Transformed Schatten-1 Thresholding Algorithms for Low Rank Matrix Completion

Shuai Zhang

Joint with Penghang Yin and Jack Xin

Department of Mathematics
UC Irvine

May 25, 2016

Outline

Introduction

Transformed Schatten-1

TS1 Thresholding Algorithms

Numerical Experiments

Introduction

Matrix Completion

aims to recover a low-rank matrix from relatively few sampling of its entries. It is an application of matrix regularization.

TS1 regularization problem

$$\min_{X\in\Re^{m\times n}}\frac{1}{2}\|\mathscr{A}(X)-b\|_2^2+\lambda T(X),$$

where ${\mathscr A}$ is the sampling operator and b is the given information.

TL1 and TS1

Transformed ℓ_1 penalty (TL1)

$$\rho_a(x) = \frac{(a+1)|x|}{a+|x|}, \text{ with } a \in (0,\infty).$$

Transformed Schatten-1 penalty (TS1) is defined based on the singular values of matrix:

$$T(X) = \sum_{i=1}^{r} \rho_{a}(\sigma_{i}).$$

Properties of TL1

- * TL1 bridges ℓ_0 ($a \rightarrow 0^+$) and ℓ_1 ($a \rightarrow \infty$);
- * non-convex and increasing function;
- * satisfies unbiasedness, continuity and sparsity properties;

TL1 Thresholding Function

Proximal point problem

$$y^* = arg \min_{y} \{ \frac{1}{2} (x - y)^2 + \lambda \rho_a(y) \},$$

has closed form solution

$$y^* = g_{\lambda,a}(x) = \left\{ egin{array}{ll} 0, & |x| \leq t; \ h_{\lambda}(x), & |x| > t. \end{array}
ight.$$

Function $h_{\lambda}(x)$ is given by

$$h_{\lambda}(x) = sgn(x) \left\{ rac{2}{3}(a+|x|)cos(rac{arphi(x)}{3}) - rac{2a}{3} + rac{|x|}{3}
ight\},$$

with
$$\varphi(x) = \arccos(1 - \frac{27\lambda a(a+1)}{2(a+|x|)^3})$$
.

Sub-critical and Super-critical Schemes

Threshold value t depends on regularization parameter λ ,

* if
$$\lambda \leq \frac{a^2}{2(a+1)}$$
 (sub-critical), $t=t_2^*=\lambda \frac{a+1}{a}$;

* if
$$\lambda > \frac{a^2}{2(a+1)}$$
 (super-critical), $t = t_3^* = \sqrt{2\lambda(a+1)} - \frac{a}{2}$.

TS1 Optimal Point Representation

Suppose X^* is a global minimizer of the TS1 regularization problem, and define $B_{\mu}(X^*) = X^* + \mu \mathscr{A}^*(b - \mathscr{A}(X^*))$ with singular values decomposition: $B_{\mu}(X^*) = U \operatorname{Diag}(\sigma_B^*) V^t$.

Theorem

If we choose $0 < \mu < \|\mathscr{A}\|^{-2}$, X^* satisfies

$$X^* = U \operatorname{Diag}(g_{\lambda\mu,a}(\sigma_B^*)) V^t,$$

which means the singular values of X^* satisfy

$$\sigma_i^* = g_{\lambda\mu,a}(\sigma_{B,i}^*), \text{ for } i = 1, \cdots, m.$$

TS1 Thresholding Scheme

Fixed parameters iteration scheme

$$\begin{split} X_k &= G_{\lambda\mu,a}(B_\mu(X_{k-1})) \\ &= U_{k-1}\operatorname{Diag}\left(g_{\lambda\mu,a}(\sigma_{k-1})\right) \, V_{k-1}^t, \end{split}$$

where unitary matrices U_{k-1} , V_{k-1} and singular values $\{\sigma_{k-1,i}\}_i$ come from the SVD decomposition of matrix $B_{\mu}(X_{k-1})$.

Remark:

For this thresholding scheme, we have 3 tuning parameters: λ , μ and TL1 parameter a.

Relation of threshold value and rank

Suppose the rank of X^* is given or estimated as r,

$$\sigma_i^* > t$$
 if $i \in \{1, 2, ..., r\}$,
 $\sigma_j^* \le t$ if $j \in \{r + 1, r + 2, ..., m\}$,

where σ^* is the singular values of $B_{\mu}(X^*)$.

t is the TL1 threshold value and equal to t_2^* or t_3^* depending on parameters values. It can be checked that $t_3^* \leq t \leq t_2^*$, so

$$egin{aligned} \sigma_{\it r}^* &\geq t_3^* = \sqrt{2\lambda\mu(\it a+1)} - rac{\it a}{\it 2}; \ \sigma_{\it r+1}^* &\leq t_2^* = \lambda\murac{\it a+1}{\it a}. \end{aligned}$$

Relation of threshold value and rank

From the previous inequalities, we get the bounds for λ ,

$$\lambda_I^* \equiv \frac{a\sigma_{r+1}^*}{\mu(a+1)} \le \lambda \le \lambda_u^* \equiv \frac{(a+2\sigma_r^*)^2}{8(a+1)\mu}.$$

- * λ_I^* comes from the formula of t_2^* (sub-critical scheme);
- * λ_p^* comes from the formula of t_3^* (super-critical scheme).

