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Modest goals: In the ‘garden of branching processes,’ do some weeding.

• Explain the source of coagulation equations in work of Bertoin-Le Gall

• Improve continuum limit analysis: Galton-Watson → continuous state (CSBP)

• Simplify continuum limit criteria, via Bernstein function theory

• New results on universality (type 2 and type 3)

• Develop analogy: GW → CSBP ∼ X1 + . . . Xn → Y infinitely divisible

• Dynamic renormalization ∼ dilation in Lévy-Khintchine representation



Smoluchowski’s coagulation equation (weak form, K = 2)

The size distribution:

∫
(0,x]

νt(dz) = # of clusters of size ≤ x

of a system of clustering particles evolves according to (z1, z2 7→ z1 + z2 = x)

∂t

∫ ∞
0

a(x) νt(dx) =

∫ ∞
0

∫ ∞
0

ã(z1, z2) νt(dz1) νt(dz2) ,

ã(z1, z2) = a(z1 + z2)− a(z1)− a(z2).

• Choosing a(x) = 1− e−qx yields ã(z1, z2) = −(1− e−qz1)(1− e−sz2).

Then ϕ(t, q) :=

∫ ∞
0

(1− e−qx) νt(dx) =⇒ ∂tϕ = −ϕ2



Bernstein’s theorem and topology of Laplace transforms

Definition g : (0,∞)→ (0,∞) is completely monotone (CM) if g is C∞ and

(−1)kg(k)(q) ≥ 0 ∀q > 0.

• Theorem (Bernstein) g is completely monotone if and only if

g(q) =

∫
[0,∞)

e−qxG(dx) =: LG(q)

for some measure G on [0,∞). Notation: G(x) =

∫
[0,x]

G(dx)

• Continuity theorem for Laplace transforms: As n→∞,

i) Gn(x)→ G(x) a.e. =⇒ LGn(q)→ LG(q) ∀q > 0.

ii) LGn(q)→ g(q) ∀q > 0 =⇒ g = LG with Gn(x)→ G(x) a.e.



Bernstein transforms and the topology of Lévy triples

Definition ϕ : (0,∞)→ (0,∞) is Bernstein if ϕ is C∞ and ϕ′ is CM.

• Theorem ϕ is Bernstein ⇔ ϕ(q) = a0q + a∞ +

∫
E

(1− e−qz)µ(dz)

for some Lévy triple (a0, a∞, µ): a0, a∞ ≥ 0 and

∫
E

(z ∧ 1)µ(dz) <∞.



Bernstein transforms and the topology of Lévy triples

Definition ϕ : (0,∞)→ (0,∞) is Bernstein if ϕ is C∞ and ϕ′ is CM.

• Theorem ϕ is Bernstein ⇔ ϕ(q) = a0q + a∞ +

∫
E

(1− e−qz)µ(dz)

for some Lévy triple (a0, a∞, µ): a0, a∞ ≥ 0 and

∫
E

(z ∧ 1)µ(dz) <∞.

• We associate the measure κ(dz) = a0δ0 + (z ∧ 1)µ(dz) + a∞δ∞ on [0,∞]



Continuity theorem for Lévy triples (cf. Menon-P 2008)

Let (a
(n)
0 , a

(n)
∞ , µ(n)) be a sequence of Lévy triples,

ϕ(n)(q) = a
(n)
0 q + a(n)

∞ +

∫
E

(1− e−qz)µ(n)(dz)

κ(n)(dz) = a
(n)
0 δ0 + (z ∧ 1)µ(n)(dz) + a(n)

∞ δ∞

Then TFAE:

(i) ϕ(q) := limn→∞ϕ
(n)(q) exists for each q > 0.

(iii) κ(n) converges weakly to some measure κ on [0,∞], meaning

〈f, κ(n)〉 → 〈f, κ〉 for all f ∈ C([0,∞]).

If these conditions hold, the limit quantity ϕ, κ is that associated as above with a
unique Lévy triple (a0, a∞, µ).



Generalized Smoluchowski dynamics in branching processes

Bertoin-Le Gall 2006: Critical continuous-state branching processes (CSBPs) that
are extinct a.s. are associated with the generalized Smoluchowski equation

∂t〈a, νt〉 =

∞∑
k=2

Rk(t) Ik(a, νt) (GS)

Ik(a, νt) is the expected change in the ‘moment’ 〈a, νt〉 =
∫∞

0
a(z) νt(dz)

Ik(a, νt) =

∫
(0,∞)k

(
a(z1 + · · ·+ zk)−

k∑
j=1

a(zj)
) k∏
j=1

νt(dzj)

〈1, νt〉
.

