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SPECTRAL VALUE SETS AND THE TRANSFER MATRIX

Let o denote spectrum, let ¢ € R such thate||D|| < 1,let || - || = || - ||,
and define the spectral value set
-(A,B,C,D) = J{eM(A)) : A e C"™ ||A|| < &}

Key Lemma. (see e.g. Hinrichsen & P1 itchard, Mathematical Systems
Theory I, Springer, 2005) Let € € R such that ¢||D|| < 1. Then

0:(A,B,C,D) =| J{oc(M(A)) : A € "™, ||A|| < &,rank(A) < 1}
= J{recC: |G| =<},

where G() is the transfer matrix function defined by

G(A\) :=C(AI-—A)"'B+D.
Furthermore, given A € C with ||G()\)|| = e~!, we can obtain A with
rank one such that |A|| = € and A € o(M(A)) by setting A = zuv”,

where u and v are respectively right and left singular vectors of G(A)
corresponding to its largest singular value 1.

CaseB=C=Iand D =0: o.(A,B,C,D) is the e-pseudospectrum of
A which contains ) iff ||(M — A)~1|| > e~ (Trefethen, Embree 2005)
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PSEUDOSPECTRA FOR A BOEING 767 IN FLUTTER

-100 - :
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Eigenvalues (black dots) are in left-half plane, so A is stable, but not stable
under small perturbations! Curves are boundaries of 0-(A), equivalently

contours of the smallest singular value of A — I, with log,, scale for e.
(EigTool, Trefethen & T. Wright, 2002)
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THE STABILITY RADIUS AND THE H,, NORM
The stability radius for the system described by (A, B,C, D) is

E, ==sup4e: o:(A,B,C,.D) cC.})

where C_ is the open left half of the complex plane.

(Radius in the sense of perturbations, not the complex plane.)
Case B = C =1, and D = 0: stability radius for the dynamical
system reduces to distance to instability of A (Van Loan 1985).

The H . norm of the transfer matrix function G is

|G|l = sup ||G(iw)|| if 0(A) € C_ (or + oo otherwise).
weR

Case B=C=1and D = 0: sup,__g || (iw] —A)7!||

Because of the Key Lemma, the stability radius and the H
norm are reciprocals of each other:

=
€« = |Gl -
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IN PICTURES: 0.(A, B,C,D) AND ||G(iw)]|

L
of == - —— = -\ -

L J
0s 1

o-(A,B,C,D)

Complex plane plot
Black dots are eigenvalues of A
Blue contour is boundary of
spectral value set for ¢,
Green contours show spectral
value sets for e > =,

IG(w)]|

Horizontal axis is w
Vertical axis is |G (iw)||
Blue dot is global max g "
Green dots are local maxima
withe 1 < g1
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EXPLOITING RANK ONE PERTURBATIONS

To compute a.(A, B,C, D), we need to find the rightmost point
of 0:(A, B, C, D). Since we can restrict A = suv*, we need only

consider
M(A) = A+ BA(I-DA)~IC
=A+B = ;,*D“uv*c
= A +BAC
where ||u|| = ||v|| = 1.

Our algorithm will generate a sequence u;, vj for which we
hope the rightmost eigenvalue of M(u;v7) will converge to a

rightmost point of 0-(A, B,C, D).
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COMPUTING RIGHTMOST EIGENVALUES

The cost at each iteration: two calls to eigs / ARPACK
(Lehoucq, Sorensen and Yang) to compute the rightmost
eigenvalue A of a structured /sparse matrix, as well as the
associated right eigenvector x and left eigenvector y, using
matrix-vector products.

Generically, the eigenvalue is simple, so we use the
normalization ||x|| = |y|| = 1 and y*x € R™" (real and positive),
and we call (A, x,y) an RP-compatible eigentriple.

