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@) Schrodinger
" 30+ years of innovation

Over 850 employees worldwide; >40% Ph.D.

Pioneering &
D i g ita I % >50% of employees dedicated to R&D
O

~1,785 customers worldwide

Chemistry

Pipeline of 25+ collaborative and proprietary programs
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The future of materials discovery

If all properties can be calculated with perfect accuracy, designing materials would have a higher
success rate, be faster and cheaper, and would produce much higher-quality materials

. Select best
) candidate system
« *°® ‘o. .
@ b4 ® o - I
- Ny Pl e \ .‘
. 8Ll CAIP BEEmma
AR ._.;-synthes_lzable L b E ”* L
X R chemistry - = F EEEEE
o’ o m: o B e § S| e S| ELT
- e sl o. & .o.' . (~1010 N 1080) ?%’ %{] igf‘ ?{tf‘ -

-;..f ..-_. ‘.-..' v/ Reactivity v/ Redox
e AR . v Selectivity v/ Kinetics
Teo . v Solubility / Stability
b A / Sustainability ./ Synthesizability
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Physics-based modeling and machine learning

Physics-based
modeling

.

@ Schrodinger

2N

Physics &
Machine Learning

Incorporate physics-based
information about materials into
practical ML models.

Build targeted ML models to
expand the impact of physics-
based simulations.

~

Machine
learning

i




Vertical scaling of in silico technology to traverse project-
specific ideas

Physics and machine learning

@ Schrodinger
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Modeling impact on materials design

Design Cycle

In Silico
Property

Prediction

Matenal

Idea
Enumeration

& Virtual
Screening

@ Schrodinger

Assessment of
Performance
Synthesis and
Characterization Discovery

In Silico
Reformulation

Lifespan

._

Optimize
Process
Parameters

—e

— Development — Manufacturing —— Deployment —

Root

@ — Cause
Analysis

—

Service

Enhanced -©
Recyclability

End
of life



Benefits of leveraging digital technology

Less

« Time to insights and target solutions

» Cost to optimize materials
development process

« Experimental synthesis and
testing of materials with
undesirable properties

* Distance between teams and
expertise areas

@ Schrodinger

More

Hypotheses to test
Access to chemical space

Optimization of multiple property
parameters at the same time

Dynamic collaboration in the
design process

High-quality materials with desired
performance and properties

10



Bottom-up approach to meeting consumer needs

Size

Molecular
Physiochemical
properties

Microstructure
Morphology

Macroscopic
Performance

Product
Consumer needs

Simulate

In action

U

Formulation

U

Ingredients

\ 4

@ Schrodinger
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Solutions for all applications

Consumer
Packaged
Goods

Organic Polymeric
Electronics Materials

Catalysis &
Reactivity

@ Schrodinger

Semiconductor

Energy
Capture &
Storage

Pharmaceutical
Formulation &
Delivery

Metals,
Alloys &
Ceramics

12



@ Schrodinger

Machine Learning (ML):
statistical models that

computers use to perform a
task

(K



ML-accelerated materials design

Idea Generation Machine Learning Prediction

Material Material D

Stability

14



Quantitative Structure Property Relationship (QSPR) Modeling

Structures

Features or
Descriptors

X1 7 XZ XY

Xn

ML Model

Property

Regression task; e.g.
density

Classification task;

e.g. solid or liquid
phases

15



How do we select the best machine learning model?

Descriptors

Cheminformatic Descriptors
Molecular
Polymeric

Cheminformatic Fingerprints
Linear
Radial
Dendritic

Inorganic Descriptors

3D Descriptors

ML Algorithms

Partial least squares regression (PLS)

Best subset multiple linear
regression (MLR)

Kernel-based PLS (kPLS)
Principal components regression (PCR)
Naive Bayes classification

Ensemble recursive partitioning

Properties
Glass transition temperature (T)
Solubility
Recyclability
AEst
Reaction rate

Sweet or not sweet

16



AutoQSAR: customizable and easy to visualize

Training Options

Determine training/test split (default 75-25)

Determine number of models to
keep (default 10)

Single Model M;
Or

Consensus ;M

View Model Reports

Scores and rankings:
Model scores
Training and test set R2
Test set RMSE

Scatter plot with color-coded training
and test set

A

Make Predictions

Prediction with the best model or ensemble
prediction from the top N models

A

Domain applicability (score and alert)
Structure similarity
Comparison to training set

17



DeepAutoQSAR: automatic selection of best ML models

Data splits, featurization .

