

Semi-Implicit Convolutional Neural Networks

Eldad Haber¹², Keegan Lensink^{*12}, Lars Ruthotto³, Eran Triester⁴

*Presenter.

¹ Department of Earth Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, Canada.

² Xtract AI, Vancouver, Canada.

³ Department of Mathematics and Computer Science, Emory University, Atlanta, GA.

⁴ Department of Computer Science, Ben Gurion University, Be'er Sheva, Israel

CSE19

Outline

1) Introduction

- 1) High vs Low Dimensional Output
- 2) Receptive Field
- 3) Neural Network Stability

2) IMEXnet

- 1) Formulation
- 2) Implementation

3) Numerical Experiments

CSE19

- 1) Q-tips
- 2) NYU Depth

Classification

Low Dimensional Output

	\rightarrow	Class	Probability
		Truck	0.01
		Mouse	0.85
		Dog	0.05
		Cat	0.09
$R^{h{ extbf{x}}w{ extbf{x}}d}$	\rightarrow	R	k

where h, w, and d are the image dimensions, and k is the number of target classes.

CSE19

Semantic Segmentation

High Dimensional Output

where h, w, and d are the image dimensions, and k is the number of target classes.

CSE19

Semantic Segmentation

High Dimensional Output

 $R^{h \mathbf{x} w \mathbf{x} k}$ \rightarrow

where h, w, and d are the image dimensions, and k is the number of target classes.

CSE19

 $k \ge d$

ResNet:

$\mathbf{Y}^{n+1} = \mathbf{Y}^n + \mathbf{K}_2 \sigma(N_{\alpha,\beta}(\mathbf{K}_1 \mathbf{Y}^n)) \quad \text{for} \quad n = 0, ..., N-1$

where \mathbf{Y}^0 is the input image, $\mathbf{K}_{1,2}$ are convolutions, σ is a non-linear activation function, and N is a normalization function that depends on α and β

CSE19

K. He et al. (2015)

Feb 25 - Mar 1, 2019

Feb 25 - Mar 1, 2019

CSE19

Non-local information is often necessary.

Feb 25 - Mar 1, 2019

CSE19

CSE19

How can we increase a network's receptive field?

How can we increase a network's receptive field?

CSE19

1) Convolutions

http://colah.github.io/posts/2014-07-Understanding-Convolutions/

How can we increase a network's receptive field?

1) Convolutions

2) Coarsening

max pool with 2x2 filters and stride 2

6	8
3	4

http://cs231n.github.io/convolutional-networks/

Feb 25 - Mar 1, 2019

In practice, a combination of both

https://www.cs.toronto.edu/~frossard/post/vgg16/

Feb 25 - Mar 1, 2019

In practice, a combination of both

O. Ronneberger and P.Fischer and T. Brox (2015)

Feb 25 - Mar 1, 2019

How can we increase a network's receptive field?

1) Convolutions

- Pros: Increase model complexity, increase receptive field
- Cons: More expensive, less stable

2) Coarsening

• Pros: Reduce dimensionality, increase receptive field

Cons: Lose information

How can we increase a network's receptive field?

1) Convolutions

- Pros: Increase model complexity, increase receptive field
- Cons: More expensive, less stable

2) Coarsening

- Pros: Reduce dimensionality, increase receptive field
- Cons: Lose information

3) Implicit Steps

- Pros: Increase stability, cheap, couple all pixels
- Cons: Additional hyperparameters, periodicity (depending on implementation)

Feb 25 - Mar 1, 2019

Stability

Forward Stability:

- Small changes to the input result in small changes to the output

Forward Stability:

- Small changes to the input result in small changes to the output

- Small pertubations do not grow at depth

Forward Stability:

- Small changes to the input result in small changes to the output

- Small pertubations do not grow at depth, which could lead to vanishing/exploding gradients, making deep networks difficult to train

Exploit a network's instability inorder to fool a classifier

CSE19

Exploit a network's instability to fool a classifier

CSE19

Exploit a network's instability to fool a classifier

CSE19

Exploit a network's instability to fool a classifier

CSE19

IMEXnet

Start with ResNet:

