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30+ years of innovation

Over 850 employees worldwide; >40% Ph.D.

>50% of employees dedicated to R&D

~1,785 customers worldwide

Pipeline of 25+ collaborative and proprietary programs

Pioneering 
Digital 

Chemistry
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The world’s most innovative companies use Schrödinger
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The future of materials discovery

If all properties can be calculated with perfect accuracy, designing materials would have a higher 

success rate, be faster and cheaper, and would produce much higher-quality materials

Select best

candidate system

“All” 
synthesizable 

chemistry
(~1010 - 1080)

Reactivity

Selectivity
Solubility
Sustainability

Redox

Kinetics
Stability
Synthesizability

✓

✓
✓
✓

✓

✓
✓
✓



7

Physics-based modeling and machine learning

Machine 

learning

Physics-based 

modeling 

Physics & 
Machine Learning

Incorporate physics-based 
information about materials into 

practical ML models.

Build targeted ML models to 
expand the impact of physics-

based simulations.
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Vertical scaling of in silico technology to traverse project-
specific ideas

Computational

Chemistry

Physics and machine learning

ADVANCE

BEST

MOLECULE 

OR 

MATERIAL

MACHINE 

LEARNING

scores 

1,000,000,000

s of candidates

PHYSICS

determines 

properties of subset 

of systems 

(10,000s) to build 

ML training set

PHYSICS + AI 

generates

1,000,000,000

s

of candidates 

PHYSICS 

computes 

properties of top 

10,000s 

candidates

MAKE & 

TEST

10s of 

systems

PHYSICS + 

AI

generates 

molecular 

morphologies 

and complex 

structures

Enabled and accelerated by high performance compute and cloud 
technology platforms
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Modeling impact on materials design

LifespanDesign Cycle

Discovery

New 

Material 
Idea

Synthesis and 

Characterization

Assessment of 

Performance

Development Manufacturing Deployment Service

Enumeration 

& Virtual 
Screening

In Silico
Property 

Prediction

Root 

Cause 
Analysis

In Silico 

Reformulation

Optimize 

Process 
Parameters

End 

of life

Enhanced 

Recyclability
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Benefits of leveraging digital technology

Less
• Time to insights and target solutions

• Cost to optimize materials 

development process

• Experimental synthesis and 

testing of materials with 

undesirable properties

• Distance between teams and 

expertise areas

More
• Hypotheses to test

• Access to chemical space

• Optimization of multiple property 
parameters at the same time

• Dynamic collaboration in the 
design process

• High-quality materials with desired 
performance and properties
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Bottom-up approach to meeting consumer needs 

Microstructure

Morphology

Macroscopic

Performance

Product

Consumer needs

Molecular

Physiochemical 

properties

Formulation

Ingredients

S
iz

e

Simulate

In action
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Solutions for all applications

Organic

Electronics

Polymeric 

Materials

Consumer 

Packaged 

Goods

Catalysis & 

Reactivity
Semiconductor

Energy 

Capture & 

Storage

Pharmaceutical 

Formulation & 

Delivery

Metals, 

Alloys & 

Ceramics
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Machine Learning (ML): 
statistical models that 

computers use to perform a 
task
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ML-accelerated materials design

Idea Generation Machine Learning Prediction

A B

S
ta

b
ili

ty Goal

Fast

C D

Material 
A

Material 
B
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Structures ML Model

Regression task; e.g. 
density

Classification task; 
e.g. solid or liquid 
phases

Features or 
Descriptors

Property

x1 , x2 … xn

Quantitative Structure Property Relationship (QSPR) Modeling
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Descriptors ML Algorithms Properties

Cheminformatic Descriptors
Molecular
Polymeric
…

Cheminformatic Fingerprints
Linear
Radial
Dendritic
…

Inorganic Descriptors

3D Descriptors

…

Partial least squares regression (PLS)

Best subset multiple linear 
regression (MLR)

Kernel-based PLS (kPLS)

Principal components regression (PCR)

Naive Bayes classification

Ensemble recursive partitioning

…

Glass transition temperature (Tg)

Solubility

Recyclability

∆EST

Reaction rate

Sweet or not sweet

…

How do we select the best machine learning model?
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Training Options View Model Reports Make Predictions

Determine training/test split (default 75-25)

Determine number of models to 
keep (default 10)

Single Model Mi

Or

Consensus 𝝨iMi

Scores and rankings:
Model scores

Training and test set R2

Test set RMSE

Scatter plot with color-coded training 
and test set

Prediction with the best model or ensemble
prediction from the top N models

Domain applicability (score and alert)
Structure similarity
Comparison to training set

AutoQSAR: customizable and easy to visualize
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DeepAutoQSAR: automatic selection of best ML models