Model architecture, descriptor and .
hyperparameter combinations .
explored and optimized via .
Bayesian Optimization .

Models Sampled
Dense Neural Network
Random Forest
XGBoost
TorchGraphConv
GCN
GraphSAGE
GIN
TopK
SAGPool
EdgePool
GlobalAttention
Set2Set
SortPool

1 2 3
| 1 11
~~ / : NH,
= 5 ; o Gyl
Al = i T !
— ~ .
. 7 001 001
l"\.
. NG i Tesmng e
L3 5 4
Architecture 1
: 7 Architecture 2
itecture
f
Architecture 3
7 8
ARAMETERIZATION FOLD SCORES 1.5 MOLECULE SMILES MEAN STOEV
Kyt = ~"Y{_ CCCknid=0) 0.8 0.11
Key2 wmp
- A~ CCCCICEH] 0.42 0.09
Koy3 mmp A O=51(=0)CC( 076 051

—

For more details, see DeepAutoQSAR \White Paper:

Consensus Model

e Prediction = an average of the predictions for
3 best models

e Uncertainty = SD across the predictions




Extending DeepAutoQSAR: formulation machine learning

Example: Predict

Copolymer T

-

k 76%

~

Glass transition
temperature (Ty) =

264 K

DeepAutoQSAR (single molecule): Encode mixtures as a
single SMILES and compositions as additional features

Single molecule

Ao —[E—

Formulation Machine Learning Approach

Descriptors

ML Models

(tree-based, neural networks, efc.)

—> Property

Nx1

Descriptors

.;‘_.

«Iv'_’

® "X,
[ ]
]

Nx1
o C,"X
@
o

Nx1

ML Models

(tree-based, neural networks, efc.) [ Property

Formulation
_— Descriptors
o
®
mean o
st'd N x5
min
max
median

Performance on

*
copolymer system
400§ Train
375 4 & Test
350
X
B 525 1 *
o
2 300 -
o
B ors
& ) N =365
2504 @ Train R? = 0.79
Train RMSE = 20.07
225 Test R? = 0.67
Test RMSE = 19.64
200

200 250 300 350 400
Actual Tg(K)

Performance on
copolymer system*

400 + &

Train
375 - & Test

350 1

Predicted Tg(K)
w
o
o

N = 365
250 1 Train R? = 0.99

Train RMSE = 4.10
225 Test RZ = 0.98
200 Test RMSE = 5.11

200 250 300 350 400
Actual Tg(K)

19



@ Schrodinger

Formulations ML.: statistical
models that incorporate
ingredients and composition

20



Formulations are fundamental to our daily lives

(Shampoos, perfumes, p|astic) (Electrolytes in batteries)

e

A

-
=

(Medicine, drugs) K /(Gasoline, lubricants)

21



formulation design

- MD simulates all interactions between ingredients in a formulation
Experiment J
+ 1 Molecular dynamics
(slow + expensive) 5 & >cular dynar

Acetone R ) Mechanistic insight
(50%) |

e 3y —» Formulation properties Extrapolates well
@ @ ! ¥ No reactions

X Expensive (~hrs)

Benzene
(50%)

ML allows you to map structure and composition to property

Descriptors

K3 c,'x, Formulation Efficient
— | Descriptors Fast screening (~s)
T ® ML Models :
G B _N I M{::l_' (tree-based, neural networks, etc.) [ Property x ReqUIreS data
.1', - ex | s Nx5 X Extrapolation may
| ©_ max be poor
c, Nx1 median

22



Example - Impact of MD-
derived simulation
descriptors for predicting
viscosity

@ Schrodinger



Viscosity dataset for machine learning models

E

Literature extraction of viscosity
~5,356 viscosities

Single, organic

structures

Remove extreme
Mand T

Remove positive

deviations of
Mvs. T

4,400 viscosities

(0]

X

methyl
acetate
v""

M.
o0
Ag-f
silver
nitrite
x

Distribution of viscosity and temperature

1400 1400

1200 1200 A

1000 4 1000 -
5 5

§ 800 § 800 -
(=g [=2

] 600 3 600 -
L N

400 4 400 4

200 200 S

0 04

-1 10 -05 00 0.5 1.0 1.5 200 250 300 350 400 450
log n Temperature (K)