Although eigs is not absolutely guaranteed to find a
rightmost eigenvalue, it is quite reliable as long as enough
eigenvalues are requested.
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PUSHING RIGHTWARD VIA A RANK-1 PERTURBATION

Fort € [0, 1], consider the matrix-valued linear function:
K(t) = A+BA,_1C+tB(4; -4 4)C

so that K(0) = A + BA;_1C, K(1) = A+ BA;C, with

~ £
A; = u;v;
' 1—ev*Du; 7Y

where unit-norm vectors u;, v; are free to be chosen and A;_; is the
previous iterate, with M(A;_1) having rightmost eigenvalue \;_; with
RP-compatible eigentriple (Aj_1, Xj_1,¥j-1).
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COMPUTING RIGHTMOST EIGENVALUES

The cost at each iteration: two calls to eigs / ARPACK
(Lehoucq, Sorensen and Yang) to compute the rightmost
eigenvalue A of a structured/sparse matrix, as well as the
associated right eigenvector x and left eigenvector y, using
matrix-vector products.

Generically, the eigenvalue is simple, so we use the
normalization ||x|| = |ly|| = 1 and y*x € R (real and positive),
and we call (A, x,y) an RP-compatible eigentriple.

Although eigs is not absolutely guaranteed to find a
rightmost eigenvalue, it is quite reliable as long as enough
eigenvalues are requested.
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PUSHING RIGHTWARD VIA A RANK-1 PERTURBATION

Fort € [0, 1], consider the matrix-valued linear function:
K(t)=A+BA;1C+tB (& -4, ,)C
so that K(0) = A+ BA;_1C, K(1) = A + BA;C, with

A =
' 1 —ev*Duy;

£ 3
Uj;

where unit-norm vectors u;, v; are free to be chosen and A;_; is the
previous iterate, with M(A;_1) having rightmost eigenvalue A;_1 with
RP-compatible eigentriple (Aji_1, xj_1,yj—1).

Let k(t) be the eigenvalue of K(t) that converges to A\j_1 ast — 0, so
2 u;v ” Ui _10;_4 5
_yj—lB (l—sé-‘,-,‘Du,) fo—l }/',_]B ( 1—=v" Duj_; ) CXj_1

I‘C,(O) = = = . —\E - - .
Y 1%1-1 Yi_1%j-1

Note if u; '= u;_1 and v; := vj_; then x’(0) = 0.
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SOLVING THE OPTIMIZATION PROBLEM TO FIND u;, v;

To make Re (+(0)) as large as possible, we need to solve:

y}‘_lBu]-v]’-" x4

max Re

= (1)
24 1= |=1 v

CaseB=C=Iland D=0 : setu; :=y; 1 and v; :=Xxj_1.
If not, but D = 0, set

uj = B*yj_1/|B*yj-1|| and v = C"xj_1/[|C*xj1]|

as long as the denominators are nonzero
(this is guaranteed if Aj—1 is "controllable and observable”).
If D # 0, more complicated, but can still be solved explicitly.
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ALGORITHM SVSA (SPECTRAL VALUE SET ABSCISSA)
Purpose: approximate o.(A, B, C, D) for fixed ¢.
Input: £ with 0 < ¢||D|| < 1 and up, vp with unit norm.
Compute rightmost RP-compatible eigentriple (Ag, xg. /o) of

M(sugvg) = A+ B

uguaC
1—eviDug = °

Forj=1,2,...
Set uj, vj to the 1 and v that explicitly maximize (1)
Compute rightmost RP-compatible eigentriple ();, x;, y;) of

M(eujv;) = A+ B ujv; C.

— * -
1 evj Du]

If Re ()j) < Re(Aj_1), use line search to enforce
monotonicity.
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ALGORITHM SVSA (SPECTRAL VALUE SET ABSCISSA)
Purpose: approximate o.(A, B, C, D) for fixed ¢.
Input: £ with 0 < ¢||D|| < 1 and uy, vp with unit norm.
Compute rightmost RP-compatible eigentriple (Ag, xg. /o) of

M(sugvg) = A+ B

UgUn
1—eviDug = °

Fogj—=1,2,...
Set uj, vj to the 1 and v that explicitly maximize (1)
Compute rightmost RP-compatible eigentriple (A, xj, y;) of

M(eujv;) = A+ B ujv; C.

