la Llave, Gallavotti, Gelfreich, Lochak, Marco,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
v. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard, Berti, Bessi, Cheng, Delshams, de la Llave, Gallavotti, Gelfreich, Lochak, Marco, Mather,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
y. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard, Berti, Bessi, Cheng, Delshams, de la Llave, Gallavotti, Gelfreich, Lochak, Marco, Mather, Sauzin,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
v. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard, Berti, Bessi, Cheng, Delshams, de la Llave, Gallavotti, Gelfreich, Lochak, Marco, Mather, Sauzin, Seara,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
y. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard, Berti, Bessi, Cheng, Delshams, de la Llave, Gallavotti, Gelfreich, Lochak, Marco, Mather, Sauzin, Seara, Treschev,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
v. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard, Berti, Bessi, Cheng, Delshams, de la Llave, Gallavotti, Gelfreich, Lochak, Marco, Mather, Sauzin, Seara, Treschev, Turaev,

Arnold's example

Soviet Mathematics-Doklady 5 581-5 (1964)

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
v. L. ARNOL'D

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)
$$

where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Contributors to existence of diffusive orbits: Arnold, Bernard, Berti, Bessi, Cheng, Delshams, de la Llave, Gallavotti, Gelfreich, Lochak, Marco, Mather, Sauzin, Seara, Treschev, Turaev, Yan

Arnold's example

```
Soviet Mathematics-Doklady 5 581-5 (1964)
```

INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM
$H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+\cos q-1+\varepsilon H_{1}(p, q, r, \varphi, t)=: H_{0}(\cdot)+\varepsilon H_{1}(\cdot)$,
where $q, \varphi, t \in \mathbb{T}$ are angles, $p, r \in \mathbb{R}$.

Chirikov's conjecture: Inside stochastic layer $r\left(t \varepsilon^{-2} \ln 1 / \varepsilon\right)$ behaves as a stochastic diffusion process $x(t)$.

Numerics for Arnold's example

(K-Roldan) Fix $r=r^{*}$. Pick 10^{6} initial conditions: $\left(p_{i}, q_{i}\right)$ near 0 , $\varphi_{i} \in \mathbb{T}$. Run $T_{t}=t \varepsilon^{-2} \log 1 / \varepsilon, \varepsilon=0.01$.

Numerics for Arnold's example

(K-Roldan) Fix $r=r^{*}$. Pick 10^{6} initial conditions: $\left(p_{i}, q_{i}\right)$ near 0 , $\varphi_{i} \in \mathbb{T}$. Run $T_{t}=t \varepsilon^{-2} \log 1 / \varepsilon, \varepsilon=0.01$.

Numerics for Arnold's example

(K-Roldan) Fix $r=r^{*}$. Pick several initial conditions: $\left(p_{i}, q_{i}\right)$ near 0 , $\varphi_{i} \in \mathbb{T}$. Run $T_{t}=t \varepsilon^{-2} \log 1 / \varepsilon, \varepsilon=0.001$.

Numerics for Arnold's example

(K-Roldan) Fix $r=r^{*}$. Pick 10^{6} initial conditions: $\left(p_{i}, q_{i}\right)$ near 0 , $\varphi_{i} \in \mathbb{T}$. Run $T_{t}=t \varepsilon^{-2} \log 1 / \varepsilon, \varepsilon=0.01$.

Main Result

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+(\cos q-1)+\varepsilon P_{N}(q, \varphi, t)
$$

where P_{N} is a trigonometric polynomial, $N \geq 2$.

Main Result

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+(\cos q-1)+\varepsilon P_{N}(q, \varphi, t)
$$

where P_{N} is a trigonometric polynomial, $N \geq 2$. Let $r_{0} \in \mathbb{R}, \delta\left(r_{0}\right)$ be the δ-measure at r_{0}, Π_{r} be the projection on $r, T_{t}=t \varepsilon^{-2} \log 1 / \varepsilon$.