Dataset summary:
1,005 unique molecules

Atomic elements of {H, C, N, O, F, Si, P, S, CI, Br, and I}
Viscosity between 0.10 to 26.52 cP
Temperature is between 227 K to 404 K

24



Impact of MD-derived simulation descriptors on viscosity

Generation of MD descriptors Learning curve with and without MD descriptors
MD Snapshot at T = 298 K 0.6 LGBM (2D and MD)
Q ;" 0 ) - Eight MD Descriptors 0.5- - LGEM (20) RO_BCUT2D_LOGPHI A
O - & S&  +Heat of vaporization 0.4 ~@~ LGBM (2D and MD) RD_VSA_EState3 |
y "\ P Y ¥ l * Density —&— LGBM (MD) MD_FV 4
—> S e e - SIS — « Hansen solubility 0.3- . A
' parameters
" MD_HY
Methyl acetate * Root-mean-square 0.2 —
displacement ' 01 00 01 02 03 04
Mean |SHAP|
Ll
S
r 0.14— ——— —
Performance with large dataset E 0.5+
. \ 04
: LGBM (2D) ,
2 ! 0:3- « MD descriptors increase
= | .
@ ,CBM (D and MD) l 0 accuracy, especially for small
E I I vl 1 : H <
E-.'g | LGBM (MD) | training size (<1,000)
\
g —@~— EdgePool MD riptor iliti n
5 EdgePool ~@- EdgePool (MD) descriptors capabilities ca
g L —— be extended to
EdgePool (MD) 1 bt 100 500 1000 2000 3500 formulations/mixtures and
. . . . Train Size polymers
0.00 005 010 015 020 0.25
Test RMSE

Chew, Alex K., et al. Journal of Cheminformatics 16.1 (2024): 1-14. 25



@ Schrodinger

Case Study 1 - Machine
Learning models for
formulations development

A



Predicting large-scale miscibility

Challenge

Solvent miscibility is complex,
especially in ternary or higher-

order systems due to non-additive

interactions

(0]
HO
)J\ © ~70H
Miscibility Acetone Benzene | 1,2-Ethanediol
Acetone miscible miscible
Benzene miscible immiscible
1,2-Ethanediol miscible immiscible

Ld
(3
L]

81 solvents

25
solvents

Formulations: Miscible solvents

Physics modeling

v Acetone, Benzene
v" Acetone, 1,2-Ethanediol
x Benzene, 1,2-Ethanediol

Solution

ML can capture complex
interactions, making it
well-suited for predicting
miscibility in
multicomponent systems

Results

Physic-based
Formulations Modeling of
over 30K mixtures result
in highly accurate models

20 A

Heat of vaporization

o000

N = 1(81 points)

N = 2 (3580 points)
N = 3 (10720 points)
N = 4 (6122 points)
N = 5 (9639 points)

ML modeling

T T
06 08 10

T
14

AH,,
10 o]
08 o ’ -3
& 06 "
E .n,ly
|-n.4-f
024 02k
0{' T LI T T Tl i T 'DD Iﬁ T TE o T T L ek § Lid
[ =
RERBREEEE T "ERREEE EE T
= ™ - ™
Train size Train size
5 7
=
< 0
©
B}
RS
E 7
o 7 TestR2=0.96
104, TestRMSE=0.19
0 -5 0 5

Actual AH,,
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ML needs data: miscibility of organic solvents

CRC handbook of miscible solvents Combinations of 81 solvents
0 35000
HO. -~
M © OH 30000 - - 60000 g
Miscibili ) . —
iscibility Acetone Benzene | 1,2-Ethanediol 02050 0 25000 4 L 50000 (_;
Acetone - miscible miscible solvents O 20000 - 4 — | 40000 §
© RS
3 .
Benzene miscible . immiscible £ 15000+ 30000 P
< 10000 - [ 20000 =
1,2-Ethanediol | miscible | immiscible H K
5000 4 L 10000 g
H S
[ ]
81 solvents Formulations: Miscible solvents 0+ -0 ©
v Acetone, Benzene L I I I T T
v Acetone, 1,2-Ethanediol 1 2 3 4 5 6
x Benzene, 1,2-Ethanediol N components

