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Integral	equations	in	microfluidics
• Increased	interest	in	microfluidic	applications,	both	due	to	

manufactured	microfluidic	devices	and	applications	in	biology.
• At	this	small	scales,	Stokes	equations are	applicable.
• Linear	elliptic	PDEs such	as	Stokes	equations	can	be	reformulated	as	

boundary	integral	equations.
• In	droplet	based	micro	fluidics:	drops	stabilized	by	surfactant	not	to	

coalesce.	

Droplet	based	microfluidics	–
a	powerful	technology	
with	future	potential	

Pictures	courtesy	of	the	lab	of	
Helene	Andersson-Svahn,	KTH.



Stokes	equations

For	drop	with	surface	𝜕Ω#:
Jump	condition	at	interface	𝜕Ω#for	normal	stress:	

𝜏𝑛&|()*(+,-+ − 𝜏𝑛&|,/*(+,-+ = 𝜎𝜅𝒏4

𝜏	:	stress	tensor											𝜎 :	surface	tension	coefficient
𝜅 :	mean	curvature				𝒏4 :	outward	unit	normal	vector

Outer	fluid	viscosity	𝜇7/	drop	viscosity	𝜇8 enters	
𝜏𝑛&|()*(+,-+/𝜏𝑛&|,/*(+,-+

Formula	above	for	clean	drop.																																																																
With	surfactants,	the	interfacial	force 𝒇 = 𝜎𝜅𝒏4	will	be	modified.	

𝜇Δ𝒖 = 𝛻𝑝, 𝛻 ⋅ 𝒖 = 0

𝒖 velocity,	𝑝 pressure.



Green’s	functions/Fundamental	solutions

• The	major	fundamental	solution	or	free	space	Green's	function	for	the	
Stokes	equations	is	the	so-called	Stokeslet.

3D:

2D:

� There	is	also	the	Stresslet.

3D:

2D:

𝑆,B 𝒙 − 𝒚 =
𝛿,B
𝒙 − 𝒚 +

(𝑥, − 𝑦,)(𝑥B − 𝑦B)
𝒙 − 𝒚 K , 							𝑖, 𝑗 = 1,2,3.

𝑆,B 𝒙 − 𝒚 = −𝛿,B	log 𝒙 − 𝒚 +
(𝑥, − 𝑦,)(𝑥B − 𝑦B)

𝒙 − 𝒚 U , 							𝑖, 𝑗 = 1,2.

𝑇,BW 𝒙 − 𝒚 = −6
(𝑥, − 𝑦,)(𝑥B − 𝑦B)(𝑥W − 𝑦W)

𝒙 − 𝒚 Y , 							𝑖, 𝑗, 𝑘 = 1,2,3.

𝑇,BW 𝒙 − 𝒚 = −4
(𝑥, − 𝑦,)(𝑥B − 𝑦B)(𝑥W − 𝑦W)

𝒙 − 𝒚 \ , 							𝑖, 𝑗, 𝑘 = 1,2.



Ω1,µ1

Ω2,µ2

Ω3,µ3

Ω0,µ0

Γ1

Γ2

Γ3

Immiscible	two-phase	flow	(drops)

Γ = ^ Γ#

_

#`a

Interface	condition:		𝜏𝑛&|()*(+,-+ − 𝜏𝑛&|,/*(+,-+ = 𝜎𝜅𝒏4
𝜏	:	stress	tensor											𝜎 :	surface	tension	coefficient
𝜅 :	curvature															𝒏4 :	outward	unit	normal	vector

For	any	point	𝒙 on	a	drop	boundary	Γ#,𝑚 = 1,⋯ ,𝑀

𝒖 𝒙 − 2
𝜆 − 1
𝜆 + 1𝑲 𝒖 𝒙 =

2
𝜆 + 1 (−𝑺	[𝜎𝜅𝒏

4] 𝒙 + 𝒖j(𝒙))

where

𝑺[𝒇] 𝒙 =
1

8𝜋𝜇7
m n 𝒇(𝒚)	 o 𝑆(𝒙 − 	𝒚)𝒅𝑺𝒚

qr

_

#`a

𝑲s 𝒖 𝒙 =
1

8𝜋𝜇7
m n 𝒖(𝒚) o 𝑇(𝒙 − 	𝒚) o 𝒏4(𝒚)𝒅𝑺𝒚

qr

_

#`a

𝜆 = 𝜇/𝜇7
Ratio	of	viscosity
(drops/outer	fluid)

