Stem Cells and Regenerative Therapies for Pain: What does the science tell us? What actually works?

Thomas Buchheit, MD

Director, Regenerative Pain Therapies Program

Center for Translational Pain Medicine

Duke Department of Anesthesiology

Disclosures

- Consulting for:
 - Mainstay Medical (Data Monitoring Committee)
 - Summus (Consulting)
 - North Carolina Medical Board (Consulting)
- Current research funding:
 - DoD/NIH
 - SPR Therapeutics
 - USWorldMeds
 - Sana Health
- I receive no consulting fees, honoraria, grants or payments from products and devices discussed in this presentation

Outline

- Brief regulatory review
- Outcomes for Platelet-rich plasma (PRP), Mesenchymal cells (MSCs), and Autologous Conditioned Serum (ACS) for:
 - Knee OA
 - Hip OA
 - Rotator Cuff Tendinopathy
- Review of known and emerging mechanisms
 - Growth factor/immune function
 - Exosome/miRNA activity

Why PRP, MCSs, and ACS?

- Sufficient literature to assess clinical utility
- Meet FDA criteria for use in the US (not FDA approved)

Platelet-rich Plasma (PRP)

Platelet count above physiologic levels (typically 3-5x baseline)

Elevated levels of growth factors

Variable concentrations of monocytes, neutrophils, growth factors, cytokines and enzyme inhibitors

MSCs

- Mesenchymal stem cells, Mesenchymal Signaling Cells, Medicinal Signaling Cells
 - Autologous or allogeneic:
 - Bone marrow aspirate concentrate
 - Cell-Cultured bone marrow stromal cells/stem cells
 - Adipose tissue aspiration
 - Umbilical cord
 - Amniotic/Placenta

Autologous Conditioned Serum (ACS)

- Whole blood secretome/serum product
- Filtered (cell free)
- Elevated levels of:
 - IL-1Ra, IL-4, IL-10, TGF- β , etc
- Likely exosomal mechanisms

FDA Regulation of Biologic Products

- Regulation of cellular products (HCTPs) is through Center for Biologics Evaluation and Research (CBER) at the FDA
- Blood-based biologics such as platelet-rich plasma (PRP) are exempt from regulation as an HCT/P

Regulation of MSCs

- Cellular products that do not have an FDA BLA must meet "361 criteria":
 - Minimally manipulated (definition below)
 - Homologous (definition below)
 - Not reliant on systemic effect
 - Not combined with other articles/medications
- BMAC for peripheral injection appears to meet "361 criteria"

Other Biologic Products

- Cultured or tissue expanded MSCs
- Amniotic or umbilical tissue derived products (fluid or tissue)
- Allogeneic exosome products
- Adipose-based MSCs
- Products that do not meet "361 criteria" are restricted unless used in context of IND/BLA

• <u>https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/questions-and-answers-regarding-end-compliance-and-enforcement-policy-certain-human-cells-tissues-or</u>

 <u>https://www.fda.gov/media/109176/download</u>

PRP

PRP for Knee OA: Meta-Analyses

- Comparison primarily with IA-HA and steroids
 - Meheux et al. 2015
 - "In patients with symptomatic knee OA, PRP injection results in significant clinical improvement up to 12 months"
 - Dai et al. 2017
 - "compared with HA and saline, PRP may have more benefit in pain relief and functional improvement in ... knee OA at 1 year"
 - Han et al. 2019
 - "PRP reduced pain more effectively than HA in patients with KOA at 6 and 12 months"
 - Belk et al. 2020
 - Ave f/u 11 months. "Mean improvement in PRP group was significantly higher in the PRP group (44.7) than the HA group (12.6)"
 - Singh et al. 2021
 - "PRP yielded improved outcome compared with PRGF, HA, CS and placebo for the treatment of symptomatic knee OA at a minimum of 6-month follow-up"

JAMA | Original Investigation

Effect of Intra-articular Platelet-Rich Plasma vs Placebo Injection on Pain and Medial Tibial Cartilage Volume in Patients With Knee Osteoarthritis The RESTORE Randomized Clinical Trial

