Nonconvex Regularization and Satellite Imagery

Field-based SAR denoising

Rick Chartrand, Descartes Labs

May 25, 2016

A mathematician is a device for turning coffee into theorems. –Alfréd Rényi

What we really need is a machine to turn some of those theorems back into coffee.

A bit about Descartes Labs

SAR denoising

Who we are were

We're a startup in Los Alamos, NM.

Who we are were

We're a startup in Los Alamos, NM.

Big data: from space to the cloud

We process petabytes of imagery from many satellites, including:

- Landsats 1–8 (USGS)
- Terra and Aqua (NASA)
- Sentinel 1 and 2 (ESA)
- Dove and RapidEye (Planet Labs)

Actionable advice for agriculture

Our current focus is on extracting information of value to the agriculture industry.

Actionable advice for agriculture

Our current focus is on extracting information of value to the agriculture industry.

A bit about Descartes Labs

SAR denoising

Sentinel 1

Sentinel 1 uses synthetic-aperture radar, which is unaffected by clouds.

SAR image example

A processed Sentinel 1-A image from west-central lowa: (The colors are VH and VV polarizations, and $\frac{VV-VH}{VV+VH}$ as a third channel.)

Fields

We have lots of other, noiseless imagery over time, allowing us to produce maps of regions of consistent land use (cf. image segmentation).

A simple approach

Making the image constant on fields is easy and works well. Outliers make the median a good choice. The multiplicative Gaussian noise model makes the mean of the logarithm a good choice.

fieldwise median

fieldwise exp-mean-log

If f is a noisy image defined on Ω , we seek an image u and edge-set Γ :

$$\min_{u,\Gamma} \int_{\Omega\setminus\Gamma} |
abla u|^2 + rac{\lambda}{2} \int_{\Omega} |u-f|^2 + \mu \mathcal{H}(\Gamma).$$
 (*)

The regularization of u is turned off at Γ , which ideally corresponds to the set of edges in the image. This prevents the regularization from blurring the edges.

(*) is difficult to solve.

Field simplification

In our case, we already have a good approximation of the edges. Let Γ be the set of field edges. Now we solve the following:

$$\min_u \int_{\Omega\setminus\Gamma} |
abla u|^p + rac{\lambda}{2} \int_\Omega |u-f|^2.$$

- ► Using p ≤ 1 will help preserve edges that are missing from the fieldmap.
- For p = 1, this is total-variation regularization, but with the TV diffusion turned off at edges.
- Using p < 1 results in sharper non-field edges and better contrast preservation.

We use iteratively-reweighted least squares (equivalently, iterative linearization of the gradient, AKA lagged diffusivity). This means iteratively solving:

$$(R\nabla)^T \operatorname{diag}(|\nabla u_{n-1}|^{p-2})R\nabla u_n + \lambda(u_n - f) = 0,$$

where R is the projection onto the non-edge pixels.

We use iteratively-reweighted least squares (equivalently, iterative linearization of the gradient, AKA lagged diffusivity). This means iteratively solving:

$$(R\nabla)^T \operatorname{diag}(|\nabla u_{n-1}|^{p-2})R\nabla u_n + \lambda(u_n - f) = 0,$$

where *R* is the projection onto the non-edge pixels.

The edge pixels remain noisy, so we repeat the iteration with the edge and non-edge pixels reversed, initializing with the previous result.

Edge maps

This approach requires labeling edge pixels.

Results

noisy $p=1, \lambda=1.0$ $p=1, \lambda=0.1$

Weaker regularization gives a realistic-looking result. Stronger regularization approximates the uniform-field result, while allowing non-field edges.

Results

noisy

 $p=1, \lambda=1.0$

 $p=1, \lambda=0.1$

Weaker regularization gives a realistic-looking result. Stronger regularization approximates the uniform-field result, while allowing non-field edges.

Comparison with edgeless denoising

We get a direct comparison with denoising without edge assistance by simply turning off the edge-set:

noisy

 $\lambda = 1.0$, use edges

 $\lambda = 1.0$, no edges

Without turning the diffusion off at edges, features are blurred.

Comparison with edgeless denoising

We get a direct comparison with denoising without edge assistance by simply turning off the edge-set:

noisy

 $\lambda = 0.1$, use edges

 $\lambda = 0.1$, no edges

Without turning the diffusion off at edges, features are blurred.

Comparison with small p

p = 1

p = 1/4

Using p < 1 gives sharper non-field edges, and preserves contrast better.

A possible storyline

loombe	ergBusiness 💟	News	Markets	Insights	Video		1944		
Mi: by	ssissi Flood	ippi ds; (Riv Gra	/er / in P	Area Price	s R	os all	ed y	
y Jeff	Wilson Megan Dur ∳ megandu	isin risin							
ecember 2	29, 2015 – 12:27 PM M	ST Updated on	December 29	, 2015 – 3:38 F	PM MST		f	y 🛧	
Reco Soyb	ord river levels fored leans, corn climb in	ast later thi `short-lived	s week befo I' supply squ	re cresting leeze					
Floods after heavy rain shut 5 miles of the Mississippi River, the l shipping channel, and waters were forecast to climb to record lev and Illinois later this week.						the bigges d levels in	viggest U.S. inland vels in parts of Missouri		
~	The river betwe	en mile m	arkers 179	and 184 ne	ar St. Louis cl	osed arou	nd 11 p.	m. local	

Maybe we can see barge traffic backed up.

The Landsat view

A Landsat 8 image of this area during that time:

The Landsat view

A Landsat 8 image of this area during that time:

Barges in SAR

Barges pop out in Sentinel-1 images, but pixelwise detection is easier with noise removed. Using p < 1 preserves bright pixels better.

- Descartes Labs: satellite imagery startup. We're hiring! http://www.descarteslabs.com/jobs/
- SAR imagery from Sentinel 1 lets us see through clouds, but is noisy.
- Using field edges as prior information lets us remove noise with better preservation of features, especially with nonconvex regularization.

