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[nexact directions in IPMs for SDP

Objective: Improve IPMs for SDP

e Remove memory bottleneck

e Accelerate (if possible)

Redesign IPMs for SDP:
e Replace exact Newton Method
with ineract Newton Method

e Work in matriz-free and limited-memory regime
? Pl'( 'COT( llTl( ’llill';’

Applications
e Max-Cut

e Matrix completion

N
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Such techniques work in LP /QP /Least Squares:

Dembo. Eisenstat and Steihaug.
Inexact Newton Methods, SINUM 19 (1982) 400-408.

Bellavia, Inexact IPM. JOTA 96 (1998) 109-121.

Gondzio, Convergence analysis of an inexact feasible IPM for con-
vex QP, SIOPT 23 (2013) 1510-1527.

Gondzio. Matrix-free IPM. COAP., 51 (2012) 457-480.
Bellavia, Gondzio and Morini.

A matrix-free preconditioner for sparse symmetric positive definite
systems and least-squares problems, SISC' 35 (2013) A192-A211.

Atlanta. October 2015 3)




[nexact directions in [IPMs for SDP

SDP in standard form

e Primal form
min (e X
st. X >0

A:e X =h 1= ;x5 m.
where A; € SR C' € SR"*". b e R"™and X € SR"*".

e Dual form 7
max b vy
8. S=0
3, B m
where y € R™ and S € SR"*".

The operation A e B = trace(AL B).
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[nexact directions in IPMs for SDP

The “sparse” SDP problem

e Special interest in S sparse.
S is the linear combination: S = C' — " y; A;
hence its sparsity pattern is a union of those of €' and A;’s.
Vanderberghe, Andersen [FnTO, 2015].

e Applications:
in semidefinite relaxations of the graph-partitioning problem
(e.g. max-cut problem), eigenvalue optimization problems as-
sociated with graphs, box-constrained quadratic optimization
problem, matrix-completion.

e [nspired by the Dual Potential Reduction method
by Benson, Ye, Zhang [SIOPT 2000, OMS 1999].

]
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[nexact directions in IPMs for SDP

Dual Path-Following Interior-Point Algorithm

e Dual barrier problem parametrized by p > 0
max bl y — pin(det(S)).
st. Yt y;4;+85=C

o Let X = 1S~ > 0, then the first-order optimality conditions
for this problem are given by:

2;11 Ydpt0 —C
Fu(X,y,5) = | Aje X -0 i=1,..., m | =0.
X =l

Primal-dual complementarity condition: X.S = pul
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Dual Path-Following IPM (cont’d)

Choose a dual strictly feasible pair (.S, y) and a scalar . > 0.

Outer Interior-Point iterations:
Update (reduce) p := o until it is sufficiently small.

Inner Newton iterations:
Perform (damped) steps in Newton direction (AX.AS. y)
for the problem

Fu(X,y,5)=0
until the following proximity criteria is satisfied:
5 AR S Ve gL T el

(maintaining S positive definite).

Todd. Acta Numerica. 2001.
Nesterov and Nemirovski. SIAM Publications. 1994,
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The Newton Step

Let AT = [(’(*(--( Aq), vec(As), . . .. vec(Ap, ] IR" ><m
Az = vec(AX), As = vec(AS).

e The Newton equation:

0 AT I | rA= | 0 j
2 0 0 Ayl = — 0
I 0 puf Sl s—1)| [As vec(X — /1.5'_1}

e The reduced form:

Al g—1 R §—1 ) Al Ay

N " o : /[
N
As = —Al'Ay.

M € R™*™ s spd (Schur complement).

1

9 denotes the Kronecker product

—A (vee(X) — pvec(S 1) ):
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[nexact directions in IPMs for SDP

The Schur complement

_ : 78 1 . .
AS st )A'l Ay = —A (vec(X) — pvec(S 3)
——— /1

M

e The matrix M € R"™*™ is generally dense.
e [f we knew a primal feasible point (i.e. Awvec(X) = b) and
solved every linear system exactly
| 1 1
MAy = =b — Avec(S™)
/L
then we could maintain the primal feasibility.

