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The many guises and uses of the Darcy Law

(H. Darcy 1856, H.H.S. Hele-Shaw 1898)

• Incompressible, immiscible fluids with very large, resp. small viscosity,
small Reynolds numbers;

• Averaging the Navier-Stokes equations along one dimension (“small
vertical extent” of size b→ 0), and neglecting gravity, surface tension:
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Hele-Shaw Flow:



∇2p = 0 on Dout = Ot,

p = 0 on Din = Kt

Vn = −∇np on ∂Kt = Γt

p→ − log[x2 + y2], x, y →∞



Classical (free)-boundary value problem
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where

ft : Dc → Ot, gt = f−1
t , ft(∞) =∞, f ′t(∞) = r(t) ∈ R+
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Richardson (1972) - Integrability, Poisson structure: dtk
dt = 0, k ≥ 1.

Problem 1 (hard): Find the support Kt of uniform measure with unit
density and total mass t, whose exterior harmonic moments are {tk, t̄k}k≥1

Problem 2 (easier): Find the (non-signed) measures {µt}t>0 with total
mass t and the same interior harmonic moments {vk, v̄k}k≥1 as IKt(z), i.e.∫

Kt

f(z)dA =

∫
Kt

f(z)dµ, ∀ f(z) ∈ L1(Kt), analytic in Kt



Generalization to “domain subordination” chains

Problems 1’, 2’ (Relaxing local growth law): Find a chain of domains
{Kt}t∈[0,T ], Ks ⊂ Kt ∀s < t, where t =Area(Kt), and whose exterior
harmonic moments {tk, t̄k}k≥1 are fixed, for T arbitrarily large/T →∞.



Blow-up of strong solutions: finite-time singularities

Non-trivial example: t3 6= 0, all others vanish:

ft(w) = rw + 3t3r
2w−2, t = r2 − 18|t3|2r4, t ≤ tc =

1

2
· 1

36|t3|2

dt

dr
= 0, at t = tc

dft
dw

= 0, at w = 1.

g′tc(z)→∞, z = ftc(1) ∈ Γtc

Remark: True for any n−vertex hypotrochoid tk ∼ δk,n, n > 1.
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Classes of domains and their Hele-Shaw evolution

Theorem 1. [M. Sakai, Howison et. al.] If Γt=0 is real-algebraic, then
it remains so up to the boundary singularity formation time, tc > 0.

Theorem 2. [Gustafsson, Putinar] If Kt=0 is a quadrature domain, then
it remains a quadrature domain up to the boundary singularity formation
time (critical time), tc > 0.

Theorem 3. [M. Sakai] If Kt=0 is a quadrature domain, then the
boundary singularity which forms at t→ tc is a cusp singularity.

Theorem 4. [Khavinson, Mineev, Putinar, T.] If Γt=0 is a polynomial
leminscate level set, then it is instantly destroyed by the Hele-Shaw flow.

Theorem 5. [M. Sakai] If the cusp singularity is of type (2, 4k−1), k ∈ N,
then there is no classical solution beyond t = tc

(Y − Y0)2 = (X −X0)4k−1 +O((X −X0)4k−1+ε), ε > 0.



Asymptotic analysis of infinite-time solutions

Definition 6. Extremal domain: smooth bounded domain Ω in a
Riemannian manifold Mg with metric g, such that the first eigenvalue
λ1 of the Laplace-Beltrami operator on Ω has a corresponding real, positive
eigenfunction u1 satisfying u1 = 0, ∂u1

∂n = 1 on ∂Ω.
Exceptional domain: sequence of extremal domains {Ωt} with increasing
volumes, such that the limit domain Ω = Ωt→∞ is unbounded, and its
first eigenvalue vanishes as t → ∞. Roof function: limit (u1,t)t→∞ → u
is a positive, harmonic function on Ω solving the overdetermined boundary
value problem with null Dirichlet data and constant Neumann data.

Theorem 7. [Khavinson, Lundberg, T., 2012] Assume Ω ⊂ C is an
exceptional domain. Then Ω can only be one of the following: H, Dc, or the
image of the strip |=ζ| ≤ π/2 under the conformal map g(ζ) = ζ+sinh(ζ).