𝑆: Stokeslet
𝑇	: Stresslet



Boundary	integral	equations	and	discretizations

• Discretization	by	a	Nyström method
– Collocation	points	=	quadrature	points
– Accuracy	of	the	numerical	scheme	=	

accuracy	of	the	quadrature	method
• Reducing	the	number	of	unknowns	–

discretizing	only	the	boundaries		of	the	
domain,	not	the	volume.	

• Second	kind	integral	equation:	condition	number	of	
system	matrix	does	not	increase	with	refinement.	

This	implies:
• Number	of	iterations	with	e.g.	GMRES	constant	with	refinement.	
• Computational	complexity	scales	as	cost	of	matrix	vector	

multiply.	

Spherical Harmonics: Definition and Properties

Test case for geometric quantities

M(p) |H|1 |K |1 Area Volume

162(8) 1.6127e-01 4.6906e-01 5.6715e-03 2.1119e-03

578(16) 2.8691e-04 1.1839e-03 2.9194e-06 1.1502e-07

1250(24) 3.6348e-07 1.9760e-06 3.0705e-10 3.9520e-13

2178(32) 7.3296e-11 6.8180e-11 9.7790e-15 2.8546e-15

3362(40) 1.6941e-12 1.3552e-11 4.2517e-16 2.0616e-15

4802(48) 6.2265e-12 1.9124e-11 3.2597e-15 2.6960e-15

Table : Table of relative errors for the test case

7/42



Main	challenge	for	Integral	Methods	(1/2):	
Dense	matrices

• Slow	decay	of	fundamental	solutions	
yield	full	(dense)	system	matrices.																																																													
O(N2)	cost	for	matrix-vector	multiply.	

• Fast	summation	methods	needed.	
– Fast	multipole	methods	(FMM)	and	FFT	based	methods.
– Combined	with	iterative	methods,	such	as	GMRES,	total	work	

reduced	to	O(N	log	N)	for	well	conditioned	integral	formulations.	

The	3D	Stokeslet (𝒓&= r/ 𝒓 )

𝑆 𝒓 =
1
𝒓 1 + 𝒓&𝒓&

• Our	contribution:		The	Spectral	Ewald	Methods.																															
A	set	of	spectrally	accurate	FFT	based	fast	methods.
– Based	on	so	called	Ewald	summation.	
– Triply	periodic	most	natural,	for	Stokeslet,	Stresslet,	Rotlet.
– Extended	also	to	domains	with	periodicity	in	one	and	two	of	the	

three	directions,	and	recently	also	for	non-periodic	domains.	
– Work	with	D.	Lindbo,	L.	af Klinteberg and	D.	S.	Shamshirgar.	



Main	challenges	for	Integral	Methods	(2/2):	
Quadrature

• We	will	have	integrals	containing	both	the	
Stokeslet and	the	Stresslet.	

• Special	quadrature	methods	needed!								
• Currently	a	very	active	research	field.

Integral	nearly	singular	
at	close	interactions

• Our	contributions:	
– Highly	accurate	method		based	on	Gauss-Legendre	

quadrature	for	2D	drops	(w	R.	Ojala).	
– Development	of	Quadrature	by	Expansion	(QBX)	w			

L.	af Klinteberg,	M.	Siegel.
– Will	discuss	this	today.	

The	3D	Stokeslet :			𝑆 𝒓 = a
𝒓
1 + 𝒓&𝒓& ,		𝒓&= r/ 𝒓 .

∫ 𝑆 𝒙 − 𝒚�� 𝒇 𝒚 	d𝑺𝒚
- Integral	singular	at	𝒙 = 𝒚	.
- 𝒙	close	to	surface:	Nearly	singular.	



