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Koopman Mode Analysis

1Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson DS (2009) Spectral analysis of nonlinear flows.
Journal of Fluid Mechanics, 641:115–127.
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Figure 3. Positive (red) and negative (blue) contour levels of the streamwise velocity
components of two Koopman modes. The wall is shown in grey. (a) Mode 2, with ‖v2‖ = 400
and St2 = 0.141. (b) Mode 6, with ‖v6‖ = 218 and St6 = 0.0175.

is depicted with blue symbol in figure 2(a). This mode, shown in figure 1(b), captures
the steady flow structures as discussed previously. In figure 2(a), the other (unsteady)
Ritz values vary smoothly in colour from red to white, depending on the magnitude
of the corresponding Koopman mode. The magnitudes defined by the global energy
norm ‖vj ‖, and are shown in figure 2(b) with the same colouring as the spectrum. In
figure 2(b) each mode is displayed with a vertical line scaled with its magnitude at
its corresponding frequency ωj = Im{log(λj )}/"t (with "t =2 in our case). Only the
ωj ! 0 are shown, since the eigenvalues come in complex conjugate pairs. Ordering
the modes with respect to their magnitude, the first (2–3) and second (4–5) pair of
modes oscillate with St2 = 0.141 and St4 = 0.136 respectively, whereas the third pair
of modes (6–7) oscillate with St6 = 0.017. All linear combinations of the frequencies
excite higher modes, for instance, the nonlinear interaction of the first and third pair
results in the fourth pair, i.e. St8 = 0.157 and so on.

In figures 1(e) and 1(f ) the power spectra of the two DNS time signals (black lines)
are compared to the frequencies obtained directly from the Ritz eigenvalues (red
vertical lines). The shedding frequencies and a number of higher harmonics are in
very good agreement with the frequencies of the Koopman modes. In particular, the
dominant Koopman eigenvalues match the frequencies for the wall mode (St = 0.017)
and the shear-layer mode (St = 0.14). Note that the probe signals are local measures
of the frequencies at one spatial point, whereas the Koopman eigenvalues correspond
to global modes in the flow with time-periodic motion.

The streamwise velocity component u of Koopman modes 2 and 6 are shown
in figure 3. Each mode represents a flow structure that oscillates with one single
frequency, and the superposition of several of these modes results in the quasi-
periodic global system. The high-frequency mode 2 (figure 3a) can be associated with
the shear layer vortices; along the jet trajectory there is first a formation of ring-like
vortices that eventually dissolve into smaller scales due to viscous dissipation. Also
visible are upright vortices: on the leeward side of the jet, there is a significant
structure extending towards the wall. This indicates that the shear-layer vortices and
the upright vortices are coupled and oscillate with the same frequency. The spatial
structures of modes 4 and 8 are very similar to those of mode 2, as one expects, since
the frequencies are very close.

On the other hand, the low-frequency mode 6 shown in figure 3(b) features large-
scale positive and negative streamwise velocity near the wall, which can be associated
with shedding of the wall vortices. However, this mode also has structures along
the jet trajectory further away from the wall. This indicates that the shedding of
wall vortices is coupled to the jet body, i.e. the low frequency can be detected nearly
anywhere in the vicinity of the jet since the whole jet is oscillating with that frequency.

(Quasi)periodic features↔ Eigenvalues
Eigenvalues↔ atomic part of spectral
measure
Dynamic Mode Decomposition approximates
features associated with eigenvalues.



Mixing behavior modeled by stochastic terms

1Griffa A, Owens K, Piterbarg L, Rozovskii B (1995) Estimates of turbulence parameters from Lagrangian
data using a stochastic particle model. Journal of Marine Research, 53(3):371–401.
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Turbulent transport↔ decay of correlationsPSDs of noise models (image: Wikipedia)

Mixing (turbulent) transport
↔ power spectrum density (PSD)
PSD↔ abs. continuous part of spectral
measure
modeled as stochastic terms



Between: non-mixing, non-regular dynamics

1Zaks, M. A. Fractal Fourier spectra of Cherry flows. Physica D 149, 237–247 (2001).
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Viscous steady flow past a lattice of obstacles
results in anomalous transport (faster than
diffusive, but slower than mixing).

