Weak resolution of singularities for integrable free boundary problems in the plane

Razvan Teodorescu

Department of Mathematics, University of South Florida

December 10, 2015

The many guises and uses of the Darcy Law (H. Darcy 1856, H.H.S. Hele-Shaw 1898)

- Incompressible, immiscible fluids with very large, resp. small viscosity, small Reynolds numbers;
- Averaging the Navier-Stokes equations along one dimension ("small vertical extent" of size $b \rightarrow 0$), and neglecting gravity, surface tension:

$$\begin{aligned} \frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla}) \vec{v} &= \frac{\vec{\nabla} p}{\rho} + \nu \nabla^2 \vec{v} \\ \vec{v}(x, y, z) &= \frac{3}{2} \left[1 - \left(\frac{2z}{b}\right)^2 \right] \widetilde{\vec{v}}(x, y) \\ p(x, y, z) &\to \tilde{p}(x, y) = \frac{1}{b} \int_{-b/2}^{b/2} p(x, y, z) dz \end{aligned}$$

Hele-Shaw Flow:
$$\begin{cases} \nabla^2 p = 0 & \text{on } D_{out} = O_t, \\ p = 0 & \text{on } D_{in} = K_t \\ \hline V_n = -\nabla_n p & \text{on } \partial K_t = \Gamma_t \\ p \to -\log[x^2 + y^2], \quad x, y \to \infty \end{cases}$$

z – plane

w – plane

$$p(t,z) = -\frac{1}{2\pi} \log |g_t(z)|, \quad V_n \sim |g'_t(t,z)|_{z \in \Gamma_t}$$

where

$$f_t : \overline{\mathbb{D}}^c \to O_t, \quad g_t = f_t^{-1}, \quad f_t(\infty) = \infty, \quad f'_t(\infty) = r(t) \in \mathbb{R}_+$$

Harmonic moments :
$$t_k = -\frac{1}{k\pi} \int_{O_t} z^{-k} dA$$
, $v_k = \frac{1}{k\pi} \int_{K_t} z^k dA$,
Normalized area : $t = \frac{1}{\pi} \int_{K_t} dA$.

Richardson (1972) - Integrability, Poisson structure: $\begin{vmatrix} \frac{dt_k}{dt} = 0, & k \ge 1. \end{vmatrix}$

Problem 1 (hard): Find the support K_t of uniform measure with <u>unit</u> density and total mass t, whose exterior harmonic moments are $\{t_k, \overline{t}_k\}_{k \ge 1}$

Problem 2 (easier): Find the (non-signed) measures $\{\mu_t\}_{t>0}$ with total mass t and the same <u>interior</u> harmonic moments $\{v_k, \bar{v}_k\}_{k\geq 1}$ as $\mathbb{I}_{K_t}(z)$, i.e.

$$\int_{K_t} f(z) dA = \int_{K_t} f(z) d\mu, \quad \forall f(z) \in L^1(K_t), \text{ analytic in } K_t$$

Generalization to "domain subordination" chains

Problems 1', 2' (Relaxing local growth law): Find a chain of domains $\{K_t\}_{t\in[0,T]}, K_s \subset K_t \forall s < t$, where $t = Area(K_t)$, and whose exterior harmonic moments $\{t_k, \overline{t}_k\}_{k\geq 1}$ are fixed, for T arbitrarily large/ $T \to \infty$.

Blow-up of strong solutions: finite-time singularities

Non-trivial example: $t_3 \neq 0$, all others vanish:

$$f_t(w) = rw + 3t_3r^2w^{-2}, \quad t = r^2 - 18|t_3|^2r^4, \quad t \le t_c = \frac{1}{2} \cdot \frac{1}{36|t_3|^2}$$

$$\frac{\mathrm{d}t}{\mathrm{d}r} = 0, \quad \text{at } t = t_c$$
$$\frac{\mathrm{d}f_t}{\mathrm{d}w} = 0, \quad \text{at } w = 1.$$

$$g'_{t_c}(z) \to \infty, \quad z = f_{t_c}(1) \in \Gamma_{t_c}$$

Remark: True for any *n*-vertex hypotrochoid $t_k \sim \delta_{k,n}$, n > 1.

