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A simple data assimilation example

ẍ + 2ζωẋ + ω2x = H(t − 5)

Noisy observations every

∆t = 0.5 seconds

zk = x(∆t · k) + ηk ,

for ηk ∼ N
(

0, 1E − 3
)

, i.i.d.
True parameters:

(
ζ

ω

)
=

(
1.5

1

)

1
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A simple data assimilation example

Data

Model

ẍ + 2ζωẋ +ω2x = H(t−5)

Bayes’ Rules

p
(
ζ , ω | data

)
∝

p
(

data | ζ , ω
)
p
(
ζ , ω

)

Results:

Trajectories of 50 samples from the

posterior distribution

2
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Is steady state data “redundant” in parameter estimation?

Recording data for 50 seconds: Recording data for 250 seconds:

Seconds of data ζ estimation ω estimation

50 1.48± 0.04 0.99± 0.03

100 1.48± 0.04 0.99± 0.03

150 1.47± 0.04 0.99± 0.03

200 1.48± 0.04 0.99± 0.03

250 1.47± 0.04 0.99± 0.03
Averaged over 100 experiments
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Compressing the data further
Data

Compression

From the data, we extract two features

1 The slope of a linear fit to the 7 data points collected after t = 5.

2 The average of the last 25 seconds of data.

What is the distribution of parameters ζ, ω given the compressed data?
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Comparing Results

Assimilation without compression

Assimilation with compression
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Feature-based data assimilation

Data

Feature selection
Model

ẍ + 2ζωẋ + ω2x = H(t)

Feature function

F
(

data
)

= features

Bayes’ Rule: p
(
ζ , ω | F

(
data

))
∝ p

(
F
(

data
)
| ζ , ω

)
p
(
ζ , ω

)
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Defining the feature-based likelihood

p
(
F
(

data
)
| ζ , ω

)
∼ N

(
F(ζ, ω) , R

)

Estimate R:

1 Generate perturbed data, z j = data + ε with ε ∼ N (0,Q)

2 Each perturbed data leads to a perturbed feature: fj = F( zj )

3 Define R as the sample covariance of these perturbed features (fj).
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Feature-based data assimilation
Data Feature selection

Model
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Sampling the posterior result in model trajectories that fit our features.

Posterior Sampled trajectories Sampled features
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General framework for feature-based data assimilation

Given:

Mathematical or

computational model M
with parameters θ.

Data z .

A feature function F that

maps data to features f .

Set up:

Define the prior distribution p(θ).

Define the likelihood distribution

p
(
F
(
z
)
| θ
)
∼ N

(
F(M(θ)) , R

)
where R is the sample covariance of

perturbed features.

Define the posterior distribution

p
(
θ | F( z )

)
via Bayes’ rule.

What results (hopefully!) is a distribution of the parameters θ that yield

features similar to F( z ).
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When may this be useful?

Data compression without information loss.

If we can compress our data in such a way that we do not lose too

much information.

Complex systems and low dimensional models.

A low dimensional model may describe some qualitative aspect of

your complex system and you need to define a feature function to

compare the data from the complex system and your model.

Models and data at different scales.

When your model and data are characterized by different scales

(spatial, temporal, or both), features can filter out the differences.
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Another example: Lynx and hare populations

Lotka-Volterra Equations:

ẋ = αx − βxy
ẏ = −γy + δxy

for α, β, γ, δ > 0

We want to estimate the

parameters α, β, γ, δ and

the initial conditions

x(0), y(0).

Data:

We use the lynx and hare

fur data from the Hudson’s

Bay Company between the

years 1917 to 1927; our

data D has size 2× 11.

Feature selection:

In the singular-value

decomposition of our data,

D = USV ∗, we take our

feature vector to be the

first singular values and

the associated left and

right singular vectors.
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Lynx and hare populations

2D and 1D marginal distributions of the

parameters α, β, γ, δ, x(0), y(0).

The true data is plotted in orange and

the trajectories of 100 samples of the

posterior distribution are shown.
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Example: Dipole reversal rates.

We consider the Earth’s magnetic dipole field over time scales of

tens of millions of years.

At these time scales, the geomagnetic dipoles exhibit reversals, i.e.,

the north and south pole switch.

Data:

The occurrence of dipole reversals is

documents over the last 150 Myr by the

“geomagnetic polarity time scale”

(Cande and Kent, 1995; Lowrie and

Kent, 2004).

Model:

The model of Buffett et al.

(2013) which is an SDE of the

form

dx = f (x)dt + g(x)dW .

15



Example: Dipole reversal rates.

We consider the Earth’s magnetic dipole field over time scales of

tens of millions of years.

At these time scales, the geomagnetic dipoles exhibit reversals, i.e.,

the north and south pole switch.

Data:

The occurrence of dipole reversals is

documents over the last 150 Myr by the

“geomagnetic polarity time scale”

(Cande and Kent, 1995; Lowrie and

Kent, 2004).

Model:

The model of Buffett et al.

(2013) which is an SDE of the

form

dx = f (x)dt + g(x)dW .

15



Example: Dipole reversal rates.

We consider the Earth’s magnetic dipole field over time scales of

tens of millions of years.

At these time scales, the geomagnetic dipoles exhibit reversals, i.e.,

the north and south pole switch.

Data:

The occurrence of dipole reversals is

documents over the last 150 Myr by the

“geomagnetic polarity time scale”

(Cande and Kent, 1995; Lowrie and

Kent, 2004).

Model:

The model of Buffett et al.

(2013) which is an SDE of the

form

dx = f (x)dt + g(x)dW .

15



Example: Dipole reversal rates.

We consider the Earth’s magnetic dipole field over time scales of

tens of millions of years.

At these time scales, the geomagnetic dipoles exhibit reversals, i.e.,

the north and south pole switch.

Data:

The occurrence of dipole reversals is

documents over the last 150 Myr by the

“geomagnetic polarity time scale”

(Cande and Kent, 1995; Lowrie and

Kent, 2004).

Model:

The model of Buffett et al.

(2013) which is an SDE of the

form

dx = f (x)dt + g(x)dW .

15



Example: Dipole reversal rates.

We consider the Earth’s magnetic dipole field over time scales of

tens of millions of years.

At these time scales, the geomagnetic dipoles exhibit reversals, i.e.,

the north and south pole switch.

Data:

The occurrence of dipole reversals is

documents over the last 150 Myr by the

“geomagnetic polarity time scale”

(Cande and Kent, 1995; Lowrie and

Kent, 2004).

Model:

The model of Buffett et al.

(2013) which is an SDE of the

form

dx = f (x)dt + g(x)dW .

15



Example: Variations in Earth’s dipole reversal rates.

Data assimilation techniques struggle because the data only tells us

the sign of the SDE.

A “chron” is period during which the dipole polarity is constant.

The B13 model has a constant mean chron duration (MCD).

The recorded geomagnetic polarity does not have a constant MCD.
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Example: Dipole reversal rates.

To allow the model’s MCD to vary over time, we modify the model with

a time-varying, piecewise constant parameter θ(t),

dx = f (x)dt + θ(t)g(x)dW .

Goal:

Estimate the

parameter θ(t).

Feature Selection:

For every 1 Myr, we calculate the average MCD using a

sliding window averaged over 10 years. Our “ feature data”

is a vector of 149 MCD values.
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Example: Dipole reversal rates.
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Summary

Mass-Spring-Damper System: Lotka-Volterra:

Earth’s dipole reversals:

For more information: Morzfeld M., Adams J., Lunderman S., and

Orozco R.: Feature-based data assimilation in geophysics, Nonlin.

Processes Geophysics (in review)
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