The	interior	Laplace	problem
• Interior	Laplace	problem	in	2D,		with	Dirichlet	BCs.	

Ω

∂Ω

Γ = ∂Ω,   
assumed smooth. 

This	integral	equation	can	also	be	
formulated	in	complex	variables,	
and	we	will	use	that	formulation	in	
the	following.	

The	double	layer	density	𝜇	is	the	solution	of	the	integral	equation:	

	
1
2 𝜇(𝒙) +

1
2𝜋 n 𝜇 𝒚

𝜕
𝜕𝑛�

log 𝒙 − 𝒚 d𝑆(𝒚) 	= 𝑔 𝒙 , 	𝒙 ∈ 𝜕Ω
��

where	𝑔 is	the	Dirichlet data.

The	solution	for	any	point	x ∈ Ω can	be	represented	with

𝜑 𝒙 = 𝐷 𝜇 𝒙 =
1
2𝜋 n 𝜇 𝒚

𝜕
𝜕𝑛�

log 𝒙 − 𝒚 d𝑆(𝒚)	
��

This	is	obtained	by	using	the	limit
lim

�→)∈��
�∈�

𝐷 𝜇 𝒙 = a
U
𝜇 𝒙 + 𝐷 𝜇 𝒙



The	interior	Laplace	problem																					
(complex	variable	formulation)

• Finite	limit	as	𝜏 → 𝑧 exists.
• Discretized	with	a	Nyström method.
• 16-point	Gauss-Legendre	panels.
• Solved	with	high	accuracy	to	find	the	

double	layer	density	𝜇	on	the	boundary	
(w	GMRES	and	FMM).	

• Well	conditioned	matrix,	discretization	of	
second	kind	integral	equation.	

Distribution	of	points,	
16-point	Gauss-Legendre	rule.	

Example	with	
four	panels.	

The	double	layer	density	𝜇	is	the	solution	of	the	integral	equation:	

																	
1
2 𝜇(𝑧) +

1
2𝜋 n 𝜇 𝜏 Im

d	𝜏
𝜏 − 𝑧 = 𝑔 𝑧 , 𝑧 ∈ ℂ, 𝑧 ∈ 𝜕Ω

��
where	𝑔 is	the	Dirichlet data.



Error	in	solution	of	the	Laplace	equation
The	solution	at any	point	𝑧 ∈ Ω can	be	evaluated	as:	

									𝜑 𝑧 = 𝐷 𝜇 𝑧 =
1
2𝜋 n 𝜇 𝜏 Im

d	𝜏
𝜏 − 𝑧 								

��
Discretized	with	16	point	Gauss-Legendre	panels.

Colors: Measured	numerical	errors.	

• Can	we	understand	and	estimate	
this	error?

• How	can	we	fix	it?27	panels.



A	1D	example
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δ= 0.2.
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n 𝑓 𝑡 	d𝑡, 𝑓 𝑡 =
a

�a

1
𝑡U + 𝛿U

𝑅a� 𝑓 = n 𝑓 𝑡 	d𝑡	 −m𝑤,𝑓(𝑡,)
a�

,`a

,
a

�a
16	point	Gauss-Legendre	quadrature	rule

Error	 𝑅a� 𝑓 vs	𝛿U

𝑓 𝑡 , 𝛿 = 0.2	



Classical	error	estimate

𝑅/[𝑓] ≤
𝐿U/�a 𝑛! \

2𝑛 + 1 2𝑛 ! K 𝑓 U/
j

𝑛	- point	Gauss-Legendre	rule	on	interval	of	length	𝐿.
(integrates	polynomials	up	to	degree	2𝑛 − 1 exactly.

Over	estimates	the	error	- especially	for	small	𝛿	
For	𝛿 < 0.5	
- error	estimate	grows exponentially	with	𝑛.
- actual	error	decreases exponentially	with	𝑛.

With 𝑓 U/
j = U/ !