By enforcing experimentally determined miscibility rules, we increase the likelihood of fully
miscible, multicomponent mixtures

For N components up to five, 19,238 combinations are possible



Physics-based simulations to screen mixture properties

MD generates physically relevant properties

Molecular dynamics

)oj\ & simulations
Acetone \* Formulation properties

(50%) - Density

@ - Heat of vaporization (AH ;)
- Enthalpy of mixing (AH,,,)

Benzene

(50%)

Acetone | | Benzyl alcohol |
| Tetrachloromethane

MD captures experimental trends

1100 7
2 1000 ,,"/
Density e b4
Measures how dense EI P S
molecules are packed in g/cm3 2 A rust-1ess
600600 T(I)O BlIJO 960 10IDO 1100
Actual density
140 =
L 1207 ’/'
. . 5 100 A g4
Heat of vaporization 3™ &
Amount of heat in kJ/mol g o] ,‘ o
to convert liquid to vapor T P g
° 0 2I0 4I0 6I0 BIO 160 1éO 140
Actual AH,qp
2 %
£ ] .’ﬁ
.. < 07
Enthalpy of mixing 5, p
Measures energy released or EE L A
absorbed upon mixing in kcal/mol ~ “ -1 ® k-8
RMSE = 0.30
VI S
Actual AH,,

29



High-throughput MD Simulations to Create Large Dataset

Summary of high-throughput mixture simulations

N

#unique

components Compositions formulations flexamples
1 100 81 81
20:80
40:60
2 50:50 716 3,580
60:40
80:20
20:20:60
20:60:20
3 60:20-20 2,680 10,720
33:33:33
4 25:25:25:25 6,122 6,122
5 20:20:20:20:20 9,639 3639
Total 19,238 30,142

MD opens opportunities to
fine-tune property space

35

Heat of vaporization
-1

A Experiments (34 points)
© MD (30142 points)

06

Heat of vaporization

N
L
A

A
o
A

-
w
i

Increasing N leads to
highly specific properties

cCeo o000

N
N
N=
N
N

= 1 {81 points)

= 2 (3580 poimts)
3 (10720 points)
= 4 (6122 points)
= 5 (9639 points)

06

L] § L v Ll
08 10 12 14 16

Density

30




Different approaches for machine learning in formulations

Requirements for Formulations ML.:

Compositionally-aware: Composition
must be embedded into the model

Permutation invariance: Switching
ingredient orders do not impact predictions

Component independence: Flexibility in
the number of components

Formulation Descriptor Aggregation Approach (FDA)
Descriptors
o] Formulation

L C,*X,
— | @
o
— o

Descriptors

Nz ML Models

© L M{:il_’ (tree-based, neural networks, efc.) [ Property
‘Iv. ® C,*X, std N x5
— | ® min
o max
C2

Nx1 median

Formulation Descriptor Set2Set Approach (FDS2S)

Descriptors Fully connected

° c,', Formulation neural network
— | ® _— Descriptors
® Q\QQ\Q:,Q
TN x1 ® 9\':63':9
¢ Set2Set |—»| @ Z "‘9’“ — Property
B [ ] C,"X, * ""9"}
@
c, T

Formulation Graph Approach (FG)

Graph representation Graph
G=(V,E) convolutions / update Fully connected

I_ : Readout  N€ural network
75 fea:lures :and c, 9&2&9
N
; }_. CHOH
75 fé;itljrns andc,
c,

© | Property
R
S0

31



ML accurately predicts formulation properties

Learning curve: Left-out test set performance as a function of train size

DenSity Formulation Descriptor Set2Set Approach (FDS2S)
T 3 — 3] ==
B: g, Nx1 Set2Set —>|:::|—> §;;‘: — Property
% c;w"_' [:l“_b
2 0.4 11 5 FDA |
0.2 §— FDS2S , PYlY & Parity plot of test set
FG
0.0 L L LA | L R | L 0.0 “rrrmoy T T LI AL | T 0.0 'é""l T T LI R | L i 5 =
"eRSE58 88 ¢ "eRRBE8 88 ¢ "eRRBE8 88 T :
Train size Train size Train size 5 B =
o
Qo
. . . . (&)
FDS2S performs the best in predicting formulation D 51
properties at all data scales o 7 TestR?=0.96
" Test RMSE =0.19
With enough data, ML can accurately predict formulation 1047 : : .
. -10 =5 0 5
properties (even AH,,)
Actual AH,,