We will not do that!
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[nexact directions in IPMs for SDP

New interior-point method for sparse SDP

e Context: S is sparse and the Schur complement M is too
large to be stored or it is too difficult to solve systems with M
directly.

e Aims: define a matrix-free procedure that exploits sparsitv
of S and allows for inexact computation of the step.

e Exploit a nice property: avoid updating the primal variable
X. If needed it can be computed at the end of the process

m

X = /ﬁz.S_l('[ + (‘Z ,I/I-AZ-),S'_I).
1=1
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Inexactness
¢ Inexact Interior-Point: Fix p and solve F,(X,y,S) =0
only to a low accuracy, except for the last IP iteration.

e Inexact Newton: use a CG-like method to approximately
solve the Schur complement system. use n € (0, 1):

1 - 1 e
MAy==b—Avec(S™H+r, |r|<nl|=b— Avec(S™})
0 /L
A new iterate X = X + AX violates the primal feasibility:

Avec(X +AX) =b+ pur,

but the feasibility can be restored at the end of the inner Newton
iteration. Eliminate X from the computation of the next rhs:

i . . RV SO, [
—(Avec(XT) — ur) — pvec((S™) 1,)).
b
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Matrix-free context

D ;

Assume S is sparse and a sparse Cholesky factorization S = R R
has been computed.

e The structure of S does not change hence reordering can be
carried out once at the beginning of the process.

o M = A(S~ ! @ S~ 1) AT is needed only to perform matrix-
vector multiplications. Each column of M can be computed
once at a time and then discarded.

e The computation of each column of M can be performed in-
volving back-solves with R. The number of required back-
solves depends on the structure of A; matrices.
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Matrix-vector products

Assume that the constraint matrices A; have rank p.
(In max-cut problem: p = 1; in matrix-completion p = 2.)

The evaluation of a column of A needs p back-solves with S.
A matrix-vector product with M needs mp back-solves with S.

If 0(R) denotes the density of the Cholesky factor of S. then the
computational effort of a matrix-vector product with M is
o £) . S z : = .
2mp X O(m~o(R)) = (__)(_171'31_) O(R)).
On the other hand, if M is stored, then the cost of a matrix-vector
product drops to O(m?).
e We pay high price for saving memory:.

However, back-solves with S can be performed in parallel.

Atlanta, October 2015 1_))
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The Limited Memory Preconditioner
Consider a partition of M

_ Afe—L o a1y 4T _
M=AS"1es 1A [Vn\5>

where ;\[11 c kal{. *\['21 = R{Jn—k)xk. ‘\[2_2 & R{I?I—l{ ) X (m—k )

Compute the partial Cholesky factorization

_ | Ln Dy, L L
= | |72

Z = Moy — My Mt M,

is the Schur complement of A7 in M.

UH\[}

where

Order diagonal elements of Dy and Dy = diag(Z):
\——./_/

~

S Dy
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The “Partial” Cholesky Preconditioner

My

Form only the first & columns of M: [ Mo and compute

the partial Cholesky factorization

r | b Dy L do
=5 | |7 2] [P

Do not compute Z. Update only its diagonal.

Precondition A with

5> | L11 Drp
= {Lzl IH Dy

where D 7 is a diagonal of Z.

T
Ly, Lle _
i

|Gondzio, COAP, 2012], [Bellavia, Gondzio, Morini, SISC, 2013].
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Reordering of \/

A “greedy”’ heuristic acts on the largest eigenvalues of M.
e Permute rows and columns of M so that M, contains the &
largest elements of diag(M ).
e This choice is motivated by the fact that if we set Dy = I,
then
Amaz(P"IM) < k+tr(Z) < k + tr(Mo)
hence it is expected that
Aaz(P~IM) is significantly smaller than \,,q.(M).

Spectral properties
o / eigenvalues of P~1M are equal to 1.

e The remaining ones are the eigenvalues of D, 1Z.

.-\[l&lll[e‘l. October 2015 16




[nexact directions in [PMs for SDP

Preconditioner: storage and computations

Memory requirements
e nnz(L) < O(km)

e simple choice of £ (depends only on the available memory).

Computational cost
e Computing £ columns of M requires kp back-solves with S.
e Computing the Cholesky factorization of the first & columns
of M is negligible:

9

Ok m) + Of /.'3).
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Two examples of SDP problems

e SDP relaxation of Max-Cut Problem
Find a subset V' of the vertex set in a graph such that the
total weight of edges between V' and its complement VC is
maximized.

e SDP relaxation of Matrix Completion Problem

Recover a (low rank) data matrix B € R™*" knowing a
“small” number of its entries B; ; for (7, j) € (2.

Atlanta. October 2015 ].b
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Preliminary numerical results

1o = 1, CGax = 100, tolpa = 1073, 0 = 0.1

Inexact IP: we stop the inner iterations and decrease 1 by a
factor o whenever a full Newton step is taken and

1S~12A8 5712 < 0.1

We stop the outer process when i < 1072, In the last IP
outer iteration the Newton process is carried out until
eer LY 1) Sy e 9 e U
15 2AG S 12| p-< 1
k= 0.3 m for the partial Cholesky

Matlab (R2015a) code run on a Xeon 6-core E5645, 2.4 Ghz,

12 GB RAM.

At lant a.

