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Modest goals: In the ‘garden of branching processes,” do some weeding.

Explain the source of coagulation equations in work of Bertoin-Le Gall
Improve continuum limit analysis: Galton-Watson — continuous state (CSBP)
Simplify continuum limit criteria, via Bernstein function theory

New results on universality (type 2 and type 3)

Develop analogy: GW — CSBP ~ X, +...X,, — Y infinitely divisible

Dynamic renormalization ~ dilation in Lévy-Khintchine representation



Smoluchowski’s coagulation equation (weak form, K = 2)
The size distribution: / vi(dz) = # of clusters of size < x
(0]

of a system of clustering particles evolves according to (21, 29 — 21 + 29 = )

Oy / ) ve(dx) / / a(z1, z2) i(dzy) v (dzs)
0

a(z1,22) = a(z1 + 22) — a(z1) — a(z2).

e Choosing a(z)=1—e"%7 vyields a(z1,22) = —(1 —e"?*1)(1 — e *%2).

Then o(t,q) := / (1—e ) y(dz) == | O = —¢°
0




Bernstein’s theorem and topology of Laplace transforms
Definition g : (0,00) — (0, 00) is completely monotone (CM) if g is C'* and
(-1)f g™ (g) >0  Vg>o0.

Theorem (Bernstein) ¢ is completely monotone if and only if

a(q) = /[O TG = £6()

for some measure GG on [0, c0). Notation: G(z) = G (dx)
[0,]

Continuity theorem for Laplace transforms: As n — oo,
1) Gplx) = G(x) ae. = LG,(q) — LG(q) Vq>D0.
i) LGn(q) —glq) Y¢>0 = g=LG with G,(x) — G(z) a.e.



Bernstein transforms and the topology of Lévy triples

Definition ¢ : (0,00) — (0, 00) is Bernstein if ¢ is C*° and ¢’ is CM.

Theorem ¢ is Bernstein < | ©(q) = agq + G0 + / (1 —e ) u(dz)
E

for some Lévy triple (ag, Goo, it): g, Goo > 0 and / (zADu(dz) < .
E



Bernstein transforms and the topology of Lévy triples

Definition ¢ : (0,00) — (0, 00) is Bernstein if ¢ is C*° and ¢’ is CM.

Theorem ¢ is Bernstein < | ©(q) = agq + G0 + / (1 —e ) u(dz)
E

for some Lévy triple (ag, Goo, it): g, Goo > 0 and / (zADu(dz) < .
E

e We associate the measure  k(dz) = agdp + (2 A 1)u(dz) + aodoe on [0, 0]



Continuity theorem for Lévy triples (cf. Menon-P 2008)

Let a(n), aég),u(”) be a sequence of Lévy triples,
0

0™ (q) = af”q +a) + / (1 — e~ )p™(dz)
E

k™ (dz) = aén)&) + (2 A D)™ (dz) + a6
Then TFAE:

(i) ©(q) :=lim,_ o ¢©™(q) exists for each ¢ > 0.

(iii) ~(™ converges weakly to some measure s on [0, c0], meaning

(f, /1(”)> — (f, k) forall f € C(]0,00]).

If these conditions hold, the limit quantity ¢, k is that associated as above with a
unique Lévy triple (ag, oo, 4).



Generalized Smoluchowski dynamics in branching processes

Bertoin-Le Gall 2006: Critical continuous-state branching processes (CSBPs) that
are extinct a.s. are associated with the generalized Smoluchowski equation

Orfa,ve) =  Rp(t) In(a, 1) (S
k=2

Ii(a, 1) is the expected change in the ‘moment’ (a, 1) = [~ a(z) v¢(dz)

k .
Ii(a,vy) = ‘/(O,oo)k (a(zl o tozg) — Z a(zj)> ]:1_[1 V<t1(fijtj>)

j=1

Ry (t) is the rate at which k clusters simultaneously coalesce: with p = (1, 14),

oo —pz k o0
Ry, = / € k('pz) w(dz) where / (22 A 2) 7(dz) < oco. Why??
0 - 0



Bernstein transform of (GS)

The Bernstein transform  ©(t, q) := / (1 —e %) vy(ds) satisfies
0

2

hp=—-Y(p) |, Y(u) = 65 + /(o ) (e7™ — 1 4 uz) 7(dz).

This equation is well-known in the CSBP literature: A CSBP X (¢, z) is a
Lévy process in =, with Laplace exponent ¢, and Lévy jump measure v¢(ds) :

E(e—qX(t,:v)) — o~ zp(t,9)

0 o—pzZ( )k - k\If<k)
k(!p ) r(dz) _ (=p) - (p)

The rates Ry = /
0

Qs: Where do v, m come from? Can one do scaling limit analysis?



A Galton-Watson branching process

is a Markov chain n+— X,, € NU{0}

X, = total population at generation n

=  # of nodes at level n in a random tree

Generation

Each parent has k children iid with law 7 (k)




Galton-Watson dynamics

P,(j,k) :=Pr{X,, =k | Xo =4} is the n-step transition probability of j — k

vn(k) == Pn(1, k) is the clan size distribution after n generations.

(k) := Pi(1,k) is the family size distribution.