Model architecture, descriptor and 

hyperparameter combinations 

explored and optimized via 

Bayesian Optimization 

Data splits, featurization

Models Sampled

● Dense Neural Network 

● Random Forest

● XGBoost

● TorchGraphConv

● GCN

● GraphSAGE

● GIN

● TopK

● SAGPool

● EdgePool

● GlobalAttention

● Set2Set

● SortPool

Consensus Model

● Prediction = an average of the predictions for 
3 best models

● Uncertainty = SD across the predictions

For more details, see DeepAutoQSAR White Paper:
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Extending DeepAutoQSAR: formulation machine learning

Formulation Machine Learning Approach

Performance on 

copolymer system*

Performance on 

copolymer system*

Formulation machine learning enables accurate screening of ingredients and compositions

DeepAutoQSAR (single molecule): Encode mixtures as a 

single SMILES and compositions as additional features

Glass transition 

temperature (Tg) = 264 K 

76% 24%

Example: Predict 

Copolymer Tg
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Formulations ML: statistical 
models that incorporate 

ingredients and composition
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Formulations are fundamental to our daily lives

Everyday consumer products
(Shampoos, perfumes, plastic)

Energy Storage 
(Electrolytes in batteries)

Oil and gas
(Gasoline, lubricants)

Formulations
Complex, multicomponent mixtures 
prepared based on a composition

Pharmaceutical formulation
(Medicine, drugs)
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Computer-aided formulation design

Molecular Dynamics (MD) Simulations
MD simulates all interactions between ingredients in a formulation Experiment

(slow + expensive)

Machine Learning (ML)
ML allows you to map structure and composition to property

✅ Efficient

✅ Fast screening (~s)

❌ Requires data

❌ Extrapolation may 

be poor

✅ Mechanistic insight

✅ Extrapolates well

❌ No reactions

❌ Expensive (~hrs)
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Example - Impact of MD-
derived simulation 

descriptors for predicting 
viscosity
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Viscosity dataset for machine learning models

Distribution of viscosity and temperature

Dataset summary:

• 1,005 unique molecules

• Atomic elements of {H, C, N, O, F, Si, P, S, Cl, Br, and I}

• Viscosity between 0.10 to 26.52 cP

• Temperature is between 227 K to 404 K

Remove positive 
deviations of 

µ vs. T

Remove extreme 
µ and T

Single, organic 
structures

Literature extraction of viscosity 
~5,356 viscosities

4,400 viscosities
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Impact of MD-derived simulation descriptors on viscosity

Performance with large dataset

Learning curve with and without MD descriptors

Chew, Alex K., et al. Journal of Cheminformatics 16.1 (2024): 1-14.

• MD descriptors increase 

accuracy, especially for small 

training size (<1,000)

• MD descriptors capabilities can 

be extended to 

formulations/mixtures and 

polymers

Generation of MD descriptors
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Case Study 1 –Machine 
Learning models for 

formulations development
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Solution

ML can capture complex 
interactions, making it 
well-suited for predicting 

miscibility in 
multicomponent systems

Challenge

Solvent miscibility is complex, 
especially in ternary or higher-
order systems due to non-additive 

interactions

Physics modeling

Predicting large-scale miscibility
Results

Physic-based 
Formulations Modeling of 
over 30K mixtures result 

in highly accurate models

Impact

Miscibility prediction of 
new multicomponent 
mixtures can be predicted 

in seconds

ML modeling
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ML needs data: miscibility of organic solvents

• By enforcing experimentally determined miscibility rules, we increase the likelihood of fully 

miscible, multicomponent mixtures

• For N components up to five, 19,238 combinations are possible

CRC handbook of miscible solvents Combinations of 81 solvents
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Physics-based simulations to screen mixture properties

Density
Measures how dense 

molecules are packed in g/cm3

Enthalpy of mixing
Measures energy released or 

absorbed upon mixing in kcal/mol

MD captures experimental trends

Heat of vaporization
Amount of heat in kJ/mol 

to convert liquid to vapor

MD generates physically relevant properties

Simulation videos

N = 2 N = 5

Acetone | Benzene | Benzyl alcohol | N,N-

Dimethylaniline | Tetrachloromethane
Acetone | Benzene
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High-throughput MD Simulations to Create Large Dataset

Summary of high-throughput mixture simulations

N 

components
Compositions

#unique 

formulations
#examples

1 100 81 81

2

20:80

40:60

50:50

60:40

80:20

716 3,580

3

20:20:60

20:60:20

60:20:20

33:33:33

2,680 10,720

4 25:25:25:25 6,122 6,122

5 20:20:20:20:20 9,639 3639

Total 19,238 30,142

MD opens opportunities to 

fine-tune property space

N = 1 N = 2 N = 3 N = 4 N = 5

Increasing N leads to 

highly specific properties

How scalable are our MD workflows?

