Overview

Introduction

Rank preserving property

Secant varieties

Prolongations and general rank preserving property

Rank decomposition

Let A, B and C be vector spaces over \mathbb{C} , and $T \in A \otimes B \otimes C$.

T is said to have rank one if $T_{ijk} = a_i b_j c_k$ for some vectors a, b, c.

Definition

The rank, denoted by rk(T), of a tensor T is the minimum integer r such that

$$T=\sum_{i=1}^r a_i\otimes b_i\otimes c_i.$$

Such a decomposition is called a rank-r decomposition.

Border rank

The set of tensors with rank $\leq r$ is not closed.

Definition

The border rank, denoted by brk(T), of a tensor T is the minimum integer r such that T is a limit of rank-r tensors.

Definition

The symmetric border rank, denoted by $brk_s(T)$, of a symmetric tensor T is the minimum integer r such that T is a limit of symmetric rank-r tensors.

Berdek randomposition

Let $X \subset \mathbb{P}V$ be an irreducible nondegenerate projective variety.

The second egenerate w(ith isan bit ≤containet lidho seolay perplane) ⇒ for any

Definition $X_1 + \cdots + X_m$ for some $x_1, \dots, x_m \in \widehat{X}$.

The porder rank, denoted by brk(T), of a tensor T is the minimum integer r such that T is a limit of rank-r tensors.

▶ irreducible ⇒ no ambiguity.

Definition (Zak)

where $x_1, \ldots, x_r \in \widehat{X}$.

X-rank decomposition

Let $X \subset \mathbb{P}V$ be an irreducible nondegenerate projective variety.

- ▶ nondegenerate (X is not contained in a hyperplane) \Longrightarrow for any $v \in V$, $v = x_1 + \cdots + x_m$ for some $x_1, \ldots, x_m \in \widehat{X}$.
- ▶ projective $\implies v = x_1 + \cdots + x_m$ instead of $v = c_1x_1 + \cdots + c_rx_m$ for some coefficients c_1, \ldots, c_m .
- ▶ irreducible ⇒ no ambiguity.

Definition (Zak)

For $v \in V$, the X-rank of v, denoted by $rk_X(v)$, is the minimum integer r such that

$$v = x_1 + \cdots + x_r$$

where $x_1, \ldots, x_r \in \widehat{X}$.

Border and Generic X-rank

Definition

For $v \in V$, the X-border-rank of v, denoted by $brk_X(v)$, is the minimum integer r such that v is a limit of X-rank-r points.

Definition

An X-rank r is called *generic* if the set of X-rank-r points contains a Zariski open subset of V.

There is only one generic X-rank over \mathbb{C} .

Examples

The Segre variety is defined to be the image of

Seg :
$$\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_n \to \mathbb{P}(V_1 \otimes \cdots \otimes V_n)$$

 $([v_1], \dots, [v_n]) \mapsto [v_1 \otimes \cdots \otimes v_n].$

The Veronese variety is defined to be the image of

$$\nu_d: \mathbb{P}V \to \mathbb{P}S^dV, \quad [v] \mapsto [v^{\otimes d}].$$

Example

- lacktriangle "The tensor rank in $V_1\otimes\cdots\otimes V_n$ " = Seg($\mathbb{P}V_1 imes\cdots imes\mathbb{P}V_n$)-rank.
- "The symmetric rank in S^dV " = $\nu_d(\mathbb{P}V)$ -rank.
- ▶ the generic rank $r_g(\operatorname{Seg}(\mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \times \mathbb{P}^{n-1})) = \lceil \frac{n^3}{3n-2} \rceil$ if $n \neq 3$.
- $ightharpoonup \operatorname{rk}_X(v) \ge \operatorname{brk}_X(v).$

Overview

Introduction

Rank preserving property

Secant varieties

Prolongations and general rank preserving property

Rank preserving property

Let $X \subseteq \mathbb{P}V$ be a nondegenerate irreducible projective variety, and $L \subset \mathbb{P}V$ be a linear subspace. Let $Y := X \cap L$.

Definition (Buczyński-Ginensky-Landsberg)

Y is said to have the rank-r preserving property for a fixed r if

- the linear span Span{Y} is L;
- $ightharpoonup \operatorname{rk}_X(v) = r \text{ for all } v \in L \text{ with } \operatorname{rk}_Y(v) = r.$

Definition

Y is said to have the general rank-r preserving property if

- Span{Y} = L;
- $ightharpoonup \operatorname{rk}_X(v) = r$ for a general rk_Y -r point $v \in L$.

Similarly we can define the border rank-r preserving property by replacing rk with brk.