$\mathbf{Y}^{n+1} = \mathbf{Y}^n + \mathbf{K}_2 \sigma(N_{\alpha,\beta}(\mathbf{K}_1 \mathbf{Y}^n)) \quad \text{for} \quad n = 0, ..., N-1$

where \mathbf{Y}^0 is the input image, $\mathbf{K}_{1,2}$ are convolutions, σ is a non-linear activation function, and N is a normalization function that depends on α and β

CSE19

K. He et al. (2015)

Start with ResNet:

 $\mathbf{Y}^{n+1} = \mathbf{Y}^n + f(\mathbf{Y}^n, \theta^n)$ for n = 0, ..., N - 1

Start with ResNet:

$$\mathbf{Y}^{n+1} = \mathbf{Y}^n + f(\mathbf{Y}^n, \theta^n)$$
 for $n = 0, ..., N - 1$

Which can be seen with as a forward Euler discretization of the non-linear ODE (Haber & Ruthotto, 2017).

$$\mathbf{\dot{Y}}(\mathbf{t}) = f(\mathbf{Y}(t), \theta(t))$$

IMEXnet

We can view using a ResNet as solving the following initial value problem using forward Euler and a step size h = 1.

$$\dot{\mathbf{Y}}(\mathbf{t}) = f(\mathbf{Y}(t), \theta(t)), \quad \mathbf{Y}(0) = \mathbf{Y}_0$$

We are not limited to forward Euler, for example midpoint methods have been used, and RK methods have been proposed (Haber & Ruthotto, 2017; Chen et al., 2018).

Recap of ResNet issues:

- Often unstable.
- Information takes many layers to travel across the computational grid.

One way to accelerate the communication of information across all pixels is to use an implicit method (Ascher & Petzold, 1998).

Backward Euler

$$\mathbf{Y}^{n+1} = \mathbf{Y}^n + hf(\mathbf{Y}^{n+1}, \theta^{n+1})$$
 for $n = 0, ..., N - 1$

Treating the non-linear term implicilty requires solving the above equation at evey time step.

In order to avoid this expensive step, we instead consider an implicit-explicit (IMEX) method.

Treat non-linear part of the RHS explicitly, and the linear part of it implicitly (Ascher et al, 1995; 1997).

Commonly used in fluid dynamics, surface formation, and image denoising.

Treat non-linear part of the RHS explicitly, and the linear part of it implicitly.

There is no natural division in this context.

$$\dot{\mathbf{Y}}(t) = \underbrace{f(\mathbf{Y}(t), \boldsymbol{\theta}(t)) + \mathbf{L}\mathbf{Y}(t)}_{\text{explicit term}} - \underbrace{\mathbf{L}\mathbf{Y}(t)}_{\text{implicit term}}$$

CSE19

where ${\bf L}$ is a linear invertible matrix

We use forward Euler for the explicit terms, and backward Euler for the implicit term.

$$(\mathbf{I} + h\mathbf{L})\mathbf{Y}^{n+1} = \mathbf{Y}^n(\mathbf{I} + h\mathbf{L}) + hf(\mathbf{Y}^n, \theta^n)$$

We use forward Euler for the explicit terms, and backward Euler for the implicit term.

$$\mathbf{Y}^{n+1} = (\mathbf{I} + h\mathbf{L})^{-1}(\mathbf{Y}^n(\mathbf{I} + h\mathbf{L}) + hf(\mathbf{Y}^n, \theta^n))$$

We use forward Euler for the explicit terms, and backward Euler for the implicit term.

$$\mathbf{Y}^{n+1} = (\mathbf{I} + h\mathbf{L})^{-1}(\mathbf{Y}^n(\mathbf{I} + h\mathbf{L}) + hf(\mathbf{Y}^n, \theta^n))$$

Note that the inverted term is dense, so it couples the entire computational grid in each step.