— * N
1 evj Du]

If Re ();) < Re(Aj_1), use line search to enforce
monotonicity.
By construction, A; € 0:(A, B,C, D) for all £, but will this
converge to a (locally) rightmost point of 0-(A,B,C, D)?
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CONVERGENCE OF SVSA IN THEORY AND PRACTICE

In theory: for ¢ sufficiently small, can prove that Algorithm
SVSA has local convergence to locally rightmost points at a
linear rate under reasonable assumptions.

In practice: for all €, almost always get convergence to locally
rightmost points, and often to globally rightmost points, at a
linear rate which can be substantially accelerated using
extrapolation techniques.

Globally rightmost points give the value /i(s) = a.(A,B,C, D)
while locally rightmost points give lower bounds on
h(¢) = a:(A,B,C,D).




INTRO SPECTRAL VALUE SET ABSCISSA  STABILITY RADIUS REAL STRUCTURE CONTROLLER SYNTHESIS SUMMARY
000000 000CO0000 ®00000000000000 COO00 0000000 o0

A NEWTON-BISECTION METHOD TO FIND ¢,

» Use Algorithm SVSA to approximate /(<) inside a
Newton-bisection outer iteration to find the zero of /1,
namely, the stability radius «,.

» If i(c) is computed correctly, its derivative /iI’(=) can be
cheaply computed from information returned by SVSA.

» Often, this converges to the stability radius <., which is
also the reciprocal of the H,, norm (the global maximum of
|G|| on the imaginary axis), with quadratic convergence.

» However, because SVSA is guaranteed to find only a lower
bound on /i(=), the Newton-bisection method is
guaranteed to find only an upper bound on =,.

» Usually, its reciprocal is at least a local maximizer of ||G||
on the imaginary axis.

» But in some cases algorithm breaks down, even if SVSA
always finds local maximizers of a. (A, B,C, D).
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Key Observation:
» Rightmost points found by SVSA in the

right half-plane give upper bounds on ¢,

» Rightmost points found by SVSA in the

left half-plane do not give lower bounds on ¢,

New Idea:

» Start by increasing < until SVSA finds a rightmost
point in the right half-plane, giving an upper bound
one,.

» Then monotonically reduce ¢, continuing to call SVSA
to compute upper bounds until the rightmost point in
the right half-plane is sufficiently close to the
imaginary axis.




INTRO SPECTRAL VALUE SET ABSCISSA  STABILITY RADIUS REAL STRUCTURE CONTROLLER SYNTHESIS SUMMARY
000000 000000000 000080000000000 ©O000 0000000 00

CONTRACTING UPPER BOUNDS ON ¢,

Given vectors 1, v and scalar ¢ such that M(souv*) has an
eigenvalue in the right-half plane, define

£
U
1 — ev*Du

-

Myo(e) = A+ BAyp(e)C where Ayy(e) = v

where 11,0 are now fixed. Also define
huo(e) = max{Re (1) : A € o(Muo(2)}

the spectral abscissa of Myy(<). We know that /1»(s0) > 0 and
hu»(0) < 0 assuming 0(A) € C_, and since /1, is continuous
and easy to evaluate using eigs, we can easily find a zero of it
using Newton-bisection.
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HYBRID EXPANSION-CONTRACTION

Algorithm HEC (Hybrid Expansion-Contraction)

Purpose: approximate the stability radius ¢, for A, B,C, D
Input: 5 > 0 with gy||D|| < 1 and unit norm vectors 1, g such
that Ag, a rightmost eigenvalue of M(gquo?), is in the right
half-plane.

Fork:=0,1,2,...

1. Contraction: call a Newton-bisection zero finding
algorithm to compute & € (0, g| so that 1,4, (5x) = 0, along
with :\k, a rightmost eigenvalue of My, 4, (k) on the
Imaginary axis.