Example - symmetric version of Strassen's conjecture

Conjecture

Given vector spaces V and W such that $V \cap W = \{0\}$, and tensors $A \in S^d V$ and $B \in S^d W$. Then

$$\operatorname{rk}_{S}(A \oplus B) = \operatorname{rk}_{S}(A) + \operatorname{rk}_{S}(B),$$

where $A \oplus B \in S^d(V \oplus W)$.

$$X = \nu_d(\mathbb{P}(V \oplus W)), \quad L = \mathbb{P}(S^dV \oplus S^dW)$$

 $Y = X \cap L = \nu_d(\mathbb{P}V) \cup \nu_d(\mathbb{P}W)$

The symmetric version of Strassen's direct sum conjecture asks if Y has the symmetric rank-r preserving property.

Example - Vandermonde rank decompositions

Let V be an (n+1)-dimensional vector space. Fix a basis $\{e_1, \ldots, e_{n+1}\}$ for V. A symmetric tensor

$$H := \sum_{1 \le i_1, \dots, i_d \le n+1} H_{i_1 \dots i_d} e_{i_1} \dots e_{i_d} \in S^d V$$

is called *Hankel* if there is a vector $h := (h_0, \ldots, h_{nd})$ such that

$$H_{i_1...i_d} = h_{i_1+...+i_d-d}$$
.

Identify V with S^nW for some 2-dim vector space W. Then H is Hankel if and only if H has the form

$$H = \sum_{i=1}^{r} (w_i^{\otimes n})^{\otimes d}, \tag{1}$$

where $w_1, \ldots, w_r \in W$, and r is minimum. r is called the V and V and V and V and V and V is minimum. V is called the V and V and V and V and V is minimum.

Vandermonde rank decompositions continued

Conjecture (Nie - Ye' 16)

For a general Vandermonde rank-r Hankel tensor, its symmetric rank and rank are also r.

$$X_1 = \nu_d(\mathbb{P}V), \quad X_2 = \operatorname{Seg}(\mathbb{P}V^{\times d}), \quad L = \mathbb{P}(S^{dn}W)$$

 $Y = X_1 \cap L = X_2 \cap L = \nu_{dn}(\mathbb{P}W)$

Then the conjecture by Nie and Ye asks if Y has the general (symmetric) rank-r preserving property.

Overview

Introduction

Rank preserving property

Secant varieties

Prolongations and general rank preserving property

Join Variety

Geometric definition:

For projective varieties $X_1, \ldots, X_r \subseteq \mathbb{P}V$ over \mathbb{C} , let \widehat{X}_i denote the affine cone of X_i .

Definition

The join map is defined by

$$J: \widehat{X}_1 \times \cdots \times \widehat{X}_r \to V, \quad (x_1, \dots, x_r) \mapsto x_1 + \cdots + x_r.$$

The Zariski closure of the image $J(\widehat{X}_1 \times \cdots \times \widehat{X}_r)$ in V is the affine cone of some projective variety, which is denoted by $J(X_1, \ldots, X_r)$, and called the *join variety* of X_1, \ldots, X_r .

Secant varieties

Definition

When $X_1 = \cdots = X_r = X$, we denote $J(X_1, \ldots, X_r)$ by $\sigma_r(X)$, and call it the *rth secant variety* of X.

Equivalently,

Definition

When X is an irreducible projective variety,

$$\sigma_r(X) = \bigcup_{x_1, \dots, x_r \text{ general in } X} \operatorname{Span}\{x_1, \dots, x_r\}.$$

Connection with tensors

Let $X = \operatorname{Seg}(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_n)$ be the Segre variety. The image of the join map $J(\widehat{X}^{\times r})$ is the set of tensors with rank $\leq r$, and $\widehat{\sigma_r(X)}$ is the set of tensors with border rank $\leq r$.

Similarly, let $Y = \nu_d(\mathbb{P}V)$ be the Veronese variety. Then $J(\widehat{Y}^{\times r})$ is the set of symmetric tensors with symmetric rank $\leq r$, and $\widehat{\sigma_r(Y)}$ is the set of symmetric tensors with symmetric border rank $\leq r$.

(Border) Rank preserving property

Theorem (Nie – Ye)

There is a Hankel tensor whose Vandermonde rank is greater than its symmetric rank.

Theorem (Schönhage)

There are $T_1 \in V_1 \otimes V_2 \otimes V_3$ and $T_2 \in W_1 \otimes W_2 \otimes W_3$ such that

$$brk(T_1 \oplus T_2) < brk(T_1) + brk(T_2)$$
.