Rk(t) is the rate at which k clusters simultaneously coalesce: with ρ = 〈1, νt〉,

Rk =

∫ ∞
0

e−ρz(ρz)k

k!
π(dz) where

∫ ∞
0

(z2 ∧ z)π(dz) <∞. Why??



Bernstein transform of (GS)

The Bernstein transform ϕ(t, q) :=

∫ ∞
0

(1− e−qs) νt(ds) satisfies

∂tϕ = −Ψ(ϕ) , Ψ(u) = β̂
u2

2
+

∫
(0,∞)

(
e−uz − 1 + uz

)
π(dz).

This equation is well-known in the CSBP literature: A CSBP X(t, x) is a
Lévy process in x , with Laplace exponent ϕ , and Lévy jump measure νt(ds) :

E(e−qX(t,x)) = e−xϕ(t,q)

The rates Rk =

∫ ∞
0

e−ρz(ρz)k

k!
π(dz) =

(−ρ)kΨ(k)(ρ)

k!

Qs: Where do νt, π come from? Can one do scaling limit analysis?



A Galton-Watson branching process

is a Markov chain n 7→ Xn ∈ N ∪ {0}

Xn = total population at generation n

= # of nodes at level n in a random tree

Each parent has k children iid with law π̂(k)
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Galton-Watson dynamics

Pn(j, k) := Pr{Xn = k | X0 = j} is the n-step transition probability of j → k

νn(k) := Pn(1, k) is the clan size distribution after n generations.

π̂(k) := P1(1, k) is the family size distribution.

• The branching property implies Xn+1 =

Xn∑
i=1

ξn,i with iid ξn,i ∼ π̂ , thus

νn+1(k) =
∑
j≥1

νn(j)π̂∗j(k) =
∑
j≥1

Pn(1, j)P1(j, k).

Markov =⇒ νn+1(x) =
∑
j≥1

π̂(j) ν∗jn (x) =
∑
j≥1

P1(1, j)Pn(j, x)



Generating function and Bernstein transform

Gn(z) =
∑
j≥1

νn(j)zj =⇒ Gn+1 = G1 ◦Gn

The Bernstein transform ϕ̂n(q) :=
∑
j≥1 νn(j)(1− e−qj) = 1−Gn(e−q)

satisfies ϕ̂n+1(q)− ϕ̂n(q) = −Ψ̂(ϕ̂n(q)) , Ψ̂(s) = G(1− s)− 1 + s .

If X is critical (
∑
≥0

π̂(j) = 1 ) then

Ψ̂(s) =
∑
j≥2

(
(1− s)j − 1 + js

)
π̂(j).



Continuous-size, continuous-time limits (CSBP)

Let h = grid size, τ= time step. Rescale size via j 7→ jh and let

ν̃n(dx) =
1

h

∑
j>0

νn(j)δjh(dx), π̃(dx) =
1

τh

∑
j>0

π̂(j)δjh(dx).

One finds ϕ̃n(q) := 〈1− e−qx, ν̃n〉 satisfies
ϕ̃n+1(q)− ϕ̃n(q)

τ
= −Ψ̃(ϕ̃n(q)),

Ψ̃(u) =

∫
(0,∞)

(
(1− hu)x/h − 1 + xu

)
π̃(dx).

• Theorem

a) Let hk, τk → 0 and (x ∧ 1)(x− hk)π̃k(dx)→ κ(dz) weak-* on [0,∞].

Then Ψ̃(u)→ Ψ(u) = a0
u2

2
+ a∞ +

∫
(0,∞)

(
e−uz − 1 + uz

)
z−1µ(dz) .



Continuous-time limits: coalescence with multiple clustering

b) Assume further (x ∧ 1)ν0(dx)→ δ0 weak-* on [0,∞]. (E.g., p0(1) = 1)

Then nτ → t =⇒ ϕ̃n(q)→ ϕ(t, q) where

∂tϕ = −Ψ(ϕ) ∀t > 0, ϕ(0, q) = q.

This entails (x ∧ 1)ν̃n → (x ∧ 1)νt , with ϕ(t, q) = 〈1− e−qx, νt〉.

Ala Bertoin-Le Gall, we infer νt solves (GS) provided ρ = 〈1, νt〉 <∞ for t > 0.
This is known to be equivalent to∫ ∞

1

du

Ψ(u)
<∞ (E)

We call this νt the fundamental solution of (GS): (x ∧ 1)νt(dx)→ δ0 as t→ 0.