Absolute Stability

ResNet

$$\mathbf{Y}_{j+1} = (1+h\lambda)\mathbf{Y}_j$$

Stable if and only if $|1 + \lambda h| \le 1$

IMEXnet

$$\mathbf{Y}_{j+1} = \frac{1+h\lambda+h\alpha}{1+h\alpha} \mathbf{Y}_j \text{ when } \mathbf{L} = \alpha \mathbf{I}$$

Stable if and only if $\left|\frac{1+h\lambda+h\alpha}{1+h\alpha}\right| \leq 1$

CSE19

Implementation

In the implicit step we solve the linear system

 $(\mathbf{I} + h\mathbf{L})\mathbf{Y} = \mathbf{B},$

where **L** is a group convolution and **B** is the collection of explicit terms.

To compute this efficiently, we represent the convolution in the Fourier domain.

IMEXnet

Implementation

Consider the convolution

$$\mathbf{AY} = \mathbf{B}$$
, where $\mathbf{A} = (\mathbf{I} + h\mathbf{L})$.

By choosing **L** to be a convolution, we can use it's form in the Fourier domain

$$\mathbf{A} * \mathbf{Y} = \mathbf{F}^{-1}((\mathbf{F}\mathbf{A}) \odot (\mathbf{F}\mathbf{Y}))$$

to compute the product of the inverse

$$\mathbf{A}^{-1} * \mathbf{Y} = \mathbf{F}^{-1}((\mathbf{F}\mathbf{Y}) \oslash (\mathbf{F}\mathbf{A}))$$

where \oslash is element wise division.

Implementation

In order to ensure that ${\bf A}$ is invertible, we define ${\bf L}$ to be positive semi-definite in the form

$$\mathbf{L} = \mathbf{C}^T \mathbf{C},$$

where **C** is a groupwise convolution operator.

This implementation is CUDA enabled and supported by AutoGrad packages.

IMEXnet

Q-tips Dataset

- Sythentic semantic segmentation dataset
- 1024 training examples, 64 valdiation examples
- Single object images randomly sampled from a unifrom distribution of lengths, widths, and orientations.
- 3 object classes
- Requires a large receptive field

Q-tips Dataset

Image

Label

CSE19

Q-tips Dataset

Feb 25 - Mar 1, 2019

Q-tips Dataset

Feb 25 - Mar 1, 2019

Q-tips Dataset

Feb 25 - Mar 1, 2019

Results - Predictions

Image	Segmentation	IMEX Predicition	ResNet Predicition
I		r	
	/		
-			

Feb 25 - Mar 1, 2019

Results - Probability Maps

WW (Blue)

WW (Blue)

Feb 25 - Mar 1, 2019

Q-tips Results

NETWORK	PARAMETERS	IOU	Loss	ACCURACY
IMEXNET	2701440	0.926 0.741	0.0982	99.56
ResNet	2691648		0.3332	98.18

Q-tips Results

CSE19

NYU Depth Results

Kitchen scene

Depth map

ResNet recovery

Implicit net recovery

NYU Depth Results

CSE19

How can we increase a network's receptive field?

1) Convolutions

- Pros: Increase model complexity, increase receptive field
- Cons: More expensive, less stable

2) Coarsening

- Pros: Reduce dimensionality, increase receptive field
- Cons: Lose information

3) Implicit Steps

- Pros: Increase stability, cheap, couple all pixels
- Cons: Additional hyperparameters, periodicity (depending on implementation)

Feb 25 - Mar 1, 2019

Outline

1) Introduction

- 1) High vs low dimensional targets
- 2) Receptive Field
- 3) Neural Network Stability

2) IMEXnet

- 1) Formulation
- 2) Implementation

3) Numerical Experiments

CSE19

- 1) Q-tips
- 2) NYU Depth

Acknowledgments

Paper:

Haber, E., Lensink, K., Triester, E., Ruthotto, L. IMEXnet – A forward stable deep neural network. 2019

Code: github.com/HaberGroup/SemiImplicitDNNs

Acknowledgments

This work is supported by the Mitacs Accerlerate program, Xtract AI, and the US National Science Foundation. We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

CSF12