��� �
,	and	Stirlings formula	for	factorials

𝑅/[𝑓] ≤
4𝜋

𝛿U 2𝛿 U/ 𝑓 U/
j



• Want	error	estimates	for	evaluating	(𝑎, 𝑏 ∈ ℝ, 𝑏 > 0,	𝑝 = 1,2, …)

• Assume	an	n-point	Gauss-Legendre	rule	is	used.	

• Can	use	contour	integrals	and	residue	calculus	(e.g.	Donaldson	end	
Elliott,	1972),	to	derive	such	an	estimate.	

• Aiming	for	practical	estimates,	not	bounds!	

New	error	estimate

n 𝑓¦ 𝑡 	d𝑡
a

�a
= n

1
𝑡 − 𝑡7 ¦ d𝑡, 𝑡7 = 𝑎 + 𝑖𝑏,	

a

�a

n 𝑔¦ 𝑡 	d𝑡
a

�a
= n

1
𝑡 − 𝑎 U + 𝑏U ¦ d𝑡.

a

�a



The	error	in	the	approximation	of	

with	the	n-point	Gauss-Legendre	rule,	is	in	the	asymptotic	limit	𝑛 → ∞

Theorem	for	quadrature	error

For	𝑏 ≪ 1 we	have	

Note	exponential	decay	with	𝑛,	also	for	small	𝑏.	

n 𝑓¦ 𝑡 	d𝑡
a

�a

𝑓¦ 𝑡 = 𝑡 − 𝑡7 �¦, 		 𝑡7 = 𝑎 + 𝑖𝑏, 𝑎, 𝑏 ∈ ℝ, 𝑏 > 0

𝑅/[𝑓¦] =
2𝜋

𝑝 − 1 !	

2𝑛 + 1

𝑡7U − 1
�

¦�a 1

𝑡7 + 𝑡7U − 1
�

U/�a

𝑅/[𝑓¦] < ~
2𝜋

𝑝 − 1 ! 2𝑛
¦�a𝑒�U¬/ as			𝑛 → ∞

af Klinteberg &	T.,		Adv.	Comput.	Math,	2017.



• Theorem	with	similar	result	for	𝑔¦(𝑡).
• Our	earlier	1D-example:		𝑓 𝑡 = 𝑔a 𝑡 , with	𝑎 = 0, 𝑏 = 𝛿.

• Estimate	very	accurate	also	for	this	moderate	n.

0 0.5 1 1.5 2

10−10

100

δ2

 

 
Measured error
Error estimate

Estimate	for	our	1D	example

n 𝑔a 𝑡 𝑑𝑡,							
a

�a
𝑔a 𝑡 =

1
𝑡U + 𝛿U

Error	estimate for	𝑛 = 16	(𝑧 = 𝛿𝑖)

𝑅a�[𝑔a] ≅
1
𝛿 Im

2𝜋

𝑧 + 𝑧U − 1� KK



• Study	the	quadrature	error	for	

as	a	function	of	𝑡7 ∈ ℂ.
• Can	view	this	as	one	flat	panel	

between	-1	and	1.

• 16	point	Gauss-Legendre		quadrature	rule	(𝑛 = 16).

Error	in	the	complex	plane

n 𝑓a 𝑡 	d𝑡 =
a

�a
n

d𝑡
𝑡 − 𝑡7

,
a

�a
	

Colors:	Measured	numerical	errors.	
Black	contours:	Error	estimate	𝑒¯°± 𝑡7 .

𝑅a�[𝑓a] ≅ 𝑒¯°± 𝑡7 =
2𝜋

𝑡7 + 𝑡7U − 1
�

KK
The	ellipses	have	foci	in	±1,	and	are	
known	as	Bernstein	ellipses.	

Error	for t7 ∈ ℂ.



• Want	to	estimate	the	quadrature	error	for

evaluated	by	a	panel-based	16	point	Gauss-Legendre		quadrature	rule.

Back	to	the	Laplace	equation	

• Denote	by	𝑒, 𝑧 the	error	from	panel	Γ,.
• Total	error: In	practice:	

Enough	to	include	contribution	
from	two	closest	panels.