Advances in Mathematical Fluid Mechanics

Björn Gustafsson Razvan Teodorescu Alexander Vasil'ev

Classical and Stochastic Laplacian Growth

Classes of domains and their Hele-Shaw evolution

Theorem 1. [M. Sakai, Howison et. al.] If $\Gamma_{t=0}$ is real-algebraic, then it remains so up to the boundary singularity formation time, $t_c > 0$.

Theorem 2. [Gustafsson, Putinar] If $K_{t=0}$ is a quadrature domain, then it remains a quadrature domain up to the boundary singularity formation time (critical time), $t_c > 0$.

Theorem 3. [M. Sakai] If $K_{t=0}$ is a quadrature domain, then the boundary singularity which forms at $t \rightarrow t_c$ is a cusp singularity.

Theorem 4. [Khavinson, Mineev, Putinar, T.] If $\Gamma_{t=0}$ is a polynomial leminscate level set, then it is instantly destroyed by the Hele-Shaw flow.

Theorem 5. [M. Sakai] If the cusp singularity is of type $(2, 4k-1), k \in \mathbb{N}$, then there is no classical solution beyond $t = t_c$

$$(Y - Y_0)^2 = (X - X_0)^{4k-1} + O((X - X_0)^{4k-1+\epsilon}), \epsilon > 0.$$

Asymptotic analysis of infinite-time solutions

Definition 6. <u>Extremal</u> domain: smooth bounded domain Ω in a Riemannian manifold \mathcal{M}_g with metric g, such that the first eigenvalue λ_1 of the Laplace-Beltrami operator on Ω has a corresponding real, positive eigenfunction u_1 satisfying $u_1 = 0, \frac{\partial u_1}{\partial n} = 1$ on $\partial\Omega$.

Exceptional domain: sequence of extremal domains $\{\Omega_t\}$ with increasing volumes, such that the limit domain $\Omega = \Omega_{t\to\infty}$ is unbounded, and its first eigenvalue vanishes as $t \to \infty$. Roof function: limit $(u_{1,t})_{t\to\infty} \to u$ is a positive, harmonic function on Ω solving the overdetermined boundary value problem with null Dirichlet data and constant Neumann data.

Theorem 7. [Khavinson, Lundberg, T., 2012] Assume $\Omega \subset \mathbb{C}$ is an exceptional domain. Then Ω can only be one of the following: \mathbb{H} , $\overline{\mathbb{D}}^c$, or the image of the strip $|\Im\zeta| \leq \pi/2$ under the conformal map $g(\zeta) = \zeta + \sinh(\zeta)$.

Only known infinite-time solution for Hele-Shaw flow: (elliptical domains)^c.

Generic situation: Whitham hierarchy and equations of hydrodynamic type

Dubrovin and Novikov (1989) "Hydrodynamics of weakly-deformed soliton lattices" and refs. therein.

Whitham averaging of integrable structure \rightarrow modulated equations. Famous examples: (incompressible) Euler equation.

Solutions for modulated (averaged, homogenized) equations break down in "extreme" cases: large initial data, vanishing temporal/spatial scales, high gradients, etc.

Typically regularized by restoring the "averaged" effects: e.g., dispersive regularization (Gurevich-Pitaevskii, as in Hopf \rightarrow KdV).

How to proceed when "underlying model" not known? Integrability-preserving regularization/singularity resolution.

```
(Surface tension (Tanveer et. al.) destroys integrability.)
```

Shottky doubles

Theorem 8. Let $\Omega \subset \mathbb{C}$ be a bounded domain. The following are equivalent:

(i) Ω is a (classical) quadrature domain.

(*ii*) The exterior part $S_{-}(z)$ of the Cauchy transform of Ω is a rational function.