32



Important features highlighted from ML models

Descriptors
.’I"
.’I\V'

o C,*X,
o
@
Nx1
® c.*x
2 2
o
]
N x 1

Feature importance: Density

Density

mean-MACCS_107 -

mean-MACCS_114 -

Descriptors

mean-MACCS 160 -

025 000 025
Mean |SHAP|

SMARTS

[F.CLBrI]~*(~*)~*

[CH3]~[CH2]~*

[C;H3,H4]

Formulation /_\

Descriptors

Which features were
most important?

mean
std

min
max
median

Example structures

Y 4

TV A,

Inclusion of halogens and removal of methyl

groups increase density

A 4

ML Models

(tree-based, neural networks, efc.)

—> Property

Descriptors

Feature importance: Enthalpy of mixing

std-MorganFingerprint_850_1192

mean-MorganFingerprint_1015_1044 -

mean-MorganFingerprint_987_1044 -

AH,, Morgan fingerprint Example structures

v, 9
”< ) "\%/

025 000 025
Mean |SHAP|

Inclusion of nitrogen groups lowers the

enthalpy of mixing



Formulation ML predicts broad experimental properties

Predicted log viscosity (cP)

Energy Storage

+Br
Solvent 1 Solvent 2
10% 90%
Temperature = 298.15 K

Formulatlon

machine learning

log viscosity = -0.08

N = 34374

Train RMSE = 0.04
Test R2 =0.97

rain R2 = 0.99

;I'est RMSE = I0.06 T

-1 0 1 2 3
Actual log viscosity (cP)

Pharmaceutical formulations? Oil and gas3

Temperature = 278.15 K

I
J‘I\ HCI O‘Z\/ N ~ HO\/\ X/L ©/
NH2 /\/\/\
DFUQ Solvent 1 Solvent 2 Solvent 1 Solvent 2 Solvent 3
100% 8.4% 92% 5.6% 40.2% 54.2%

Formulation Formulation
machine learning machine learning
Drug solubility (log S) = 1.02 g/100g Motor octane number = 50.7
@ A
—t — 3 + = =
o g 150
g) © Train S @ Train
E 2T| @ Test ] g ® Test
:63 s 100 +
O T T -
D 3
=2 —
o -2 . S 50T .
o N =27166 Qo N =722
L 41 Train R2 =0.99 | S Train R? = 0.93
2 Train RMSE = 0.08 T o4 Train RMSE = 4.72
2 TestR2 = 0.96 ) TestR2=079 T
g 61 Test RMSE = 0.25 4 2 Test RMSE = 6.58
} i } i } 3 t . } }
-6 -4 -2 0 2 o 0 50 100 150
Actual log S (g/100g) Actual motor octane number

'Bilodeau, C., et al. Chemical Engineering Journal, 464, 2023, 142454,
2Bao, Z., et al. Journal of Cheminformatics,16.1, 2024, 117. 34
3Kuzhagaliyeva, N., et al. Communications Chemistry, 5.1, 2022, 111.



Active Learning: Can ML suggest the best formulations?

Active learning workflow

Formulation-Property
Relationships

Train set

Model training

Predict on
new formulations

Add to
training set

Suggest

PRIRPEE  andidates "
Run MD on Library of
new candidates 30 K formulations

Test R?(density)

Top 5% (density)

ML identifies top formulations
random trial-and-error

1.00 +

0.95

0.90 ~

0.85 1 Expected improvement
— Greedy

0.80 1 == Most uncertain
= Random

0.75 T .

0 1000 2000
Train size

T T
0 1000 2000
Train size

Test R2( AHyap )

Top 5% (AHap )

1.00 +

0.95

0.90 -

0.85 A

0.80 -

0.75

0

1
1000
Train size

Ll
2000

1
1000
Train size

Test R2(AH,,)

Top 5% (AH,,)

than

1 1
1000 2000

0
Train size
20
15
10 4
5 -
0 -
1 T
0 1000 2000
Train size

~3X

35



Formulation ML optimization

Optimize materials formulations for a target property

Automated model building and validation for a given formulations vs. property dataset