Semi-adaptive TS1 Algorithm (TS1-s1)

Method: fix a and μ ; change λ at each step. At k-th iteration step, optimal parameter λ_k is

$$\lambda_k = \left\{ \begin{array}{ll} \lambda_l, & \text{if } \lambda_l \leq \frac{a^2}{2(a+1)\mu}, \\ \lambda_u, & \text{if } \lambda_l > \frac{a^2}{2(a+1)\mu}, \end{array} \right.$$

where λ_l uses the same formula of λ_l^* with σ^* approximated by $B_{\mu}(X_{k-1})$

Remark:

In the algorithm, it checks the value of λ_I to determine λ , which means TS1-s1 prefers sub-critical threshold scheme.

Adaptive TS1 Algorithm (TS1-s2)

Method: fix μ ; change a and λ at each step.

At each iterative step, we choose a such that equality $\lambda = \frac{a^2}{2(a+1)\mu}$ holds, in which case

$$t=t_3^*=t_2^*.$$

By the formulas of threshold values, we have

$$\frac{2(\sigma_{r+1}^*)^2}{1+2\sigma_{r+1}^*} \le \lambda \le \frac{2(\sigma_r^*)^2}{1+2\sigma_r^*}.$$

In the algorithm, we evaluate λ first and then choose a.

Numerical Experiments

Random low rank matrices are $M=M_LM_R^t\in\mathcal{R}_{m\times n}$, where matrices $M_L\in\mathcal{R}_{m\times r}$ and $M_R\in\mathcal{R}_{n\times r}$ are generated with Gaussian distributions.

The difficulty of a recovery problem is quantified by

- * Sampling ratio: SR = p/mn.
- * Freedom ratio: FR = r(m + n r)/p, which is the freedom of rank r matrix divided by the number of measurement.

Matrix Completion with Known Rank

Comparison of TS1-s1, TS1-s2, IRucL-q on recovery of uncorrelated multivariate Gaussian matrices at known rank, m=n=100, SR = 0.4.

Problem		TS1-s1		TS1-s	52	IRucL-q		
rank	FR	rel.err	time	rel.err	time	rel.err	time	
10	0.4750	3.26e-05	0.33	1.11e-06	0.34	3.21e-04	2.49	
14	0.6510	1.10e-05	0.53	1.03e-05	0.52	3.80e-05	7.25	
15	0.6937	1.05e-05	0.66	9.88e-06	0.64	5.28e-05	9.29	
16	0.7360	3.86e-05	0.91	1.79e-05	0.87	7.57e-05	12.34	
17	0.7778	1.50e-04	1.03	7.10e-05	1.00	9.40e-05	15.31	
18	0.8190	5.63e-04	1.00	4.15e-04	1.00	1.49e-04	22.27	

Matrix Completion with Known Rank

Numerical experiments on multivariate Gaussian matrices with varying covariance at known rank, m = n = 1000, SR = 0.4.

Problem		TS1-s1		TS1-s2		IRucL-q		
rank	cor	rel.err	time	rel.err	time	rel.err	time	
30	0.1	3.07e-06	9.71	3.07e-06	3.98	3.13e-06	222.90	
30	0.2	2.90e-06	11.07	2.94e-06	3.92	3.16e-06	221.34	
30	0.3	5.54e-03	26.64	3.02e-06	4.13	3.05e-06	218.57	
30	0.4	1.19e-02	28.58	3.08e-06	4.31	3.29e-06	214.52	
30	0.5	4.76e-02	34.25	2.89e-06	5.89	3.12e-06	209.05	
30	0.6	6.89e-02	35.69	2.89e-06	10.28	3.30e-06	207.94	
30	0.7	8.01e-02	33.92	6.99e-04	20.09	3.15e-06	210.06	

Matrix Completion with Rank Estimation

Ground true matrices are generated by multivariate Gaussian with different covariance, m=n=100, and ${\sf SR}=0.4$.

Problem		TS1-s1		TS1-s2		FPCA		IRucL-q	
rank	cor	rel.err	time	rel.err	time	rel.err	time	rel.err	time
5	0.5	5.49e-06	0.20	6.77e-02	0.86	1.61e-05	0.12	7.50e-06	2.07
5	0.6	5.45e-06	0.20	7.74e-02	0.91	1.69e-05	0.11	6.93e-06	1.76
5	0.7	5.25e-06	0.25	1.04e-01	1.33	1.53e-05	0.12	4.71e-04	2.06
10	0.5	1.10e-05	0.65	1.17e-01	1.14	1.21e-01	0.97	1.76e-05	3.35
10	0.6	1.61e-02	0.76	1.32e-01	1.04	1.02e-01	0.86	2.72e-05	4.26
10	0.7	9.14e-02	0.91	1.55e-01	0.93	9.11e-02	0.82	7.12e-04	4.59

Thanks for your attention!

Transformed Schatten-1 Thresholding Algorithms for Low Rank Matrix Completion

Shuai Zhang

Joint with Penghang Yin and Jack Xin

Department of Mathematics UC Irvine

May 25, 2016