October 2015 1()
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SDP formulation of Max-Cut Problem
Find a subset V' of the vertex set in a graph such that the total
weight of edges between V' and its complement V¢ is maximized.

SDP relaxation (primal-dual pair):

max (C'eX min  ely
S.T. diag(X) =€ s.t. Diag(y)+ S = C
X >0 S >0

e The sparsity of (' depends on the sparsity of the adjacency
matrix of the graph.

o A, =e;e ,T b = Nl ag m. where e; is the vector with 1 for the
ith component and 0 for all others (rank 1).

e S =C" — Diag(y) possesses the same sparsity structure as ('
(constant).

Atlanta. October 2015 20
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Max-Cut: thoroidal graphs

Find a subset V' of the vertex set in a graph such that the total
weight of edges between V' and its complement V¢ is maximized.
All m matrices A;.:1=1,2,..., m have rank 1

=3

Test name m  0o(S) o(R) ITNEW CG_AV TIME_AV

G48 3000 1.7e-3 1.7e-2 18 8.5 2.5el
LS 5000 1.0e-3 9.0e-3 39 41 2.3e2
G62 7000 7.1e-4 7.1e-3 44 AT 5.4e2

G65 8000 6.2e-4 7.1e-3 41 48 7.3e2
G67 10000 5.0e-4 6.3e-3 40 48 1.2e3

IT_NEW: Overall number of inner Newton iterations:

CG_AV: Average number of CG iterations for each Newton iteration:
TIME_AV: Average time is seconds of one inner Newton iteration.
G67: Average time in seconds to perform one inner Newton iteration
when storing M: 111 sec.
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(48: convergence history

Xe S infeasibility measure

10" - 10" |

107° [ 107

We stop the process when p < 1l.e — 7.
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SDP reformulation of matrix completion prob
Recover a (low rank) data matrix B & R™*™ knowing a “small”
number of its entries B; ; for (z.7) € 2. (|2 =m < mn).

We generated B € R™*" of rank p by sampling two n x p
factors By and By and setting B = By B ]];:

We sampled a subset of m entries uniformly at random with
m = 4p(2n — p).

In the SDP reformulation all m matrices A; have rank 2. Then
each matrix-vector product with M requires 2m backsolves
with S.

The density of dual matrix S is given by m /n~, i.e. the fraction
of known entries of B.

Dual feasible initial guess is available.

Atlanta.

October 2015 23)
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SDP formulation of Matrix Completion Prob
min Tr(Wy)+ Tr(Ws)

min ldlll\( V) " ] W, W
s.t. s =B (0,7) €Q ...~ 8 (vl per
SDP relaxation . 3 A O
- | IJ:B;L,-(/.(/)E;_
W € R™*" W € ]R""X’" Wy € ]R”X” are the unknowns.
B;;,(i,7) € (1 are given :
: . W, " o "y |
o (' = %[n- X = ”-lf U'.)] € R™*" with n = (m 4+ n).

o A : 0 ©Y =1 m. with for each (2. 7) € ()

A; = o ) - : or each (7.
L= 2 @ T J

1 s 1) ={%4)

_I_] M Xn ayy)
oY e 18 (O st 0 else

(rank(A;)=2).

(Candes, Recht, 2009]
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SDP reformulation of matrix completion prob

1 m  0(S) o(H) ITNEW CG_AV TIME_AV TIME_M_AV

50 784 1.6e-1 4.2e-1 32 39 2.4 0.2
100 2364 1.2e-1 3.7e-1 34 32 10.6 0.8

TIME_M_AV: Average time is seconds to perform one inner Newton
iteration when M is stored.
e The matrix B is recovered as
|B—Bllp _ | Be 5
IBllF

where B is the returned approximation.
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Conclusions and future work

Dual Path-Following Interior Point Method:
e suitable for applications where S is sparse;

e Inexact IP approach+Inexact-Newton approach: we loose pri-
mal feasibility, but it is recovered in the last outer iteration:

e Matrix-free implementation avoids storing dense matrix M:;

e Partial Cholesky preconditioner works well.

Main computational cost: computation of matrix-vector products
with M . especially in the last Newton iterations:

e exploit parallelism in the matrix-vector products with M :

e perform inexact matrix-vector products with M
[Bouras, Fraysse’, Giraud, 2000], [Simoncini, Szyld, SISC 2003].
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