Input {SMILES | composition | propert _ —
{ datase![ in CSV formr—Lt i Automated model building & validation

#E€IPQA=BLD

Temperature Solubility (modimel) DO SMILES_ 0 SMILES 1 SMILES 2  Drug FxactMSolvent_1_Ex Salvent_2_Ex
278.15 0.0202 dol.org/10.1C NC1=CC(N)=CC=C1  N#CC o 108065748 41.0265451 18.0105647 1 : -
278.15 0.032 doi.org/10.1C NC1=CC{N)=CC=C1  N#CC o 108.065748 41.0265451 18.0105647
78.15 0.0471 doi.org10.1C NC1=CE(N)=CC=C1  N#CC [ 108.068748 410265491 18.0105647 o it 13! -
78.15 0.0576 dol.org10.1C NC1=CE{N)=CC=C1  N#CC [ 108.068748 410265491 18.0105647 ‘ . %
278.15 0.0697 dot.org10.1C NC1=CC{N)=CC=C1  N#CT o 106.066746 41.0265491 180105647 11
78.15 0.0626 dol.org10.10 NC1=CC{N)=CC=C1  NICC [} 108068748 41.0265491 18.0105647 k4 it
278,15 0.0985 doi.0rg/10. 1 NC1=CCN)=CC=C1  NICC [} 108065748 41.0265491 18.0105647 T *
278.15 0.1181 doi.0rg/10. 1 NC1=CC(N)=CC=C1  NICC [} 108.065748 41.0265491 18.0105647 “ } Au
278.15 0.1464 doi.0rg/10. 1 NC1=CC(N)=CC=C1  NICC [} 108065748 41.0265491 18.0105647 o i. b
280,65 0.0247 doi.0rg10.1C NC1=CC{N)=CC=C1  N#CC [} 108.065748 41.0265491 18.0105647 L . . . . . . . H . .
2085 0% SoLoI0 ANCL-CONI-COGE NeCE 0 106.00740 410265451 180105847 - . S : ; Check optimized formulations with MPO scores

\ 4

o
s
Model Name sn_tulorial_battery_slectrolytes.miform 8
n F[B-}(F}F)O coiccoic)on FCIF)IF)COC. g o
Properties  LCE - - 0.744 %
8 o ) e ) zg ) M- 3
Onjective: | Miaximize FAs-IF)FI e COCTIFI(F). w
- 39% 2% ) - y
LCE ) ) |
o | - -
0=8(=0NF)[... CCel 1CCH.... |
Cray: 0B d T J
6% ) A% ) I3 073154 W
Good: 22
CCoccocc| COCCOCo FlAs-)(FNFN... » L4 ad
4% ) z ) © v ) oTaes
ClsiNcios( FCIFNFICOC... O=S5(=0)(F)l
B1% J ‘ % | ‘ T 0.71863 0.71863 184112 0.0959.
FIB-}(FWFO... ccoc(c=0
6% 1 | ‘ 0% 0.71266 0.71266 182418 QATIT3,
NF)COn
) I S 07085, 0.7085 191258 013213,
oK Cancal ceoce
-y 0.70531 0.70531 1.90362 0.15357,
) ) | 3%

Assess target property space



Supervised Learning: active learning

Develop machine v i
learning models, = -
Generate simulation data with supporting - - 83
MSS for structures selected in multi-property |
the initial set and each optimization
iteration for optoelectronic = Apply the Validated
property calculation models to make top-ranked ML
ML Models prediction predictions

. ()
Iteration #3

Iteration #2

Initial Set Active -
L o Make predictions and calculate
earning uncertainties of remaining
Loop structures in the large pool

I =1 Selectstructures for each
iteration based on
L uncertainty and prediction

Large Pool of Materials with Structures Only

37



@ Schrodinger

Case Study 2 - Optimizing
shampoo formulations using
Formulations ML

38



Optimizing shampoo formulations

Challenge

Complex physical interactions
between ingredients making it
difficult to tune formulations to
customer-defined property targets
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Solution

ML models with broad
chemical space training
and multiple properties
can optimize formulations

Results

Formulations ML models
are able to accurately
predict key performance
properties & suggest
new, optimized formulae

ML modeling
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BASF Shampoo formulations dataset