Main Result

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+(\cos q-1)+\varepsilon P_{N}(q, \varphi, t)
$$

where P_{N} is a trigonometric polynomial, $N \geq 2$. Let $r_{0} \in \mathbb{R}, \delta\left(r_{0}\right)$ be the δ-measure at r_{0}, Π_{r} be the projection on $r, T_{t}=t \varepsilon^{-2} \log 1 / \varepsilon$.

Main Result For an open set U_{N} of P_{N} 's

Main Result

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+(\cos q-1)+\varepsilon P_{N}(q, \varphi, t)
$$

where P_{N} is a trigonometric polynomial, $N \geq 2$. Let $r_{0} \in \mathbb{R}, \delta\left(r_{0}\right)$ be the δ-measure at r_{0}, Π_{r} be the projection on $r, T_{t}=t \varepsilon^{-2} \log 1 / \varepsilon$.

Main Result For an open set U_{N} of P_{N} 's the Hamiltonian H_{ε} has a probability measure ν_{ε} supported in a stochastic layer such that $\Pi_{r} \nu_{\varepsilon}=\delta\left(r_{0}\right)$ for some $r_{0} \in \mathbb{R}$ and
distribution of a diffusion process

Main Result

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+(\cos q-1)+\varepsilon P_{N}(q, \varphi, t)
$$

where P_{N} is a trigonometric polynomial, $N \geq 2$. Let $r_{0} \in \mathbb{R}, \delta\left(r_{0}\right)$ be the δ-measure at r_{0}, Π_{r} be the projection on $r, T_{t}=t \varepsilon^{-2} \log 1 / \varepsilon$.

Main Result For an open set U_{N} of P_{N} 's the Hamiltonian H_{ε} has a probability measure ν_{ε} supported in a stochastic layer such that $\Pi_{r} \nu_{\varepsilon}=\delta\left(r_{0}\right)$ for some $r_{0} \in \mathbb{R}$ and the distribution of the push forward $\phi_{T}^{*} \nu_{\varepsilon}=\nu^{*}$

[^0]
Main Result

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+(\cos q-1)+\varepsilon P_{N}(q, \varphi, t)
$$

where P_{N} is a trigonometric polynomial, $N \geq 2$. Let $r_{0} \in \mathbb{R}, \delta\left(r_{0}\right)$ be the δ-measure at r_{0}, Π_{r} be the projection on $r, T_{t}=t \varepsilon^{-2} \log 1 / \varepsilon$.

Main Result For an open set U_{N} of P_{N} 's the Hamiltonian H_{ε} has a probability measure ν_{ε} supported in a stochastic layer such that $\Pi_{r} \nu_{\varepsilon}=\delta\left(r_{0}\right)$ for some $r_{0} \in \mathbb{R}$ and the distribution of the push forward $\phi_{T}^{*} \nu_{\varepsilon}=\nu^{*}$ projected to r, i.e. $\Pi_{r} \nu^{*}$, weakly converges, as $\varepsilon \rightarrow 0$, to the distribution of a diffusion process

$$
r_{t}=r_{0}+\int_{0}^{t} \sigma\left(r_{s}\right) d w_{s}
$$

Main Result

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+(\cos q-1)+\varepsilon P_{N}(q, \varphi, t)
$$

where P_{N} is a trigonometric polynomial, $N \geq 2$. Let $r_{0} \in \mathbb{R}, \delta\left(r_{0}\right)$ be the δ-measure at r_{0}, Π_{r} be the projection on $r, T_{t}=t \varepsilon^{-2} \log 1 / \varepsilon$.