2. Expansion: call Algorithm SVSA with input &, uy, vy, A,
returning as output g1, Vg1, Ak+1-

3. Set g1 = ék.
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HYBRID EXPANSION-CONTRACTION: DEMO

iter= 18
e=0.071

0.2 04 06 08 1
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SIMPLICITY CONDITIONS

Suppose that A is given with ||G(A)|| = 1. We say that the
simplicity conditions hold at A with respect to ¢ if

1. the largest singular value =1 of G()) is simple.

2. letting 1 and v be corresponding right and left singular
vectors and setting A = suv*, the eigenvalue A of M(A) is
simple.

Then it is straightforward to write down a first-order necessary
condition for A to be a rightmost point of 0-(A, B,C, D).
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ALGORITHM HEC CONVERGES

Assume that for all £, Algorithm SVSA delivers points A
satisfying the simplicity conditions and the first-order
necessary condition for A to be a locally rightmost point of

o:{A,B,C,D).

Theorem

Algorithm HEC generates {ex} converging monotonically to a limit
g > e, and wzth { A} having at least one cluster point X, with
IG(A)|| = &1, with Re (\) = 0. Assuming that the simplicity
conditions hold at X with respect to &, then

1. X satisfies the first-order necessary condition to be a locally
rightmost point of a.(A,B,C,D) for e = ¢
2. Im () is a stationary point of ||G(iw)|| with value &1,
Furthermore, if X is indeed a locally rightmost point of
oz(A,B,C,D), then Im () is a local maximizer of ||G(iw)|| with
locally maximal value £,
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ALGORITHM HEC CONVERGES QUADRATICALLY

In fact, provided SVSA produced a rightmost point of
0. (A,B,C, D), it turns out that

h;lki.’k(sk) = I’ ()

So the first Newton step in the contraction phase to find a zero
of Iy, », is equivalent to the Newton step to find a zero of /1
(which we cannot evaluate exactly).

The additional work done in the contraction phase can only
improve the step, and so we can prove that Algorithm HEC
converges quadratically under a regularity condition.
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HEC IN PRACTICE: 33 SMALL-SCALE PROBLEMS
taken from EigTool

HEC Overall Performance: Small-scale

Totals # Rel Diff to ||G|
Alg+Opts JMgp sec 107% 107® 107* S
NB 32112 46549 18 22 25 30
HEC 16665 19999 21 25 29 33
HEC + E 9708 16871 19 23 28 33

HEC + RS 10565 99.70 21 25 28 33
HEC+ERS 6767 8964 21 ZH 28 33

NB Newton-Bisection - hinfnormv1.02
HEC  Hybrid-Expansion-Contraction, with options . ..
E Vector Extrapolation (5 vectors)

RS Relative Step Size Termination (0.01)

ARP Number of Computed Eigentriples

|G|l from getPeakGain (BBBS algorithm, MATLAB)
S "success”
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HEC IN PRACTICE: 14 LARGE-SCALE PROBLEMS

STABILITY RADIUS
000000000000080 CO000

REAL STRUCTURE

CONTROLLER SYNTHESIS

0000000

taken from EigTool
HEC Overall Performance: Large-scale
Totals # Rel Diff to Best
Alg + Opts Mgp sec 107 10¢ 10* S
NB 4196 20920 11 11 11 13
HEC 2338 3756 9 10 12 14
HEC+V 2336 2362 10 11 13 14
HEC + E 636 1504 10 12 13 14
HEC + EV 690 1110 10 11 13 14
HEC + RS 861 1046 9 10 11 14
HEC + RS,V 849 919 10 11 12 14
HEC + E,RS 700 960 9 10 11 14
HEC + E,RS,V 794 841 11 12 13 14

Newton-Bisection - hinfnormv1.02

Hybrid-Expansion-Contraction, with options . . .

Vector Extrapolation (5 vectors)
Relative Step Size Termination (0.01)
Eigenvector Recycling foreigs

Number of Computed Eigentriples

SUMMARY

~
CO
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RELATED WORK

» Guglielmi and M.L.O., 2011
(first large-scale method for the case B=C =1, D = 0)

» Kressner and Vandereycken, 2014
(substantial improvement to G & O, but apparently does
not extend beyond B=C =1, D = 0)

» Benner and Voigt, 2014
(method closely related to our SVSA when D = 0,
applicable to descriptor systems Ex = Ax + Bu .. .)