Data from the following source*

scientific data

Explore content ~  About the journal ~  Publish withus ~

nature > gcientific dats ¥ dats descriphors > artiche

Accelerating Formulation Design via Machine Learning:
Generating a High-throughput Shampoo Formulations
Dataset

Anikat Chitre, Bobert ©, B, Querimi, Simon B, Rihm, Dogancan Earan, Benchuan Shy, B Wang, Leog
Wang. Kedar Hipoalgaonkar &= & Alexe] A, Lapkin &2

S Data 11, Artiche rumiber; 728 (2024) | Cite this atichy

3404 Accedses | 1 Allmatie | Mabics

Dataset overview from paper:

812 unique formulations — mixtures of one

surfactant, one conditioning polymer, and one

thickener

— Turbidity (regression) for stable formulations

— Stability (classification)

9,633 shear-rate dependent viscosities
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Shear Rate (1/5)

Log-viscosity distribution

& Texapon® 58 I EC
Flantapon® ACG 30

& Flantapon® LCT
Flantacane® B18

®  Plantacane® 2000
Datryton® MC
Dayton® PK 45

& DaFfryion® ML
DCefyton® AB 30
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s Defrpguan® ACA
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Turbidity distribution

Total = 9111 250 1 Total = 294
2500 Median = 1.06 Median = 25.00
STD=0.81 STD = 601.95
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1500 = 2
=
T
L 100 4
1000 1
500 50 1 .
Y
S
u - |:I = L] LI — 1
-1 0 1 2 3 4 ] 1000 2000 3000 4000
loglAverage Viscosity (cP)) Turbidity (NTU)
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Data conversion for complex ingredient mixtures

Formulation Definitions

COMP_4
058
168

1
143
112
154
152
2.66
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plantapon_amino_scg_l.csv
plantapon_amino_kg_l.csv
dehyquart_a_ca.csv
water.csy
salcare_super_J.csv
dehyguart_cc?_benz.csv

| dehyquart_ccB.cev
 luviguat_excellence.csy

arlypon_tt.csv

A B [ ] E F G H |
1 GROUPOD COMPO GROUP_ 1 COMP_1 GROUP Z COMP_2 GROUP_3 COMP_3 GROUP 4
2 |wated BD.52 dehyton_mi BE3 texapon sh B.52 arlypon 1 335 Wwiquat_exe:
3 water TrA7 dehyton_mi B.55 texapon_sh_: T.7 artypon_it 4 Wiqual_exc
4 water 74.02 texapon_sh © 12.23 dehyton_mi 10.13 arlypon_tt 262 luviqual_exc:
5 water 8.1 dehyton_mi 13.54 texapon_sh_: 12.2 arlypon_it 465 Iuviquat_exc:
B waled 7811 dehyton_ml 048 texapan_sh ! 8.71 arlypan it 4B liniguat_sxe
T water T4.58 texapon_sb_: 9.8 deyton_ml 8.91 arlypon_n 516 viquat_exc:
8 water 74.73 plantacare_ 11.53 dehyquart_a- 9.53 arlypon_it 268 lwviquat_exc:
9 water 7116 dehyguart_a- 11.79 plantacare_g 11.64 arlypon_tt 2.75 Wviquat_exc:
10 water 7395 dehyquart_a- 1163 plantacare_E 8.9 arlypon_tt 3.4 liniguan_exe
11 water 73.49 dehyguart_a- 11.21 plantacare_§ B4 arlypon_tt 457 luviquan_exc:
12 water 78.359 plantacare_g 999 dehyquart_a- 8.18 lviguat_sxc 1.78 arlypon_tt
13 water 70 plantacane_E 1246 dehyguart_a- 119 arlypon_tt 344 Wviqual_exc:
14 water 75.58 dehyton_ab_: 10.15 dehyton_pk_« 8.51 arlypon_it 408 Iuvigquat_exc:
15 |water 74.92 dehyton_pk 1158 detylon_ab_ B.47 luviquat_eac 234 arlypon_tt
16 |water 7292 dehyton_pk_« 11.1 dehyton_ab . 10.88 arlypon_tt 261 Wviqual_exc
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Evaluating multiple property models

Viscosity Turbidity Stability
(Regression) (Regression) (Classification)
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Formulation optimization for shampoo