Theorem (Shitov)

There are $T_1 \in V_1 \otimes V_2 \otimes V_3$ and $T_2 \in W_1 \otimes W_2 \otimes W_3$ such that

$$\operatorname{rk}(T_1 \oplus T_2) < \operatorname{rk}(T_1) + \operatorname{rk}(T_2).$$

Reasonable to consider the general rank preserving property of Y, i.e.,

$$\sigma_r(Y) \not\subseteq \sigma_{r-1}(X)$$
.

Overview

Introduction

Rank preserving property

Secant varieties

Prolongations and general rank preserving property

Prolongation

Definition

Let A be a vector subspace of S^dV . The k-th prolongation of A, denoted by $A^{(k)}$, is defined by

$$A^{(k)} = \{ f \in S^{d+k} V \mid \frac{\partial^k f}{\partial x^{\alpha}} \in A, |\alpha| = k \}.$$

Equivalently,

Definition

For a subspace $A \subset S^d V$, $A^{(k)} = (A \otimes S^k V) \cap S^{d+k} V$.

General Vandermonde rank preserving property

For a homogeneous ideal I, the *initial degree* of I, denoted by $\alpha(I)$, is defined by $\alpha(I) = \min\{k \mid I_k \neq 0\}$.

Let $X \subset \mathbb{P}V$ be a nondegenerate irreducible projective variety, and $L \subseteq V$ be a linear subspace.

Proposition

Let $\alpha(I(X)) = k$, and $Y = X \cap \mathbb{P}L$. Assume (i) Span $\{Y\} = \mathbb{P}L$, (ii) Y is irreducible. If $I_k^{((k-1)(r-2))}$ is not generated by the linear forms defining $\mathbb{P}L$, then Y has the general rank-r preserving property.

Corollary (Q. - Lim)

For a general Vandermonde rank-r Hankel tensor, its symmetric rank and rank are also r, where $r \leq \lceil \frac{dn+1}{2} \rceil$.

General rank-r preserving property

Assume $V \cap W = \{0\}$. Let $X \subseteq \mathbb{P}V$ and $Y \subseteq \mathbb{P}W$ be nondegenerate subvarieties.

Lemma

$$I_{\ell}(J(X,Y)) \subseteq I_{k}(Y)^{(\ell-k)} \cap I_{\ell-k}(X)^{(k)}$$
 for $0 \le k \le \ell$.

Let dim V = n, dim W = m, and $k = \lfloor d/2 \rfloor$.

Corollary (Q. – Lim)

When $r \leq \binom{n+k-1}{k}$ and $s \leq \binom{m+k-1}{k}$, for a general rk_5 -r tensor $T \in S^d V$ and a general rk_5 -s tensor $T' \in S^d W$,

$$\operatorname{rk}_{S}(T \oplus T') = r + s$$
.

General Vandermonde rank preserving property

For a homogeneous ideal I, the *initial degree* of I, denoted by $\alpha(I)$, is defined by $\alpha(I) = \min\{k \mid I_k \neq 0\}$.

Let $X \subset \mathbb{P}V$ be a nondegenerate irreducible projective variety, and $L \subseteq V$ be a linear subspace.

Proposition

Let $\alpha(I(X)) = k$, and $Y = X \cap \mathbb{P}L$. Assume (i) Span $\{Y\} = \mathbb{P}L$, (ii) Y is irreducible. If $I_k^{((k-1)(r-2))}$ is not generated by the linear forms defining $\mathbb{P}L$, then Y has the general rank-r preserving property.

Corollary (Q. - Lim)

For a general Vandermonde rank-r Hankel tensor, its symmetric rank and rank are also r, where $r \leq \lceil \frac{dn+1}{2} \rceil$.

General rank-r preserving property

Assume $V \cap W = \{0\}$. Let $X \subseteq \mathbb{P}V$ and $Y \subseteq \mathbb{P}W$ be nondegenerate subvarieties.

Lemma

$$I_{\ell}(J(X,Y)) \subseteq I_{k}(Y)^{(\ell-k)} \cap I_{\ell-k}(X)^{(k)}$$
 for $0 \le k \le \ell$.

Let dim V = n, dim W = m, and $k = \lfloor d/2 \rfloor$.

Corollary (Q. – Lim)

When $r \leq \binom{n+k-1}{k}$ and $s \leq \binom{m+k-1}{k}$, for a general rk_5 -r tensor $T \in S^d V$ and a general rk_5 -s tensor $T' \in S^d W$,

$$\operatorname{rk}_{S}(T \oplus T') = r + s$$
.