(*iii*) There exists a meromorphic function S(z) in Ω , continuous up to $\partial\Omega$, such that $S(z) = \overline{z}$ on $\partial\Omega$.

If Ω is simply connected, a further equivalent property is:

(*iv*) Any Riemann mapping function $f : \mathbb{D} \to \Omega$ is a rational function.

There exists a (nontrivial) polynomial in \mathbb{C}^2 , Q(z,w), such that

$$Q(z, S(z)) = 0$$
 $(z \in \Omega) \Rightarrow Q(z, \overline{z}) = 0$ for $z \in \partial \Omega$,

i.e., $\partial \Omega$ is an algebraic curve. Q(z, w) = 0 in \mathbb{C}^2 is a Shottky double.

$$S(z) = \sum_{k>0} kt_k z^{k-1} + \frac{t}{z} + \sum_{p>0} \frac{v_p}{z^p}$$

Darcy law:

$$\partial_t S(z,t) = -\partial_z p(z,t)$$

$$dW = Sdz + pdt$$
, $d^2W = 0$, $\{t_k\}$ fixed.

Boutroux-Krichever condition:

$$\Re \oint_B dW = 0$$
, B – any cycle on the curve.

Open problem: do such curves always exist? (re: dynamics in moduli space of fixed genus)

Pinch-off and merging: hyperelliptic curves with real roots

$$Y^{2} = (X - X_{1})(X - X_{2}) \cdot \dots (X - X_{2k}), \quad k \ge 1$$

Simplest merger/pinching:

$$Y^{2} = (X^{2} - \epsilon^{2})(X - 1)(X + 1), \quad (2, 4) - \text{cusp}$$

Universal tip-splitting and obstacle problem: complex roots

$$Y^{2} = (X - \epsilon)^{2}(X + 2\epsilon)$$
 (2,3) - cusp

Perturbing (4, 5)-cusps: higher tip-splitting and tip-merging

$$Y^{4} = (X + 2\epsilon)(X - \epsilon)^{2}(X - t)^{2} \quad (4, 5) - \text{cusp}$$

$$t \neq 0 \Rightarrow (4,5) \rightarrow (2,3)$$

Remark: Existence of "higher cusps" not proven for Hele-Shaw flows.

Weak solutions: evolving equilibrium measures

Step 1: any solution to Problem 2' can be continued at $t > t_c$, satisfying the Boutroux-Krichever conditions \rightarrow dynamics of support \rightarrow Stokes graph/quadratic differential trajectory.

Step 2: find equilibrium measure problem on the support, Disc $\bar{S}(z) = \frac{d\mu}{d\ell}$.

[Lee, Wiegmann and T. (2009, 2011), T. (2014).]

Dynamics past singularities: Stokes graph for associated ODE

 $Y^2 = 4(X + 2\epsilon)(X - \epsilon + i\eta)(X - \epsilon - i\eta), \quad \epsilon, \eta \to 0$

$$\Re W(e_1) = \Im \left[\int_0^{e_1} \sqrt{4X^3 - g_2 X - g_3} \, dX \right] = 0$$
$$X = \wp(\lambda | g_{2,3}(t)), \ Y = \wp'(\lambda | g_{2,3}(t)) \to \epsilon \frac{d}{dX} \quad (\text{Mumford's } \theta)$$

Tip-splitting mechanism: balayage of equilibrium measure

More connections...

Lax-Oleynik criterion for shock dynamics (enhanced Rankine-Hugoniot condition).

S-curves and complex dynamics (Rakhmanov et al., Shapiro and Solynin)

Critical behavior of Hamiltonian PDE (Dubrovin et al.)

Relation to (Normal) Random Matrix Theory: the R-transform and Burgers-type equations for equilibrium measures (Voiculescu, G. Menon, Blaizot and Nowak).

Vector equilibrium problem and counting measure of orthogonal polynomials (Kuijlaars, Lopez, Its, Bleher).