Main Result For an open set U_{N} of P_{N} 's the Hamiltonian H_{ε} has a probability measure ν_{ε} supported in a stochastic layer such that $\Pi_{r} \nu_{\varepsilon}=\delta\left(r_{0}\right)$ for some $r_{0} \in \mathbb{R}$ and the distribution of the push forward $\phi_{T}^{*} \nu_{\varepsilon}=\nu^{*}$ projected to r, i.e. $\Pi_{r} \nu^{*}$, weakly converges, as $\varepsilon \rightarrow 0$, to the distribution of a diffusion process

$$
r_{t}=r_{0}+\int_{0}^{t} \sigma\left(r_{s}\right) d w_{s}
$$

where $\sigma(r)$ is a smooth computable function,

Main Result

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+(\cos q-1)+\varepsilon P_{N}(q, \varphi, t)
$$

where P_{N} is a trigonometric polynomial, $N \geq 2$. Let $r_{0} \in \mathbb{R}, \delta\left(r_{0}\right)$ be the δ-measure at r_{0}, Π_{r} be the projection on $r, T_{t}=t \varepsilon^{-2} \log 1 / \varepsilon$.

Main Result For an open set U_{N} of P_{N} 's the Hamiltonian H_{ε} has a probability measure ν_{ε} supported in a stochastic layer such that $\Pi_{r} \nu_{\varepsilon}=\delta\left(r_{0}\right)$ for some $r_{0} \in \mathbb{R}$ and the distribution of the push forward $\phi_{T}^{*} \nu_{\varepsilon}=\nu^{*}$ projected to r, i.e. $\Pi_{r} \nu^{*}$, weakly converges, as $\varepsilon \rightarrow 0$, to the distribution of a diffusion process

$$
r_{t}=r_{0}+\int_{0}^{t} \sigma\left(r_{s}\right) d w_{s}
$$

where $\sigma(r)$ is a smooth computable function, depending only on P_{N}.

Main Result

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+(\cos q-1)+\varepsilon P_{N}(q, \varphi, t)
$$

where P_{N} is a trigonometric polynomial, $N \geq 2$. Let $r_{0} \in \mathbb{R}, \delta\left(r_{0}\right)$ be the δ-measure at r_{0}, Π_{r} be the projection on $r, T_{t}=t \varepsilon^{-2} \log 1 / \varepsilon$.

Main Result For an open set U_{N} of P_{N} 's the Hamiltonian H_{ε} has a probability measure ν_{ε} supported in a stochastic layer such that $\Pi_{r} \nu_{\varepsilon}=\delta\left(r_{0}\right)$ for some $r_{0} \in \mathbb{R}$ and the distribution of the push forward $\phi_{T}^{*} \nu_{\varepsilon}=\nu^{*}$ projected to r, i.e. $\Pi_{r} \nu^{*}$, weakly converges, as $\varepsilon \rightarrow 0$, to the distribution of a diffusion process

$$
r_{t}=r_{0}+\int_{0}^{t} \sigma\left(r_{s}\right) d w_{s}
$$

where $\sigma(r)$ is a smooth computable function, depending only on P_{N}.
Castejon-Guardia-K'17,

Main Result

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+(\cos q-1)+\varepsilon P_{N}(q, \varphi, t)
$$

where P_{N} is a trigonometric polynomial, $N \geq 2$. Let $r_{0} \in \mathbb{R}, \delta\left(r_{0}\right)$ be the δ-measure at r_{0}, Π_{r} be the projection on $r, T_{t}=t \varepsilon^{-2} \log 1 / \varepsilon$.

Main Result For an open set U_{N} of P_{N} 's the Hamiltonian H_{ε} has a probability measure ν_{ε} supported in a stochastic layer such that $\Pi_{r} \nu_{\varepsilon}=\delta\left(r_{0}\right)$ for some $r_{0} \in \mathbb{R}$ and the distribution of the push forward $\phi_{T}^{*} \nu_{\varepsilon}=\nu^{*}$ projected to r, i.e. $\Pi_{r} \nu^{*}$, weakly converges, as $\varepsilon \rightarrow 0$, to the distribution of a diffusion process

$$
r_{t}=r_{0}+\int_{0}^{t} \sigma\left(r_{s}\right) d w_{s}
$$

where $\sigma(r)$ is a smooth computable function, depending only on P_{N}.
Castejon-Guardia-K'17,Guardia-K-J.Zhang'15,

Main Result

$$
H_{\varepsilon}(p, q, r, \varphi, t)=\frac{r^{2}}{2}+\frac{p^{2}}{2}+(\cos q-1)+\varepsilon P_{N}(q, \varphi, t)
$$

where P_{N} is a trigonometric polynomial, $N \geq 2$. Let $r_{0} \in \mathbb{R}, \delta\left(r_{0}\right)$ be the δ-measure at r_{0}, Π_{r} be the projection on $r, T_{t}=t \varepsilon^{-2} \log 1 / \varepsilon$.