• Can	use	estimate	for	a	flat	panel	to	estimate	the	error	for	each	panel.
– Map	the	actual	panel	to	a	panel	with	end	points	at	-1	and	1.	
– Map	𝑧7 to	𝑡7 using	that	mapping.

• Must	include	density	𝜇 in	the	estimate.

𝜑 𝑧7 =
1
2𝜋

n 𝜇 𝜏 Im
d	𝜏

𝜏 − 𝑧7
, 𝑧7 ∈ Ω								

��

𝑒 𝑧 = m 𝑒, 𝑧
³´µ�¶·¸

,`a



Estimate	of	Laplace	solution	error

Colors:	Measured	numerical	errors.	Yellow	contours:	Error	estimate.

𝑒¯°± 𝑡7 =
𝜇 ¹º(q»)

𝑡7 + 𝑡7U − 1
�

U/�a

• Simple	mapping	as	if	each	panel	is	flat	to	determine	𝑡7 from	𝑧7.

𝑛 = 16

• Rather	good	estimate,	but	less	so	for	panels	far	with	higher	curvature.	

Error	in	evaluating

𝜑 𝑧7 =
1
2𝜋 n 𝜇 𝜏 Im

d	𝜏
𝜏 − 𝑧7

, 𝑧7 ∈ Ω
��



A	more	accurate	mapping

• Analytic	continuation	of	𝛾	approximated	by	Legendre	interpolant:

• Solve	for	𝑡7 using	Newton’s	method.	

z0

z = �(t)

�1 1

t0

t 2 C

• Given	target	𝑧7 and	nodes	 𝑧, , 𝑖 = 1,… , 𝑛 on	panel,	want	to	find	
𝑡7 such	that	(𝛾(𝑡) parameterization	of	panel),	

𝑧7 = 𝛾 𝑡7 .

𝛾 𝑡 ≈ 𝑃/ 𝛾 𝑡 = m 𝛾&ℓ𝑃ℓ(𝑡)
/�a

ℓ`7

𝛾&ℓ =
2ℓ + 1
2 m𝑃ℓ 𝑡, 𝑤,𝑧,

/

,`a

𝑛 = 16

𝑧 = 𝛾(𝑡)
𝑡 ∈ ℂ

−1 1

𝑡7
𝑧7



• Study	the	quadrature	error	for	

as	a	function	of	𝑧7.
• Numerically	solve	for	corresponding	𝑡7.	
• Use	estimate	for	flat	panel.	

Error	from	one	panel

n
1

𝑧 − 𝑧7
d𝑧

Æ

Colors:	Measured	numerical	errors.	
Black	contours:	Error	estimate	𝑒¯°± 𝑡7 .

𝑅a�[𝑓a] ≅ 𝑒¯°± 𝑡7 =
2𝜋

𝑡7 + 𝑡7U − 1
�

KK



Estimate	of	Laplace	solution	error

Colors: Measured	numerical	errors.	Black	contours:	Error	estimate.

𝑒¯°± 𝑡7 = Im
𝑃/[𝜇](𝑡7)

𝑡7 + 𝑡7U − 1
�

U/�a

• For	panel	close	to	𝑧7, determine	𝑡7	by	Newton	solve.	
• To	include	density	𝜇, form	Legendre	interpolant	also	for	𝜇.

𝑛 = 16• Use	estimate

Error	in	evaluating

𝜑 𝑧7 =
1
2𝜋 n 𝜇 𝜏 Im

d	𝜏
𝜏 − 𝑧7

, 𝑧7 ∈ Ω
��



The	Helmholtz	equation
• The	Helmholtz	equation	

Colors:	Measured	numerical	errors.	
Black	contours:	Error	estimate.

2D	Helmholtz,	
• exterior	Dirichlet problem,	
• Sommerfeld radiation	condition.	

has	the	fundamental	solution

∆𝑢 + 𝑘U𝑢 = 0

𝐺W 𝑧7, 𝑧 =
𝑖
4𝐻7

a(𝑘 𝑧7 − 𝑧 )

• Singularity	at	𝑧7 = 𝑧 is	of	log-type,	can	show	that	estimate	for	
Laplace	double	layer	holds	also	for	Helmholtz	double	layer.		