» Freitag, Spence and Van Dooren, 2014
(completely different approach, very efficient in
medium-scale case)

SUMMARY

~
(L
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THE REAL SPECTRAL VALUE SET ABSCISSA

Fore > 0, ¢||D|| < 1, the real structured spectral value set abscissa is
a®Il(A,B,C,D) :=max {Re()) : A € o2II'l(A,B,C, D)}

By definition, the stability radius el is the zero of the monotonic
function #® : R — R defined by

nR(c) = o&I'I(A, B,C, D)

We have developed Algorithm RSVSA to approximate ,'I¥,
extending Algorithm SVSA to the case of real structure using the
Frobenius norm. Key point: iterate with rank-two perturbations
instead of rank-one. Based on an ODE approach originating with
(Guglielmi-Lubich 2013, Guglielmi-Manetta 2014).

Reason for rank-two in a nutshell: when 1 = ug + iy and v = vg + iv;
are complex, which will happen even for real A, B, C, D when the
rightmost eigenvalue A is part of a complex conjugate pair,

Re (uv*) = ugvg + ujo;

which has rank two.
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CONTROLLER SYNTHESIS

» Where does the (A, B,C, D) arise from?
» Typically from an open-loop state-space system:

SUMMARY
®000000 cOo

—i- A1 Bl 32 17T X i
z | =1 C|Dun D1 w
Il L Cz Dz] D22 : u

— -

LY
where:

X - states (length: ny)
u - physical (control) inputs
y - physical (measured) outputs

» Combined with a controller:
i’K —K XK | AK BK XK
u N Yy e K DK Yy

xx € R" is the controller state
n is the order of the controller

w - performance inputs
z - performance outputs

where:
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THE CLOSED LOOP SYSTEM

» Combining the open-loop system system and the controller
yields the closed-loop system, which is our (A, B,C, D):

o | < [ALB]] =
R C|D -
Z w

» assume Dy, = 0 for brevity:

A = i Al + BzDKCZ BzCK ] B — i B1 + BzDKDzl
! BxC»s Ak ! BxDo1
C = [C1+DiDkC; D1Cx | D = | Du+ D12DkDn |

» A hasordern =n, +n

» How to choose the controller matrices Ag, Bx, Cx, Dg?




—

ITRO SPECTRAL VALUE SET ABSCISSA  STABILITY RADIUS REAL STRUCTURE CONTROLLER SYNTHESIS SUMMARY
Q00000 000C0D000 000000000000000 00000 0080000 00

:

CONTROLLER SYNTHESIS

Controllers are designed /built to ensure stability of the
closed-loop system and increase robustness wr.t. disturbances,
often by minimizing the H,, norm (maximizing the stability
radius).

Full-order controller (77 = 1): can be computed explicitly, but
too expensive for large 1, and too complicated for engineers’
tastes.

Low-order controller (i1 < n): goal can be expressed as a
nonsmooth, nonconvex optimization problem in the controller
variables.
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HIFOO: H FIXED-ORDER OPTIMIZATION

Open source MATLAB toolbox for low-order controller design

for small-scale systems (Henrion, M.L.O,, et al, 2006 —).
Has been used fore.g.

» “tire damping on actively controlled quarter-car suspensions”
“vibration control of fluid /plate”
“lateral control for flexible BWB ... aircraft”

“nose landing gear steering system”

“bilateral teleoperation ... minimally invasive surgery”
“proton exchange membrane fuel cell”

“gust load alleviation ... direct lift control flaps”

Competitor: HINFSTRUCT, part of MATLAB’s Control Systems
Toolbox since 2010. Faster but closed-source. Based on
(Apkarian-Noll 2006).