Kim L. Bennell, PhD; Kade L. Paterson, PhD; Ben R. Metcalf, BSc; Vicky Duong, DPT; Jillian Eyles, PhD; Jessica Kasza, PhD; Yuanyuan Wang, PhD; Flavia Cicuttini, PhD; Rachelle Buchbinder, PhD; Andrew Forbes, PhD; Anthony Harris, MSc; Shirley P. Yu, MPH; David Connell, MMed; James Linklater, MBBS; Bing Hui Wang, PhD; Win Min Oo, PhD; David J. Hunter, PhD

- Multi-center RCT 228 patients, 3 intra-articular injections
- No significant difference between PRP and saline at 12 months
- Appropriate statistical design and analysis
- Intervention arm received a low platelet count product (1.2X baseline)
 - Only published in supplemental material

Platelets: 325 x 10³/mm³ (10⁹/L) Leukocytes: 1.16 10³/mm³ (10⁹/L)

JAMA | Original Investigation

Effect of Platelet-Rich Plasma Injections vs Placebo on Ankle Symptoms and Function in Patients With Ankle Osteoarthritis A Randomized Clinical Trial

Liam D. A. Paget, MD; Gustaaf Reurink, PhD; Robert-Jan de Vos, PhD; Adam Weir, PhD; Maarten H. Moen, PhD; Sita M. A. Bierma-Zeinstra, PhD; Sjoerd A. S. Stufkens, PhD; Gino M. M. J. Kerkhoffs, PhD; Johannes L. Tol, PhD; for the PRIMA Study Group

- Multi-center RCT of 100 patients treated with 2 PRP injections (Arthrex ACP)
- No significant difference between PRP and saline injection through 26 weeks
- Platelet counts, cell counts, growth factors not reported in publication or supplemental materials
 - A previous study noted that ACP system increases platelet count approximately 1.9X baseline¹

1. https://www.arthrex.com/resources/white-paper/yEnl8MejfUa-DAF8wewU1g/comparison-of-the-arthrex-acp-double-syringe-system-and-regenkit-prp-regen-laba

The Importance of Product Clarification

• Letter to Editor: Product characteristics should be reported in all biologic therapy publications

Do Low Platelet/Low Leukocyte Products Release Appropriate Growth Factors?

MSCs

Meta-Analyses of MSCs in Knee OA

Several include BMAC and Adipose MSCs

- Jevetostky et al. 2017
 - "While MSC therapy has a positive impact... there is limited high quality data"
- Yubo et al. 2017
 - "MSC treatment showed significant decrease in VAS scores after 24 months"
- Ha et al. 2019
 - "MSCs provide improvements in knee OA at short term follow-up (<28 weeks)"
- Ding et al. 2020
 - "Cell-based therapies significantly improved KOOS scores at 12months"
- Dai et al. 2021
 - "Intra-articular MSC injection was not found to be superior to placebo"
- Wei et al. 2021
 - "...findings suggested that MSCs are effective in treating KOA"

MSC RCTs:

- Several positive RCTs for the use of MSCs as adjuvants to surgery
- Several positive RCTs of cultured MSCs (most outside US)
- 1 RCT of stand-alone, non-cultured MSC treatments

1. Gobbi et al. Multipotent stem cells and scaffold for the treatment of chondral defects of the knee. Knee Surg Sports Traumatol Arthrosc. 2017

2. Orozco L et al. Treatment of Knee Osteoarthritis With Autologous MSCs. Transplantation Journal. 2013

3. Emadedin et al. Long-term f/u of intra-articular injection of autologous MSCs. Archives of Iranian Medicine. 2015

Vangsness et al. Adult human MSCs via intra-articular injection following partial meniscectomy. JBJS. 2014
Vega A, Martín-Ferrero MA. Treatment of Knee Osteoarthritis With Allogeneic Bone Marrow Mesenchymal Stem Cells. Transplantation. 2015

6. Soler R, Orozco L et al. Ex vivo expanded autologous MSCs for osteoarthritis of the knee. Knee. 2016.

Original Research

Bone Marrow Aspirate Concentrate Is Equivalent to Platelet-Rich Plasma for the Treatment of Knee Osteoarthritis at 1 Year

