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THREE OPTIMAL CONTROL PROBLEMS

e Optimal control formulation of an image registration problem

— with Eunjung Lee

e Optimal placement of pinning sites in superconductors

— with Haomin Lin and Janet Peterson

e An optimal control problem for stochastic partial differential
equations

— with Catalin Trenchea and Clayton Webster







The image registration problem

Given two images T(x) and R(x) defined for x € €,
find a mapping ¢(x) : Q2 — € such that T(¢(x))

is as “close” to R(x) as possible

() C R? (usually a rectangle)
T(x) is called the template image

R(x) is called the reference image



Given f(x) and g(x) defined on €2 such that
f(x)>0 inQ  and / (f(x) —1)dx =0,
0

consider the problem

(Voux)=f(x)—1 inQ
V xu(x) = g(x) in €2
n-u(x)=0 on Of)
4 (1)
Op(t,x) .
5 u(e(t,x)) in (0,1] x
| 9(0,x) =x in €

it can be shown that ¢(1,x) is a one-to-one mapping from €2 — ) and
that

detVe(1,-) = f

thus, by “adjusting” f(x) and g(x), one can, in principle, make ¢(1,x) do
whatever one wants



Optimal control formulation of the image registration problem

For the image registration problem,
we identify ¢(x) with ¢(1,x)
and then try to

adjust f(x) and g(x) so that T(¢(1,x)) is as close to possible to R(x)

— we have an optimal control problem



Specifically, we define the functional (|| - || = L*(€2) norm)

T(@|i=1, f,9) = |[T(e(1,-)) — R|? what we want to minimize

+agllfI7 + apn VAP

+ag|lgll* + a4 llVgll*  control penalization



and then seek controls f(x) and ¢g(x) and states ¢(¢,x) and u(x) such that
J (-, -, ) is minimized, subject to the constraints

(V.ux)=f(x)—1 inQ
V xu(x) = g(x) in €

n-u(x) =0 on 05}
< ‘%gt’ %) _ ) in (0,1] x Q
¢(0,x) = x in €

/(f(x)—l)dx:()
Ay

two interesting features:
— PDE constraint coupled to ODE constraint

— composite function u( ) of the state variables



Results

Existence of optimal solutions
Existence of Lagrange multipliers
Optimality system

Finite element approximations



Lagrangian

L(u, ¢, f,g;&,n.9,0,v, 1)
_ T(lers £ 9) /(v w—f+ >§dx—/Q<V><u—g>ndx

// <__“ ) ¢dtdx_0/9(f—1)dx

/Fn uudx—/g(qb((),x)—x)-udx

Adjoint or co-state equations

( O

It + V¢U(t D) = in (0,1) x €

(1) = (T((1, x>> R(x)) - V,T($(1,x)  in O

1
Vi Ve = / Vo (1 x)(t ¢ (1 x))dt in ©
0
L n=_0 on OX)




Optimality conditions
(

—ozflAf-I—ozfof—é = 0—¢

f
n-Vf =0
X —agAg+agg = -1
g =10

in €)

on 0f)

in €
on 0f)



Computational results




T(¢p(t,x)) for 0 <t <1 and R(x)




T(¢(1,x)) on coarser and finer grid







Pinning in superconductors

An useful thing to do is to transmit (resistenceless) currents through super-
conducting samples, e.g., wires

An important technological problem is to arrange things so that one transmits
the largest possible resistenceless current

Unfortunately, if one has a very pure sample (i.e., one free of defects) of

a superconducting material, transmiting even a miniscule current can cause
resistance

let's see why this is so



In conductors of current practical interest (e.g., high-temperature supercon-
ductors), magnetic fields penetrate a sample in the form of (magnetic) flux
tubes (called vortices)

MAGNETIC FLUX LINES

) SUPERCURRENT LOOPS

If a current is applied and the sample is pure, then the magnetic flux lines will
move, resulting in resistance (Lorentz force)



The game is then to somehow make the sample “impure” so that the vortices
are pinned, i.e., so that they do not move, when a current is applied

many mechanisms are known to pin vortices, e.g.,

— grain and twin boundaries, thinner regions in the sample, impurities

vortex configuration in a
pure superconductor with
no applied current;

any applied current will
cause the vortices to move

vortex configuration in a
superconductor with impurities

(the circles) and no applied current;
a finite but not too large

current may be applied without
causing the vortices to move



however, for any pinning mechanisms,

— if the applied current is large enough,
the vortices will become de-pinned and resistance will result

The largest current that can be applied without causing vortex movement
(and therefore resistance) is called the critical current and is of huge interest

The location of the impurities can have a big effect on the critical current J.



Naturally, one asks the question:

can one systematically determine the placement of the impurities so that
the critical current is maximized?