Main Result For an open set U_{N} of P_{N} 's the Hamiltonian H_{ε} has a probability measure ν_{ε} supported in a stochastic layer such that $\Pi_{r} \nu_{\varepsilon}=\delta\left(r_{0}\right)$ for some $r_{0} \in \mathbb{R}$ and the distribution of the push forward $\phi_{T}^{*} \nu_{\varepsilon}=\nu^{*}$ projected to r, i.e. $\Pi_{r} \nu^{*}$, weakly converges, as $\varepsilon \rightarrow 0$, to the distribution of a diffusion process

$$
r_{t}=r_{0}+\int_{0}^{t} \sigma\left(r_{s}\right) d w_{s}
$$

where $\sigma(r)$ is a smooth computable function, depending only on P_{N}.
Castejon-Guardia-K'17,Guardia-K-J.Zhang'15, K-J.Zhang-K.Zhang'15.

Concluding remarks

- Conjecturally mixed behavior is present in the Kirkwood gaps of the Asteroid belt.

Conjecturally a typical nearly integrable system exhibits mixed behavior with both quasi-periodic and stochastic behaviors having positive measure.

Concluding remarks

- Conjecturally mixed behavior is present in the Kirkwood gaps of the Asteroid belt.
- Conjecturally a typical nearly integrable system exhibits mixed behavior
behaviors having positive measure.

For Arnold's example a form of mixed behavior is established!

Concluding remarks

- Conjecturally mixed behavior is present in the Kirkwood gaps of the Asteroid belt.
- Conjecturally a typical nearly integrable system exhibits mixed behavior with both quasi-periodic and stochastic behaviors having positive measure.

Concluding remarks

- Conjecturally mixed behavior is present in the Kirkwood gaps of the Asteroid belt.
- Conjecturally a typical nearly integrable system exhibits mixed behavior with both quasi-periodic and stochastic behaviors having positive measure.
- For Arnold's example a form of mixed behavior is established!

References

- M. Guardia, K., J. Zhang, A second order expansion of the separatrix map ..., Comm in Mat Physics, 2016, 348, 321-361.
- O. Castejón, M. Guardia, K. Random Iteration of Cylinder Maps \& diffusive behavior away from resonances, arxiv 2017, 56pp.
- O. Castejón, M. Guardia, K. Random Iteration of Cylinder Maps \& diffusive behavior near resonances, preprint, 2017, 40pp,
- K., V. Zhang, J. Zhang, K. Normally Hyperbolic Invariant Laminations and diffusive behaviour ..., arXiv, 2015, 85pp.

References

- M. Guardia, K., J. Zhang, A second order expansion of the separatrix map ..., Comm in Mat Physics, 2016, 348, 321-361.
- O. Castejón, M. Guardia, K. Random Iteration of Cylinder Maps \& diffusive behavior away from resonances, arxiv 2017, 56pp.
- O. Castejón, M. Guardia, K. Random Iteration of Cylinder Maps \& diffusive behavior near resonances, preprint, 2017, 40pp,
- K., V. Zhang, J. Zhang, K. Normally Hyperbolic Invariant Laminations and diffusive behaviour ..., arXiv, 2015, 85pp.
- M. Guardia, K. Diffusive behaviour in nearly integrable Hamiltonian systems, Proceedings of the International Congress in Mathematical Physics, Santiago de Chile 2015, plenary address, 21pp.

The end

Thanks!

[^0]: where $\sigma(r)$ is a smooth computable function,

