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Introduction

Matrix Completion
aims to recover a low-rank matrix from relatively few sampling of
its entries. It is an application of matrix regularization.

TS1 regularization problem

min _ [le7(X) — b3 + AT(X),

XE%mX" 2

where o/ is the sampling operator and b is the given information.



TL1 and TS1

Transformed /¢, penalty (TL1)

(a+1)Ix

P =

, with a € (0, c0).

Transformed Schatten-1 penalty (TS1)

is defined based on the singular values of matrix:

T(X) = pal0))-
=1l



Properties of TL1

* TL1 bridges ¢p (a — 0™) and ¢1 (a — 00);
* non-convex and increasing function;

* satisfies unbiasedness, continuity and sparsity properties;

b) TL1 with a = 100 d) TL1 with a = 0.01




TL1 Thresholding Function

Proximal point problem

y" = argmin{ 5(x - Y2+ Apa(y)
has closed form solution

* ( ) . 07 ‘X| <t
A 0 =T e e

Function hy(x) is given by

() = sgn(x) { 3o+ Ieeos( 250 - 224 Bl
27ha(a+1),

with ¢(x) = arccos(1 — 2(a+|x|)3 /-




Sub-critical and Super-critical
Schemes

Threshold value t depends on regularization parameter A,

|f)\<2(a+1)( Yo t=1 =t
TL1 (a,=2).so)\<2(;% TL1 (a=1),50 A > 5

+1D




TS1 Optimal Point Representation

Suppose X* is a global minimizer of the TS1 regularization
problem, and define B,,(X*) = X* + ua/*(b — o/ (X*)) with
singular values decomposition: B, (X*) = UDiag(og) V*.

Theorem
If we choose 0 < p < ||&/|| =2, X* satisfies

X* = UDiag(grua(05)) V',
which means the singular values of X* satisfy

* * .
o = g,\ma(an,-), fori=1,--- ,m.



TS1 Thresholding Scheme

Fixed parameters iteration scheme

Xk = Gy a(Bu(Xx-1))
= Uk—1Diag (gxp,a(0k-1)) Vi_q,

where unitary matrices Ux_1, Vi1 and singular values {ox_1;};
come from the SVD decomposition of matrix B, (Xx_1).

Remark:
For this thresholding scheme, we have 3 tuning parameters: A, u
and TL1 parameter a.



Relation of threshold value and rank

Suppose the rank of X* is given or estimated as r,

of >t ifie{l,2,..r},
of <t ifje{r+1,r+2,...,m},

where o* is the singular values of B, (X*).

t is the TL1 threshold value and equal to t5 or t3 depending on
parameters values. It can be checked that 3 <t < t7, so

or >t5 =2 u(a+1)— 3
oy St At



Relation of threshold value and rank

From the previous inequalities, we get the bounds for A,

(a+20%)?
8(a+1)u’

*
CE— QO'H_]_

'@+ T

* A\ comes from the formula of t5 (sub-critical scheme);

* X}, comes from the formula of t3 (super-critical scheme).



Semi-adaptive TS1 Algorithm
(TS1-s1)

Method: fix a and pu; change A at each step.
At k-th iteration step, optimal parameter Ay is

)\k & { )\/, If )\/ (3+1)M’

2
Au, |f )\[ > 2(a+1)u,

where )/ uses the same formula of A7 with o* approximated by
Bu(Xk—l)

Remark:
In the algorithm, it checks the value of \; to determine A, which
means TS1-sl prefers sub-critical threshold scheme.



Adaptive TS1 Algorithm (TS1-s2)

Method: fix u; change a and A at each step.

At each iterative step, we choose a such that equality A = ﬁ
holds, in which case
P=1t3 =0

By the formulas of threshold values, we have

Aot _, o AP
T 207 B ) i

In the algorithm, we evaluate A first and then choose a.



Numerical Experiments

Random low rank matrices are

M = MLM[t? € Rmxn,

where matrices M; € R, and Mg € R, are generated with
Gaussian distributions.

The difficulty of a recovery problem is quantified by

* Sampling ratio: SR = p/mn.
* Freedom ratio: FR = r(m+ n—r)/p, which is the freedom
of rank r matrix divided by the number of measurement.



Matrix Completion with Known Rank

Comparison of TS1-s1, TS1-s2, IRuclL-q on recovery of

uncorrelated multivariate Gaussian matrices at known rank,
m = n = 100, SR = 0.4.

Problem TS1-s1 TS1-s2 IRuclL-q
rank FR rel.err  time rel.err  time rel.err time
10 04750 | 3.26e-05 0.33 | 1.11e-06 0.34 | 3.21e-04 249
14 0.6510 | 1.10e-05 0.53 | 1.03e-05 0.52 | 3.80e-05 7.25
15 0.6937 | 1.05e-05 0.66 | 9.88e-06 0.64 | 5.28e-05 9.29
16 0.7360 | 3.86e-05 0.91 | 1.79e-05 0.87 | 7.57e-05 12.34
17 0.7778 | 1.50e-04 1.03 | 7.10e-05 1.00 | 9.40e-05 15.31
18 0.8190 | 5.63e-04 1.00 | 4.15e-04 1.00 | 1.49e-04 22.27




Matrix Completion with Known Rank

Numerical experiments on multivariate Gaussian matrices with

varying covariance at known rank, m = n = 1000, SR = 0.4.

Problem TS1-s1 TS1-s2 IRuclL-q

rank cor rel.err time rel.err time rel.err time
30 0.1 | 3.07e-06 9.71 | 3.07e-06 3.98 | 3.13e-06 222.90
30 0.2 | 2.90e-06 11.07 | 2.94e-06 3.92 | 3.16e-06 221.34
30 0.3 | 5.54e-03 26.64 | 3.02¢-06 4.13 | 3.05e-06 218.57
30 0.4 | 1.19e-02 28.58 | 3.08e-06 4.31 | 3.29e-06 214.52
30 0.5 | 4.76e-02 34.25 | 2.89e-06 5.89 | 3.12e-06 209.05
30 0.6 | 6.89e-02 35.69 | 2.89e-06 10.28 | 3.30e-06 207.94
30 0.7 | 8.01e-02 33.92 | 6.99e-04 20.09 | 3.15e-06 210.06




Matrix Completion with Rank
Estimation

Ground true matrices are generated by multivariate Gaussian with
different covariance, m = n = 100, and SR = 0.4.

Problem

TS1-s1

TS1-s2

FPCA

IRuclL-q

rank cor

rel.err time

rel.err time

rel.err time

rel.err time

5 05

5.49e-06 0.20

6.77e-02 0.86

1.61e-05 0.12

7.50e-06 2.07

5 0.6

5.45e-06 0.20

7.74e-02 0.91

1.69e-05 0.11

6.93e-06 1.76

5 0.7

5.25e-06 0.25

1.04e-01 1.33

1.53e-05 0.12

4.71e-04 2.06

10 0.5

1.10e-05 0.65

1.17e-01 1.14

1.21e-01 0.97

1.76e-05 3.35

10 0.6

1.61e-02 0.76

1.32e-01 1.04

1.02e-01 0.86

2.72e-05 4.26

10 0.7

9.14e-02 0.91

1.55e-01 0.93

9.11e-02 0.82

7.12e-04 4.59




Thanks for your attention!
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