If one could do this, it is technologically feasible to construct samples having
the optimal impurities distribution



An optimal placement problem

We assume that

all the impurities are of the same size and shape, i.e., they are all circular
with the same radius

the number M of impurities is fixed

As a result, the control parameters are given by the

the coordinates {z;,1;}2, of the centers of the M circles

the applied current J

the state variables are

the complex-valued order parameter 1

the vector-valued magnetic potential A



The constraint equations are the time-dependent Ginzburg-Landau equations,
modified to include the effects of impurities and applied currents

the TDGL equations have the form

0

6’—175? = F(¢, As J {zi,yi}))
0A

o — G(zp,A; J Az, i zj\il)

It remains to define an objective functional to be minimized that

' . . )
doesn’t like vortices to move

and \ — T, J) = /t b /Q (%)zdxdt—od

likes big applied currents




Results

Existence of optimal solutions
Derivation of sensitivity equations
Effective optimization algorithm

Development and analysis of finite element approximations



Computational results

Our functional has multiple local minima, so that one obtains different “opti-
mal” solution for different initial placement of the impurities

However, in every case, we obtain a significant improvement in the critical
current

In addition, the optimal values of the critical currents obtained for different
initial placement are not too different



Je=0.563 (75.9%)  J.=0.543 (42.9%) Jo=0.578 (48.2%) J.=0.578 (75.2%)

Initial (top) and resulting optimal (bottom) impurity placement
and the corresponding critical currents for M = 4




_Jc =0.611 (307%) | J.=0.605 (365%) Jo=0.586 (245%) Jo=0.595 (120%)

Initial (top) and resulting optimal (bottom) impurity placement
and the corresponding critical currents for M =5




J.=0.668 (293%) Jo=0.653 (133%) Jo=0.705 (220%) Je=0.705 (207%)

Initial (top) and resulting optimal (bottom) impurity placement
and the corresponding critical currents for M = 6







Optimization problems

The state system
—V - (k(w,x)Vu(w,x)) = f(w,x) inQxD

u(w,x) = 0 on 2 x 0D

w is an elementary event in a probability space )
X is a point in the spatial domain D
k(w,x) and f(w,x) are correlated random fields

the solution u(w, x) is also a random field



Optimal control problem

k(w, X) is given
f(w,x) to be determined

given target function u(w,x) may be deterministic or may be a random

field

cost functional (E(-) denotes the expected value)

Flu, f;1) = E(HU(w, ) = w, M)+l fw, ')H%W)))

—
find a state u and a control f such that F(u, f;u) is
minimized subject to the state system being satisfied



Parameter identification problem

f(w,x) is given
r(w, X) to be determined

given target function u(w,x) may be deterministic or may be a random

field

cost functional

K(u, 7:5) = E(Hu(w, ) = w, MZap) + Bl VE(w, '>”%2<D>>

—
find a state u and a coefficient function  such that C(u, x;u) is

minimized subject to the state system being satisfied



Results

Existence of optimal solutions
Existence of Lagrange multipliers

Derivation of optimality system

the adjoint or co-state system

—V - (k(w, x)VE(w,x)) = —(u(w,x) —U(w,x)) inQxD
{(w,x) =0 on 2 x 0D

optimality condition

E(—ﬁAm+VU°V§):O



Discretization of noise so that x, f, &, and u depend on a parameter vector
Jw) = (nw),... ,yN(W»T

these parameters may be “knobs” in an experiment

alternately, they could result from an approximation, e.g., a truncated
Karhunen-Loevy expansion, of a correlated random field

finite element analyses of stochastic collocation method (in progress)

isotropic and anisotropic Smolyak sparse grids are used as collocation points

development of gradient method to effect optimization



Computational results

N
nwx
hoose target U = (1 — 2” E in (—=) vy,
choose target u = x(1 — z°) + 2 S| 7 )Yn(w)
N nwx
h timal & = (1+2%) + ) cos (—)yn
choose optimal & (—I—m)—l—ilcos(L)y (w)

set [ =—V - (kVQ)
choose initial Kk =1+ x
assume y; uniform on |—1,1] with E(y;) = 0 and E(y;y;) = d;;

—
given random f and w, identify the expectation of both the control E(k)
and the state E(u) and compare with the exact statistical quantities



Left: expected value of initial (blue) and target (red) coefficient x
Right: expected value of initial and target solution
Number of random variables = N =1
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Left: expected value of optimal and target coefficient
Right: expected value of optimal and target solution u
Number of random variables = N =1
Number of Monte Carlo samples = M =1
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Left: expected value of optimal and target coefficient x
Right: expected value of optimal and target solution u
Number of random variables = N =1
Number of Monte Carlo samples = M = 10
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Left: expected value of optimal and target coefficient
Right: expected value of optimal and target solution u
Number of random variables = N =1
Number of Monte Carlo samples = M = 100




Left: expected value of optimal and target coefficient x
Right: expected value of optimal and target solution u
Number of random variables = N =1
Number of anisotropic Smolyak collocation points = M =1
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Left: expected value of initial (blue) and target (red) coefficient x
Right: expected value of initial and target solution
Number of random variables = N =5




Left: expected value of optimal and target coefficient x
Right: expected value of optimal and target solution u
Number of random variables = N =5
Number of Monte Carlo samples = M =11




Left: expected value of optimal and target coefficient x
Right: expected value of optimal and target solution u
Number of random variables = N =5
Number of anisotropic Smolyak collocation points = M = 11




N| MC | AS

5| 7e+03| 801
10 || 9e+06 | 1581
20 | 8e+09 | 11561

For N random parameters, the number of Monte Carlo samples and the number
of anisotropic Smolyak collocation points required to reduce the original error in
the expected values of both the solution u and coefficient s by a factor of 10°