Xn
e The branching property implies X, 11 = Z{n,i with iid &, ; ~ 7 , thus
i=1

Vng1(R) = D wa()A (k) =D Pu(1,5)Pi(5, k).

j>1 i>1

Markov = | vpia(z) =D 7)) vil(z) | =D Pi(1,5)Pulj, @)
j>1 j>1




Generating function and Bernstein transform

Gn(2) =) w(j)? = Gnp1=G10G,

The Bernstein transform

g=1

satisfies On+1(q) — &n(q)

A

—VU(on(q))

If X is critical ( Zfr(]) =1 ) then

120

n(q) = Zj21 vn(f)(1 —e %) =1—Gple™9)

A

U(s)=G(l—s)—1+s.



Continuous-size, continuous-time limits (CSBP)

Let A = grid size, 7= time step. Rescale size via j — jh and let

One finds ¢, (q) := (1 — e 9%, ,) satisfies

Theorem

/(O,OO) (1 — hu)*/™ 1+ 2u) #(da).

a) Let hy, 7 — 0 and

(x A1) (x — hg)7Tp(dr) — k(dz2)

~

2

weak-* on [0, co.

Then Y(u) —» Y(u)= ao% + Qoo + / (e7" — 14 uz) 2~ 'pu(dz) .
(0,00)




Continuous-time limits: coalescence with multiple clustering

b) Assume further (z A 1)vg(dz) — dp weak-* on [0,00]. (E.g., po(1) = 1)

Then nt -t = ¢,(q) = ¢(t,q) where

Opp = —W(p) | V>0, ©(0,9) = q.

This entails (x A 1)D, = (x A1)y, with  @(t,q) = (1 — e 9% 1y).

Ala Bertoin-Le Gall, we infer 1 solves (GS) provided p = (1,14) < oo for t > 0.
This is known to be equivalent to

[ e (E)

We call this 14 the fundamental solution of (GS): (z A 1)vy(dx) — dp as t — O.



Universality 1: typical limits

Suppose the family-size distribution 7 has a finite second moment:
mo = Z]Qﬁ'(j) < Q.
j=1

Then with 7 =h(mo —1) we have (zA1l)(x — h)7(dx) — k= dg
as h — 0, whence

U (u) = —u”

and v; is the fundamental solution of Smoluchowski's equation with constant
kernel K = 1.



Universality 2: arbitrary limits (a la Doeblin)

Theorem There exists some (far from unique) family-size distribution 7 and
sequences h,, T, — 0, such that: For every finite measure

k(dz) = agdg + (2 A 1)zm(dz) + ascdee 0N [0, 0],
there is some subsequence h,,, , 7, along which the hypothesis of a) holds.

The conclusion implies that every possible critical CSBP is a limit of rescalings of
one particular “universal’ Galton-Watson process, along some subsequence.

The proof exploits a resemblance between Bernoulli shifts and the rescalings
induced on k-measures (Lévy triples) by

R(dz) = (zA1)zm(dz) = RE(d2)=(zA1) lﬁ”(dﬂ

The same technique of “packing the tail” of the starting distribution is described
by Feller to constuct Doeblin’s universal laws in probability.



Universality 3: long-time scaling limits for (GS):
necessary and sufficient conditions

Theorem Assume (E). Let v; be the fundamental solution of (GS). Then TFAE:

(i) there exist a probability measure i and A(¢) > 0 such that the rescalings

v (M)~ dz)

<1, Vt> t—>oo

Ug(dr) = f(dx)

weakly on (0, 00).

(ii) W is regularly varying at 0 with index 1 4+ r € (1,2], and i = i1 where [, is
self-similar, with generalized Mittag-Leffler profile

. < (r)e(~(2))
: i1(dy) = Fr.1(Bz) = Zl 5 F1+rk)

where 8 = <:1:,/11>_1. Furthermore, A(t) ~ 6(1,,&t>_1



Idea of the proof (well, not exactly)

Rescale and dilate time via (p(s) = (1, vs))

: i (A(s) ! do) (st A5)a)
t = st, vi(dx) = -2 : s(t,q) = : :
) =) 0 =770
getting a renormalized equation
L
s = —Uy(ps),  Ta(u) = LW _ / (€7 — 1 + uz)my(dz).
p(S) (0,00)

With ¢(q) = (1 — e~ 9, 1) the hypothesis means

ps(l,q) — ¢(qg)  Vqel0,00]

S§— OO

By study of the renormalized solution formula for the ODE and the assumed
uniqueness of the limit, prove that necessarily

1+1r

lim W,(u) exists, hence (by scaling rigidity) = cu and W is r.v.

S— 00O



Conclusions for critical CSBPs that go extinct a.s.
Below we write ) o X () := A X (ax).

Theorem Let X (¢, ) be a critical CSBP with branching mechanism W satisfying

[ i< (E)

Then TFAE:

(i) There exists a nondegenerate Lévy process X = X (z) and functions o, A > 0

such that . A
Oxt),am)X (t, ) —— X(-). (2)

t— 00

(ii) W is regularly varying at uw = 0 with index 1 +r € (1,2].



Conclusions for critical CSBPs that go extinct a.s.
Below we write ) o X () := A X (ax).

Theorem Let X (¢, ) be a critical CSBP with branching mechanism W satisfying

[ i< (E)

Then TFAE:

(i) There exists a nondegenerate Lévy process X = X (z) and functions o, A > 0

such that . A
Oxt),am)X (t, ) —— X(-). (2)

t— 00

(ii) W is regularly varying at uw = 0 with index 1 +r € (1,2].

hank you!



