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Classification

Class Probability

Truck 0.01

Mouse 0.85

Dog 0.05

Cat 0.09

Low Dimensional Output
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Semantic Segmentation

High Dimensional Output
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Semantic Segmentation

High Dimensional Output
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Receptive Field
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IMEXnet

ResNet:

K. He et al. (2015)
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Receptive Field
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Receptive Field
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Receptive Field
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Receptive Field
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Receptive Field

Non-local information is often necessary.



Feb 25 – Mar 1, 2019 CSE19

Receptive Field
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Receptive Field



Feb 25 – Mar 1, 2019 CSE19

Receptive Field
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Receptive Field

How can we increase a network’s receptive field?
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Receptive Field

How can we increase a network’s receptive field?

1) Convolutions

http://colah.github.io/posts/2014-07-Understanding-Convolutions/
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Receptive Field

How can we increase a network’s receptive field?

1) Convolutions

2) Coarsening

http://cs231n.github.io/convolutional-networks/
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Receptive Field

https://www.cs.toronto.edu/~frossard/post/vgg16/

In practice, a combination of both

VGG16



Feb 25 – Mar 1, 2019 CSE19

Receptive Field

In practice, a combination of both

O. Ronneberger and P.Fischer and T. Brox (2015) 

U-Net
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Receptive Field

How can we increase a network’s receptive field?

1) Convolutions
● Pros: Increase model complexity, increase receptive field
● Cons: More expensive, less stable

2) Coarsening
● Pros: Reduce dimensionality, increase receptive field
● Cons: Lose information



Feb 25 – Mar 1, 2019 CSE19

Receptive Field

How can we increase a network’s receptive field?

1) Convolutions
● Pros: Increase model complexity, increase receptive field
● Cons: More expensive, less stable

2) Coarsening
● Pros: Reduce dimensionality, increase receptive field
● Cons: Lose information

3) Implicit Steps
● Pros: Increase stability, cheap, couple all pixels
● Cons: Additional hyperparameters, periodicity (depending on 

implementation) 
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Stability
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Stability

Forward Stability:

- Small changes to the input result in small changes to 
the output
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Forward Stability:

- Small changes to the input result in small changes to 
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- Small pertubations do not grow at depth
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Stability

Forward Stability:

- Small changes to the input result in small changes to 
the output

- Small pertubations do not grow at depth, which could 
lead to vanishing/exploding gradients, making deep 
networks difficult to train
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Stability

Adversarial Examples
Exploit a network’s instability inorder to fool a classifier

MIT CSAIL
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Stability

Adversarial Examples
Exploit a network’s instability to fool a classifier

Neural Network
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Stability
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Stability

Adversarial Examples
Exploit a network’s instability to fool a classifier

Neural Network
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IMEXnet
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IMEXnet

Start with ResNet:

K. He et al. (2015)
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IMEXnet

Start with ResNet:
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IMEXnet

Start with ResNet:

Which can be seen with as a forward Euler 
discretization of the non-linear ODE (Haber & 
Ruthotto, 2017). 
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IMEXnet

 

We can view using a ResNet as solving the 
following initial value problem using forward 
Euler and a step size         . 

We are not limited to forward Euler, for 
example midpoint methods have been used, 
and RK methods have been proposed (Haber & 
Ruthotto, 2017; Chen et al., 2018).
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IMEXnet

Recap of ResNet issues:

– Often unstable.
– Information takes many layers to travel 

across the computational grid.

  One way to accelerate the communication of 
information across all pixels is to use an implicit 
method (Ascher & Petzold, 1998).
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IMEXnet

  

Backward Euler

Treating the non-linear term implicilty requires 
solving the above equation at evey time step.

In order to avoid this expensive step, we 
instead consider an implicit-explicit (IMEX) 
method. 
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IMEXnet

IMEX Method
Treat non-linear part of the RHS explicitly, and 
the linear part of it implicitly (Ascher et al, 
1995; 1997).

Commonly used in fluid dynamics, surface 
formation, and image denoising.  
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IMEXnet

IMEX Method
Treat non-linear part of the RHS explicitly, and 
the linear part of it implicitly.

There is no natural division in this context.
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IMEXnet

IMEX Method
We use forward Euler for the explicit terms, and 
backward Euler for the implicit term.
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IMEXnet

IMEX Method
We use forward Euler for the explicit terms, and 
backward Euler for the implicit term.
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IMEXnet

IMEX Method
We use forward Euler for the explicit terms, and 
backward Euler for the implicit term.

 

Note that the inverted term is dense, so it couples 
the entire computational grid in each step.
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IMEXnet

Absolute Stability
ResNet

IMEXnet
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IMEXnet

Implementation
In the implicit step we solve the linear system 

where L is a group convolution and B is the collection 
of explicit terms. 

To compute this efficiently, we represent the 
convolution in the Fourier domain.
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IMEXnet

Implementation
Consider the convolution

By choosing L to be a convolution, we can use it’s 
form in the Fourier domain

to compute the product of the inverse
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IMEXnet

Implementation
In order to ensure that A is invertible, we define L to 
be positive semi-definite in the form

where C is a groupwise convolution operator. 

This implementation is CUDA enabled and supported 
by AutoGrad packages.
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IMEXnet
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Numerical Experiments

Q-tips Dataset
- Sythentic semantic segmentation dataset

- 1024 training examples, 64 valdiation examples

- Single object images randomly sampled from a 
unifrom distribution of lengths, widths, and 
orientations.

- 3 object classes

- Requires a large receptive field
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Numerical Experiments

Q-tips Dataset

Image

Label
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Numerical Experiments

Q-tips Dataset
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Numerical Experiments

Q-tips Dataset
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Numerical Experiments

Q-tips Dataset



Feb 25 – Mar 1, 2019 CSE19

Numerical Experiments

Results - Predictions
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Numerical Experiments

Results – Probability Maps

IMEXnet

ResNet
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Numerical Experiments

Q-tips Results
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Numerical Experiments

Q-tips Results
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Numerical Experiments

NYU Depth Results
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Numerical Experiments

NYU Depth Results
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Receptive Field

How can we increase a network’s receptive field?

1) Convolutions
● Pros: Increase model complexity, increase receptive field
● Cons: More expensive, less stable

2) Coarsening
● Pros: Reduce dimensionality, increase receptive field
● Cons: Lose information

3) Implicit Steps
● Pros: Increase stability, cheap, couple all pixels
● Cons: Additional hyperparameters, periodicity (depending on 

implementation) 
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Outline

1) Introduction

1) High vs low dimensional targets

2) Receptive Field

3) Neural Network Stability

2) IMEXnet

1) Formulation

2) Implementation

3) Numerical Experiments

1) Q-tips

2) NYU Depth 
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