Viscosit Desired target:
y Middle is better / Goal: \

PHS ) Optimize composition
N . for complex mixtures
5] — L
D Ingredient Choices
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1" of the formulation is water
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Optimization results and best candidate(s)

Average MPO Score (Top 10)

H |

dehyton_me
plantacare_818 dehyquart_cc7_benz
dehyton_pk 45  salcare_super_7

dehyton_ab_30  salcare_super_7

plantapon_acg 50 dehyquart_cc?_benz
plantacare_818 luviguat_sxcellence
plantacare_2000 luviquat_sxcellence
plantacare_2000 luviquat_excellence
plantapon_amino_ dehyquart_cc?_benz

dehyquart_cc?_benz

dehyton_mc dehyquart_cc?_benz
dehyton_pk 45  luviquat_excellence
dehyton_pk 45 dehyquart_cc?_benz

9% surfactant

Dehyton® MC

Amphoacetate: Amphoteric Surfactant

A B C D E F G
1 iteration MPO log(Viscosity)_predict Turbidity (NTU)_predict Stability_predict INGREDIENT_0 INGREDIENT_ 1 INGREDIENT_2 INGREDIENT 3
2 286 0.798 1.273 55.152 0.732 water arlypon_f
3 100 0.758 0.719 27.304 0.929 water arlypon_tt
4 293 0.737 1.153 63.553 0.895 water arlypon_f
5 245 0.734 0.675 34031 0.923 water arlypon_f
& 242 0.652 1.025 59.823 0.689 water arlypon_tt
7 388 0.592 0.554 27.743 0.638 water arlypon_f
8 342 0.531 0.795 44,228 0.455 water arlypon_tt
9 190 0.476 1.213 39.343 0.301 water arlypon_tt
10 335 0.442 0.623 55.201 0.442 water arlypon_f
11 143 0.322 1.424 93.728 0.635 water arlypon_f
12 385 0.320 1.451 82.708 0.080 water arlypon_f
13 323 0.315 1.795 52.660 0.103 water arlypon_tt
MPO Scores
0.8 M
1% thickener

0.7 1

0o ARLYPON® F

0.5 Function

0.4 7 Merionic Sufastan

0.3 Thichirer

0.2 1

0.1 - 1% conditioning polymer

Deh ® CC7 BZ

0 100 200 300 400 yq
[teration

J

comp_0

0.89
0.87
0.86
0.86

0.8
0.88
0.82
0.85

09
0.89
0.88
0.89

K

comp_1
0.01
0.01
0.01
0.01
0.03
0.01
0.02
0.02
0.02
0.02
0.01
0.02

L
comp_2

0.09
011
0.12
0.12
0.15

0.1
0.15
0.12
0.07
0.08
0.08
0.08

M
comp_3

0.01
0.01
0.01
0.01
0.02
0.01
0.01
0.01
0.01
0.01
0.03
0.01

Predicted Properties:

Viscosity 1.273 log(cP)

Turbidity 55 NTU
Stability 73%

Aqueous Solution of a cationic Diallyl Dimethyl Ammonium Chloride/Acrylamide Copolymer
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Success stories in real world
applications
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Fast adoption of digital chemistry brings big business impact
for consumer packaged goods R&D

CHALLENGE : SOLUTION

The Reckitt team incorporated digital
simulation in several R&D areas (e.g.
detergents, drug formulations,
packaging materials). Running digital
testing before experiment reduced
mistakes and improved outcomes.

Result: R&D timelines expedited by 10 times

©

@ Schrodinger | reckitt | 46

The consumer packaged goods market
faces many challenges, including

demands for sustainability, constant
requirement changes and short time-to-
market timelines.




Large-scale de novo design of hole-conducting materials
for organic electronics

CHALLENGE =t R SOLUTION

Molecules with high mobility are . A Scientists from Panasonic and
highly desirable for organic . B WM Schrodinger employed DFT,
electronics. However, it is <. ol machine learning and cloud
extremely costly and time- : 7 L A -C computing to screen over 14 million
consuming to synthesize and o ™ molecules, predicting hole mobility
assess every candidate molecule - S (LRI of the selected top candidates

Result: Over 50 molecules with better performance were identified and the structural effects were discovered

@ Schrodinger | Panasonic 47



Discussion and questions
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