A Prospective, Randomized Trial

Adam W. Anz,*[†] MD, Ryan Hubbard,[†] MD, Nicole K. Rendos,[†] PhD, Peter A. Everts,[‡] PhD, FRSM, James R. Andrews,[†] MD, and Joshua G. Hackel,[†] MD

Investigation performed at the Andrews Research & Education Foundation, Gulf Breeze, Florida, USA

• 90 patients randomized to MSCs or PRP

MSCs and Cartilage Growth

- Shin et al. 2018:
 - Meta-analysis of 8 studies that evaluated symptoms and radiographic cartilage changes with treatment
 - Significant analgesia and functional improvement noted by studies
 - No evidence of cartilage re-growth by MRI

Autologous Conditioned Serum (ACS)

ACS: RCTs

- Baltzer et al. 376 patients
 - Blinded RCT of ACS vs HA or saline
 - Significant improvements in pain
 - Analgesia sustained at 2-year follow-up
- Yang et al. 167 patients
 - Blinded RCT of ACS vs saline
 - Significant improvements in KOOS scores in ACS group

Baltzer A. et al. Osteoarthritis and Cartilage 2009;17:152-160 Yang et al. Osteoarthritis and Cartilage. 2008. Autologous IL-1 receptor antagonist improves symptoms and function

Summary of Evidence: Knee OA

For platelet-<u>rich</u> plasma (12 months)

For low platelet/low leukocyte "PRP"

BM MSCs: (≥12 months)

ACS: (≥2 years)

Hip OA: PRP

Contents lists available at ScienceDirect International Journal of Surgery journal homepage: www.elsevier.com/locate/ijsu

Review

Platelet rich plasma versus hyaluronic acid in patients with hip osteoarthritis: A meta-analysis of randomized controlled trials

Ye Ye^a, Xiang Zhou^{b,*}, Shuiwei Mao^b, Jun Zhang^b, Bingmin Lin^b

- Meta-analysis of 4 RCTs using PRP:
 - Battaglia et al. (leukocyte poor)
 - DiSante et al. (leukocyte poor)
 - Doria et al. (Median patient age= 68)
 - Dallaria et al. (Excluded patients over 65)
- PRP not superior to HA at 6 and 12 months

Ultrasound-Guided Injection of Platelet-Rich Plasma and Hyaluronic Acid, Separately and in Combination, for Hip Osteoarthritis

A Randomized Controlled Study

Dante Dallari,^{*†} MD, Cesare Stagni,[†] MD, Nicola Rani,[†] MD, Giacomo Sabbioni,[†] MD, Patrizia Pelotti,[‡] MD, Paola Torricelli,[§] BSc, Matilde Tschon,[§] PhD, and Gianluca Giavaresi,[§] MD Investigation performed at Rizzoli Orthopedic Institute, Bologna, Italy

2016 RCT of 111 patients

Received 3 injections:

PRP (Activated, double spin) HA (1,500 kDa) PRP/HA

PRP superior to HA and combination therapy at 3,6, and 12 months

MSC for Hip OA: Evidence

No RCTs of MSCs BMAC for Hip OA

- Case series of BMAC and adipose MSCs positive
- RCTs of MSCs as surgical adjuvant
 - Limited outcomes in AVN

Darrow et al. 2018. Clinical Medicine Insights: Case Reports Dall'Oca. Mesenchymal Stem Cells injection in hip osteoarthritis: preliminary results. Acta Biomed. 2019;90(1-s Hauzeur et al. Inefficacy of autologous BMAC in osteonecrosis. 2018. International Orthopedics

ACS for Hip OA: Evidence

ACS for Hip OA

- Observational trial of 119 patients treated with ACS
- Significant improvement in all groups
- No advantage of addition of steroid or IL-1Ra

Baltzer et al. A new treatment for hip OA: ACS. Orthopedic Reviews. 2013

Summary of Evidence: Hip

- PRP (patients over 65 or low leukocyte)
- PRP (younger patients, higher platelet/GF)
- MSCs
- ACS