Only known infinite-time solution for Hele-Shaw flow: (elliptical domains)c.



Generic situation: Whitham hierarchy and equations of

hydrodynamic type

Dubrovin and Novikov (1989) “Hydrodynamics of weakly-deformed soliton
lattices” and refs. therein.

Whitham averaging of integrable structure → modulated equations.
Famous examples: (incompressible) Euler equation.

Solutions for modulated (averaged, homogenized) equations break down in
“extreme” cases: large initial data, vanishing temporal/spatial scales, high
gradients, etc.

Typically regularized by restoring the “averaged” effects: e.g., dispersive
regularization (Gurevich-Pitaevskii, as in Hopf → KdV).

How to proceed when “underlying model” not known?
Integrability-preserving regularization/singularity resolution.

(Surface tension (Tanveer et. al.) destroys integrability.)



Shottky doubles

Theorem 8. Let Ω ⊂ C be a bounded domain. The following are
equivalent:
(i) Ω is a (classical) quadrature domain.
(ii) The exterior part S−(z) of the Cauchy transform of Ω is a rational
function.
(iii) There exists a meromorphic function S(z) in Ω, continuous up to
∂Ω, such that S(z) = z̄ on ∂Ω.
If Ω is simply connected, a further equivalent property is:
(iv) Any Riemann mapping function f : D→ Ω is a rational function.

There exists a (nontrivial) polynomial in C2, Q(z, w), such that

Q(z, S(z)) = 0 (z ∈ Ω)⇒ Q(z, z̄) = 0 for z ∈ ∂Ω,

i.e., ∂Ω is an algebraic curve. Q(z, w) = 0 in C2 is a Shottky double.
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Darcy law:
∂tS(z, t) = −∂zp(z, t)

dW = Sdz + pdt, d2W = 0, {tk} fixed.

Boutroux-Krichever condition:

<
∮
B

dW = 0, B − any cycle on the curve.

Open problem: do such curves always exist? (re: dynamics in moduli space
of fixed genus)



Pinch-off and merging: hyperelliptic curves with real roots

Y 2 = (X −X1)(X −X2) · . . . (X −X2k), k ≥ 1

Simplest merger/pinching:

Y 2 = (X2 − ε2)(X − 1)(X + 1), (2, 4)− cusp



Universal tip-splitting and obstacle problem: complex roots

Y 2 = (X − ε)2(X + 2ε) (2, 3)− cusp



Perturbing (4, 5)-cusps: higher tip-splitting and tip-merging

Y 4 = (X + 2ε)(X − ε)2(X − t)2 (4, 5)− cusp

t 6= 0⇒ (4, 5)→ (2, 3)

Remark: Existence of “higher cusps” not proven for Hele-Shaw flows.



Weak solutions: evolving equilibrium measures

Step 1: any solution to Problem 2’ can be continued at t > tc, satisfying
the Boutroux-Krichever conditions → dynamics of support → Stokes
graph/quadratic differential trajectory.
Step 2: find equilibrium measure problem on the support, Disc S̄(z) = dµ

d` .

[Lee, Wiegmann and T. (2009, 2011), T. (2014).]



Dynamics past singularities: Stokes graph for associated ODE

Y 2 = 4(X + 2ε)(X − ε+ iη)(X − ε− iη), ε, η → 0
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√
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]
= 0

X = ℘(λ|g2,3(t)), Y = ℘′(λ|g2,3(t))→ ε
d

dX
(Mumford′s θ)





Tip-splitting mechanism: balayage of equilibrium measure



More connections...

Lax-Oleynik criterion for shock dynamics (enhanced Rankine-Hugoniot
condition).

S-curves and complex dynamics (Rakhmanov et al., Shapiro and Solynin)

Critical behavior of Hamiltonian PDE (Dubrovin et al.)

Relation to (Normal) Random Matrix Theory: the R-transform and
Burgers-type equations for equilibrium measures (Voiculescu, G. Menon,
Blaizot and Nowak).

Vector equilibrium problem and counting measure of orthogonal
polynomials (Kuijlaars, Lopez, Its, Bleher).