30,142 simulations (651 ns / day | ~1.48 hours per simulation) = 45,000 GPU-hours (~5 GPU-years)
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Different approaches for machine learning in formulations

Requirements for Formulations ML:

• Compositionally-aware: Composition 

must be embedded into the model

• Permutation invariance: Switching 

ingredient orders do not impact predictions

• Component independence: Flexibility in 

the number of components
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ML accurately predicts formulation properties

• FDS2S performs the best in predicting formulation 

properties at all data scales

• With enough data, ML can accurately predict formulation 

properties (even Hm)

Learning curve: Left-out test set performance as a function of train size

Parity plot of test set
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Important features highlighted from ML models

Feature importance: Density Feature importance: Enthalpy of mixing

Inclusion of nitrogen groups lowers the 

enthalpy of mixing

Inclusion of halogens and removal of methyl 

groups increase density
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Formulation ML predicts broad experimental properties
Energy Storage1

1Bilodeau, C., et al. Chemical Engineering Journal, 464, 2023, 142454.
2Bao, Z., et al. Journal of Cheminformatics,16.1, 2024, 117.
3Kuzhagaliyeva, N., et al. Communications Chemistry, 5.1, 2022, 111.

Pharmaceutical formulations2 Oil and gas3
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Active Learning: Can ML suggest the best formulations?

Active learning workflow
ML identifies top formulations 2-3x faster than 

random trial-and-error
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Formulation ML optimization

• Optimize materials formulations for a target property

• Automated model building and validation for a given formulations vs. property dataset

Input {SMILES | composition | property} 

dataset in CSV format
Automated model building & validation

Assess target property space

Check optimized formulations with MPO scores
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Supervised Learning: active learning
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Case Study 2 –Optimizing 
shampoo formulations using 

Formulations ML
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Solution

ML models with broad 
chemical space training 
and multiple properties 

can optimize formulations

Challenge

Complex physical interactions 
between ingredients making it 
difficult to tune formulations to 

customer-defined property targets

ML modeling

Optimizing shampoo formulations
Results

Formulations ML models 
are able to accurately 
predict key performance 

properties & suggest 
new, optimized formulae

Impact

Accurate prediction 
across design space, 
encompassing key target 

properties of shampoo 
formulations

Formulation optimization

Arlypon TT
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BASF Shampoo formulations dataset

Dataset overview from paper:

• 812 unique formulations – mixtures of one 

surfactant, one conditioning polymer, and one 

thickener

– Turbidity (regression) for stable formulations

– Stability (classification)

• 9,633 shear-rate dependent viscosities

Data from the following source*

*Chitre, A., et al. Accelerating Formulation Design via Machine Learning: Generating a High-throughput Shampoo Formulations Dataset. Sci Data 
11, 728 (2024). https://doi.org/10.1038/s41597-024-03573-w

18 Ingredient Mixtures

Log-viscosity distribution Turbidity distribution
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Data conversion for complex ingredient mixtures

Plantapon Amino 

SCG-L

Arlypon TT

Formulation Definitions 

Ingredient Mixtures (to SMILES, COMPOSITION)
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Evaluating multiple property models
Viscosity

(Regression)

Turbidity

(Regression)

Stability

(Classification)
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Formulation optimization for shampoo
Viscosity

Turbidity

Desired target:

Middle is better

Surfactant

8–13 

w/w%

Conditioning 

Polymer

1–3 w/w%

Thickener

1–5 w/w%

Goal:

Optimize composition 

for complex mixtures

Ingredient Choices

Desired target:

Lower is Better

Desired target:

Higher is Better
Stability

Choose one of each 

ingredient type, remainder 

of the formulation is water 

to sum up to 100%
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Optimization results and best candidate(s)

Predicted Properties:

Viscosity 1.273 log(cP)

Turbidity 55 NTU

Stability 73%

1% thickener 9% surfactant

1% conditioning polymer

MPO Scores
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Success stories in real world 

applications
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CHALLENGE

The consumer packaged goods market 

faces many challenges, including 

demands for sustainability, constant 

requirement changes and short time-to-
market timelines.

Fast adoption of digital chemistry brings big business impact 
for consumer packaged goods R&D

Result: R&D timelines expedited by 10 times

SOLUTION

The Reckitt team incorporated digital 

simulation in several R&D areas (e.g. 

detergents, drug formulations, 

packaging materials). Running digital 
testing before experiment reduced 

mistakes and improved outcomes.
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CHALLENGE

Molecules with high mobility are 

highly desirable for organic 

electronics. However, it is 

extremely costly and time-
consuming to synthesize and 

assess every candidate molecule

Large-scale de novo design of hole-conducting materials 
for organic electronics

Result: Over 50 molecules with better performance were identified and the structural effects were discovered

SOLUTION

Scientists from Panasonic and 

Schrödinger employed DFT, 

machine learning and cloud 

computing to screen over 14 million 
molecules, predicting hole mobility 

of the selected top candidates
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Discussion and questions



Thank you!