Goal: Model for Koopman spectral
measure for anomalous transport.

Attractor



The entire talk in 3 sentences.
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Koopman operator is a linear representation of nonlinear
dynamics.
In steady state, its spectral measure decomposes into:
I atomic spectrum (regular components),
I spectral density (mixing, chaotic components), and
I fractal parts (weak anomalous transport, intermittently correlated).

We propose to model the fractal spectral measure by Affine
Iterated Function Systems (AIFS).



The Koopman Operator

1Budišić, M., Mohr, R. M. & Mezić, I. Applied Koopmanism. Chaos 22, 047510–1–33 (2012).
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Nonlinear dynamics:
Time-T map on invariant setA:
Φ : A → A

xn+1 = Φ(xn)

Φ typically nonlinear,
A (in)finite-dimensional, compact.

Koopman operator:
For f ∈ L2(A),
K : L2(A → L2(A)

K f(x) = f ◦ Φ(x)

K linear without truncations,
L2(A) (in)finite-dimensional.

Spectral Decomposition of the Koopman Operator

Kn f =

∫ π

−π
einωd[E(ω)f ] =

∑
k

einωkPk f︸ ︷︷ ︸
atomic

+

∫ π

−π
einωd[Ec(ω)f ]︸ ︷︷ ︸
continuous

.



Spectral measure and the autocorrelation function.
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Operator-valued E(ω) applied to f ⊥ 1⇒ scalar-valued σf (ω) for erg. dynamics:∫ π

−π
einω

dσf (ω)︷ ︸︸ ︷
〈dE(ω)f , f〉 = 〈Kn f , f〉 = lim

K→∞

1
K

K−1∑
k=0

[Kn f ](xk)f(xk) = Cf (n)︸ ︷︷ ︸
autocorrelation function

.

Autocorrelation Function↔ Spectral Measure
Autocorrelation of f(xk) is the Fourier tfm. of the spectral measure.

Note:
Single observable↔ Fourier spectral measure
For some systems, Fourier s.m. = Koopman s.m.
For others, this analysis needs to be extended.



Detection of components of spectral measure

Autocorrelation:
Cf (n) =

〈Kn f , f〉 − 〈Kn f〉2

〈(Kn f)2〉 − 〈Kn f〉2

Mean-squared Autocorrelation:

Cf (n) =
1
n

n−1∑
k=0

|Cf (k)|2

Detection of fractal spectral measure1

Cf (n)→ 0 ⇔ only spectral density
Cf (n)→ 0 ⇒ no non-trivial eigenvalues2

Cf (n) ∼ n−D ⇒ D is the fractal dimension of the spectral measure3

1Pikovsky, et al. Singular continuous spectra in dissipative dynamics. PRE 52, (1995)
2Wiener’s Lemma.
3Knill O (1998) Singular continuous spectrum and quantitative rates of weak mixing. Discrete and

Continuous Dynamical Systems, 4(1):33–42.
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Let’s warm-up: familiar dynamics
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Regular time series: α(t) = sin(50t) + cos(200t)

Filtered Gaussian noise: β(t) = N (0, 1) ? χ(t)

Pure atomic
spectrum

Pure abs.-cont.
spectrum

Dim. of spectrum= 0
(discrete)

Dim. of spectrum
= −1 (continuous)



Extension of Lorenz system

1Pikovsky, et al. Singular continuous spectra in dissipative dynamics. PRE 52, (1995)
2Lyubimov DV, Zaks MA (1983) Two mechanisms of the transition to chaos in finite-dimensional models of

convection. Physica D: Nonlinear Phenomena, 9(1):52–64.
3Lorenz E (1963) Deterministic Nonperiodic Flow. Journal Of The Atmospheric Sciences, 20(2):130–141.
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Extended Lorenz system (D 6= 0, A 6= 0):