Both use methods for nonsmooth, nonconvex optimization to
minimize the Ho, norm of the closed loop system defined by
the controller variables, as computed by implementation of
BBBS algorithm in MATLAB or SLICOT.

vy vyvyvYYyypy
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CONTROLLER DESIGN FOR LARGE-SCALE SYSTEMS

» Usual approach: use model order reduction to reduce size
of system first: much work done in this community
(Antoulas, Benner, Gugercin, Mehrmann, Sorensen, etc.)

» HEC is a scalable and robust method to approximate H
norm directly in the large-scale case.

» So, can it be used to design low-order controllers for
large-scale dynamical systems directly?

» HIFOO + HEC: an initial evaluation

» Compare order 10 controllers designed by:

» original HIFOO using reduced-order models (ROM)

» new HIFOOS (HIFOO-Sparse using HEC) using full-order
models (FOM)

» test set: 12 Problems (FOM + ROM) from COMPI,ib
(Leibfritz, 2004)

» 144 to 168 controller variables per problem
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CONTROLLER SYNTHESIS
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ROM vs FOM CONTROLLER PERFORMANCE

Hoo (ROM) H'® (FOM)
Problem HIFOO HIFOO HIFOOS-W  HIFOO0s-C
HF2D1 6.73 x 10° 343 x10° 552x10° 5.08 x10°
HF2D2 564 x 10° 268x10° 3.10x10° 289 x10°
HF2D5 1.94 x 104 283 x 10 238x10° 6.15x 10°
HF2D6 786 x10° 1.08x10* 263x10° 237 x 10°
HF2D9 742 x 100  295x 10! 295x 10! 295 x 10!
HF2D_CD1 4.62 x 10° 00 6.23 x 10>  2.55 x 10?
HF2D_CD2 7.01 x 10° 00 6.18 x 10!  1.64 x 10!
HF2D_CD3 4.30 x 10° 00 9.84 x 10> 3.54 x 10?
HF2D_IS1 757 x10* 332x10° 421 x10° 3.54 x 10°
HF2D _I1s2 1.17 x 104 468 x10° 6.05x10° 597 x 10°
HF2D_IS3 8.49 x 10° 00 131 x10° 4.12 x 102
HF2D_IS4 6.92 x 10° 00 388 x10° 836 x 10°

Column 2: controller design by HIFOO on the reduced-order model

Column 3: using this controller in the full-order model: sometimes unstable.
Columns 4 and 5: controller design by HIFOO-Sparse on the full-order model

(Warm and Cold-started versions)

SUMMARY

O
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CPU-TIME TO DESIGN 12 CONTROLLERS

Time (ROM) Time (FOM)
Problem HIFOO HIFOOS-W  HIFOO0Ss-C
HF2D1 419.37 631.70 875.76
HF2D2 714.72 967 .42 994.80
HF2D5 314.47 141.75 134 .42
HF2D6 316.17 41.23 12.98
HF2D9 68.75 21.23 37.52
HF2D_CD1 170.90 151.47 88.75
HF2D_CD2 175.78 95.80 46.19
HF2D_CD3 418.28 255.25 124 .47
HF2D_IS1 625.17 170.09 66.62
HF2D_IS2 597.66 856.67 617.38
HF2D_1IS3 164.00 249.72 275.65
HF2D_1IS4 193.03 153.63 96.11

TOTAL 4178.30 3735.96 3370.65
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SUMMARY

We have presented a fast algorithm to obtain upper bounds on
the stability radius =, of a large-scale linear dynamical system
with input and output (lower bounds on its H,, norm).

It works by repeatedly expanding out in the complex plane to
find the rightmost point of a spectral value set defined by a
fixed £, and then contracting back to the imaginary axis by
reducing ¢.

The cost is repeated calls to eigs to compute the rightmost
eigenvalue of a large sparse matrix plus a rank-one correction.
The algorithm is quadratically convergent in e.

[t extends to real structured perturbations, using rank-two
corrections instead of rank-one.

[t can potentially be used to design low-order controllers for
large-scale systems without model order reduction.
Everything extends to the discrete-time case (not discussed).