PRP for Rotator Cuff Tendinopathy: Evidence

RESEARCH ARTICLE

Platelet-rich plasma for rotator cuff tendinopathy: A systematic review and metaanalysis

Mohamad Shariff A. Hamid¹°, Shariff Ghazali Sazlina₍₀^{2,3}° *

- Rotator Cuff Tendinopathy Conclusion:
 - PRP superior analgesia than control at 6 and 12 months
 - More effective with use of HA (1 trial)

Rotator Cuff : MSC Evidence

Ann Rehabil Med 2021;45(4):274-283 pISSN: 2234-0645 • eISSN: 2234-0653 https://doi.org/10.5535/arm.21078

Mesenchymal Stem Cells Use in the Treatment of Tendon Disorders: A Systematic Review and Meta-Analysis of Prospective Clinical Studies

Woo Sup Cho, MD¹, Sun Gun Chung, MD, PhD², Won Kim, MD, PhD³, Chris H. Jo, MD, PhD³, Shi-Uk Lee, MD, PhD⁴, Sang Yoon Lee, MD, PhD⁴

- 3 studies for MSCs in rotator cuff tendinopathy:
 - 2 studies as adjuvant to surgery:
 - 1 study for MSCs alone:
 - Jo et al: Adipose MSCs
- No studies of BMAC as solo therapy

ACS for Rotator Cuff: Evidence

The efficacy and safety of autologous conditioned serum (ACS) injections compared with betamethasone and placebo injections in the treatment of chronic shoulder joint pain due to supraspinatus tendinopathy: a prospective, randomized, double-blind, controlled study

Nemanja Damjanov¹, Branko Barać¹, Jelena Čolić¹, Vladan Stevanović², Ana Zeković¹, Goran Tulić³

¹Institute of Rheumatology, ²Institute for Orthopedic Surgery "Banjica", ³Clinic for Orthopedic Surgery and Traumatology, Clinical Center of Serbia, University of Belgrade School of Medicine, Belgrade, Serbia

Summary of Evidence: Rotator Cuff

- PRP
- PRP with HA
- MSCs
- ACS

? ہے ک ? ? ? ?

Mechanisms and Future Investigations

Primary OA by Site

Knee 67%

Hip 58%

Ankle: 9%

- Ankle cartilage is thinner than knee or hip but more resistant to OA
- Why?

Valderrabano et al. Etiology of Ankle OA. Clin Ortho and Res. 2008

DEVELOPMENTAL BIOLOGY

Analysis of "old" proteins unmasks dynamic gradient of cartilage turnover in human limbs

Ming-Feng Hsueh^{1,3}, Patrik Önnerfjord², Michael P. Bolognesi³, Mark E. Easley³, Virginia B. Kraus^{1,4}*

Deamidation Rates of Joint Proteins

Epigenetic Reprogramming: miRNA

- miRNAs (e.g., miR-100-5p, miRNA 140, miR-92a-3p) regulate:
 - Cytokine expression
 - Immune activation
 - TRP channel function
 - Cartilage growth
 - Nerve regeneration

Exosome Delivery of miRNA?

- Exosomes Contain over 3,000 miRNAs
- Exosomes from cells treated with IL-10 have anti-inflammatory properties
- Exosomes from arthritis patients induce arthritis in recipient joints
- Exosome depletion reduces effectiveness of biologic therapies

Börger et al. (2017). "MSC-Derived Extracellular Vesicles and Their Potential as Novel Immunomodulatory Therapeutic Agents." <u>Int J Mol Sci</u> 18(7). Shiue et al. (2019). "MSC exosomes as a cell-free therapy for nerve injury-induced pain." Pain 160 Jeon et al (2019). "Senescence cell-associated extracellular vesicles serve OA." <u>JCI Insight</u>

Summary

- Biologic therapies need to be assessed with greater granularity
 - These therapies are not panaceas
 - Publications must describe the product used
- "Unmeasured" factors (miRNA, exosomes) likely play an important part of the therapeutic response
 - Research ongoing