ẋ = S(y − x) + SDy(z − R)

ẏ = Rx − y − xz
ż = xy − bz + Ax

S – Prandtl no.3

R – Rayleigh no.3

B – geometric parameter3

D – vibrational parameter2

A – symmetry br. parameter2

Lorenz’633
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Spectral measure of Pikovsky’95 is fractal
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(a) Lorenz’63 attractor
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(e) Pikovsky’95 attractor
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Fundamental problem: representation
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Goal: Parametric model for the spectral measure.
Use a fixed (small) number of parameters to represent the spectral measure.

Non-parametric models like FFT and Welch can be difficult to process and interpret.
atomic part of spec. measure→ points (eigenvalues)
a.c. part of spec. measure→ density function (parametric models)
s.c. part of spec. measure→ self-similar measures?



Self-similar approximation



Model for self-similar measures
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w1(ω) = 0.33̇ω
w2(ω) = 0.33̇ω + 0.66̇

p1,2 = 0.5
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Affine Iterated Function System (AIFS)

wk(ω) = δkω + βk , k = 1, . . . , K

with weights pk .

Invariant measure (detailed balance):∫ π

−π
g(ω)dν =

∑
k

pk
∫ π

−π
g ◦ wk(ω)dν

Fractal dimension D∑
k

pkδ−Dk = 1



Moment Problem for Fractal Spectral Measure

1Handy, C. R. & Mantica, G. Inverse problems in fractal construction: Moment method solution. Physica D
43, 17–36 (1990).
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Input:
Moments of Spectral Measure∫ π

−π
einωdσf (ω)︸ ︷︷ ︸

Fourier coeff. of spectral measure

= Cf (n)︸ ︷︷ ︸
autocorrelation

.

Output:
AIFS parameters

Bound on scale δ
Values of pk , βk

Handy–Mantica Algorithm

Convert moment problem on
spectral domain into a moment
problem on coefficient space of
AIFS.
Solve the auxiliary moment
problem using Padé analysis.



Preliminary results: using power moments
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Figure: Estimates of the scale δ (from the slope
of Cx(n)) and upper bounds of δ given by
Handy–Mantica algorithm.
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Figure: “Density” of δ-HIFS estimated via
Chaos Game (blue) and the correlogram Ĉ(ω)

5 functions: only 1+5+5 values!
Matching first 10 power moments.
Large-scale features reconstructed
Small scales not: feature or bug?
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Connections with dynamics
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Assume that the Fourier measure dσf (ω) = 〈dE(ω)f , f〉 is additionally invariant w.r.t. AIFS
pk ,wk(ω) = δkω + βk .
Then it satisfies:

Spectral theorem 〈Kn f , f〉 =

∫ π

−π
einω

dσf (ω)︷ ︸︸ ︷
〈dE(ω)f , f〉, δk ∈ [0, 1).

(Weak) detailed balance
∫ π

−π
g(ω)dσf =

∑
k

pk
∫ π

−π
g ◦ wk(ω)dσf

Setting g(ω) = einω we can derive the evolution of autocovariance:

〈Kn f , f〉 =
∑
k

pkeinβk 〈Knδk f , f〉

Cf. 〈Kn(ω)f , f〉 = eiω〈Kn−1(ω)f , f〉.



What’s next?
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Theory

Single-observable
(Fourier) spectral
measures→ Koopman
spectral measure
Examples of dynamics
with s.c. spectrum
spectral projectors

Computation

Mixed-type spectral
measures
Numerically-favorable
approaches
Extension to multivariate
correlations
non-homogeneous AIFS
2D fractals (off-attractor
spectrum)

Analysis

Numerical analysis of
AIFS estimator
Connections between
AIFS attractors and DMD
eigenvalues
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