Universality 1: typical limits

Suppose the family-size distribution π̂ has a finite second moment:

m2 =

∞∑
j=1

j2π̂(j) <∞.

Then with τ = h (m2 − 1) we have (x ∧ 1)(x− h)π̃(dx)→ κ = δ0
as h→ 0, whence

Ψ(u) =
1

2
u2

and νt is the fundamental solution of Smoluchowski’s equation with constant
kernel K = 1.



Universality 2: arbitrary limits (a la Doeblin)

Theorem There exists some (far from unique) family-size distribution π̂ and
sequences hn, τn → 0, such that: For every finite measure

κ(dz) = a0δ0 + (z ∧ 1)zπ(dz) + a∞δ∞ on [0,∞],

there is some subsequence hnk, τnk along which the hypothesis of a) holds.

The conclusion implies that every possible critical CSBP is a limit of rescalings of
one particular “universal” Galton-Watson process, along some subsequence.

The proof exploits a resemblance between Bernoulli shifts and the rescalings
induced on κ-measures (Lévy triples) by

κ(dz) = (z ∧ 1) z π(dz) 7→ κ̃(dz) = (z ∧ 1)
1

τ

z

h
π

(
dz

h

)
The same technique of “packing the tail” of the starting distribution is described
by Feller to constuct Doeblin’s universal laws in probability.



Universality 3: long-time scaling limits for (GS):
necessary and sufficient conditions

Theorem Assume (E). Let νt be the fundamental solution of (GS). Then TFAE:

(i) there exist a probability measure µ̂ and λ(t) > 0 such that the rescalings

ν̃t(dx) :=
νt(λ(t)−1dx)

〈1, νt〉
−→
t→∞

µ̂(dx)

weakly on (0,∞).

(ii) Ψ is regularly varying at 0 with index 1 + r ∈ (1, 2], and µ̂ = µ̂1 where µ̂t is
self-similar, with generalized Mittag-Leffler profile

∫ x

0

µ̂1(dy) = Fr,1(βx) = −
∞∑
k=1

(r)k
k!

(−(βx)r)k

Γ(1 + rk)
,

where β = 〈x, µ̂1〉−1. Furthermore, λ(t) ∼ β〈1, µ̂t〉−1.



Idea of the proof (well, not exactly)

Rescale and dilate time via (ρ(s) = 〈1, νs〉)

t = st̂, νs
t̂
(dx) =

νst̂(λ(s)−1 dx)

ρ(s)
, ϕs(t̂, q) =

ϕ(st̂, λ(s)q)

ρ(s)
,

getting a renormalized equation

∂t̂ϕs = −Ψs(ϕs), Ψs(u) =
sΨ(ρ(s)u)

ρ(s)
=

∫
(0,∞)

(e−uz − 1 + uz)πs(dx).

• With ϕ̂(q) = 〈1− e−qx, µ̂〉 the hypothesis means

ϕs(1, q) −→
s→∞

ϕ̂(q) ∀q ∈ [0,∞].

By study of the renormalized solution formula for the ODE and the assumed
uniqueness of the limit, prove that necessarily

lim
s→∞

Ψs(u) exists, hence (by scaling rigidity) = cu1+r and Ψ is r.v.



Conclusions for critical CSBPs that go extinct a.s.

Below we write δλ,αX(x) := λX(αx).

Theorem Let X(t, x) be a critical CSBP with branching mechanism Ψ satisfying∫ ∞
1

du

Ψ(u)
<∞ (E)

Then TFAE:

(i) There exists a nondegenerate Lévy process X̂ = X̂(x) and functions α, λ > 0
such that

δλ(t),α(t)X(t, ·) L−−−→
t→∞

X̂(·). (2)

(ii) Ψ is regularly varying at u = 0 with index 1 + r ∈ (1, 2].



Conclusions for critical CSBPs that go extinct a.s.

Below we write δλ,αX(x) := λX(αx).

Theorem Let X(t, x) be a critical CSBP with branching mechanism Ψ satisfying∫ ∞
1

du

Ψ(u)
<∞ (E)

Then TFAE:

(i) There exists a nondegenerate Lévy process X̂ = X̂(x) and functions α, λ > 0
such that

δλ(t),α(t)X(t, ·) L−−−→
t→∞

X̂(·). (2)

(ii) Ψ is regularly varying at u = 0 with index 1 + r ∈ (1, 2].

Thank you!