𝑒¯°± 𝑡7 =
𝜇 ¹º(q»)

𝑡7 + 𝑡7U − 1
�

U/�a



Quadrature	approaches	in	1D/2D
• Many	people	have	worked	with	designing	quadrature	approaches	

for	singular	integrals,	with	techniques	such	as
• Singularity	subtraction	(treat	some	piece	analytically,	reduce	

the	singularity	of	what	remains	to	be	handled	numerically).
• Modified	quadrature	weights	(specific	kernel	and	geometry)
• Change	of	variables	that	removes	the	principal	singularity.	

• Not	as	much	has	been	done	for	nearly	singular	integrals,	which	is	
often	more	difficult.	

• An	excellent	method	for	2D	was	introduced	by	Helsing and	Ojala
(2008),	handles	both	singular	and	near	singular	integrals	efficiently	
to	extremely	high	accuracy.	

Some	names:	B.	Alpert,	T.	Beale,	G.	Biros,	J.	Bremer,	O.	Bruno,	M.G.	
Duffy,	Z.	Gimbutas,	S.	Kapur,	R.	Kress,	J.N.	Lyness,	V.	Rokhlin,	A.	Sidi,	J.	
Strain,	L.	Ying,	D.	Zorin,	and	more….	



Special	interpolatory quadrature	–
”Helsing – quadrature”

• Complex	scaling	and	translation	to	get	end	points	of	panel	at	-1	and	1.
• Second	integral	is	over	transformed	panel	ΓB ,	𝑧7 is	the	transformed 𝑧.	
• Solution	of	a	Vandermonde system	to	find	the	expansion	coefficients.
• Solve	instead	transposed	system,	with	right	hand	side	independent	on	values	

of	𝑓,	depending	only	on	𝑧7.
• This	way,	conditioning	can	be	kept	under	control.	

Technique	can	be	applied	to	any	kernel	that	can	be	integrated	analytically	
when	multiplied	with	a	complex	monomial.	

• The	𝑝W: 𝑠	can	be	evaluated	analytically.	Done	by	recursion once	𝑝7 computed.	
• Error	in	solution	of	the	𝑐W: 𝑠	can	be	kept	close	to	round-off.	

Helsing and	Ojala (2008)

𝐼 𝑧 = n
𝑓 𝜏 d𝜏
𝜏 − 𝑧qÎ

≈ m𝑐W n
𝜏Wd𝜏
𝜏 − 𝑧7

a

�a
= m𝑐W𝑝W

aY

W`7

aY

W`7



Error	in	solution:	Special	quadrature	method

Regular  quadrature. With special  interpolatory quadrature.

• Special	quadrature	used	when	evaluation	point	𝑧 “too	close”	to	𝜕Ω.
• Interpolatory quadrature,	Helsing and	Ojala (2008).	

𝜑 𝑧 =
1
2𝜋 n 𝜇 𝜏 Im

d	𝜏
𝜏 − 𝑧 								

��

If	𝜇	on	each	panel	approximated	to	round	off	with	a	15th degree	polynomial	
in	the	complex	variable,	quadrature	will	be	accurate	to	round	off.	



Stokes	flow	with	drops	in	2D
• Write	integrals	in	complex	form,	apply	interpolatory quadrature as	needed.
• Extension	of	Helsing &	Ojala,	see	Ojala &	T.	,	JCP	2015.	
• Many	other	components	for	full	method,	with	time-stepping,	arclength

preserving	tangential	velocity,	global	spatial	adaptivity….

Clean	drops	as	black contours.

Colored	contours	show	concentration	of	surfactant	that	has	been	added	to	modified	
the	surface	tension	(not	discussed	here,	with	Sara	Pålsson).

Shear	flow

Extensional	flow
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Quadrature	by	expansion	(QBX)	

• The	interpolatory quadrature	used	in	2D	
does	not	naturally	extend	to	3D.	

• Quadrature	by	Expansion	(QBX)	
introduced	by	Klöckner et	al	(JCP,	2013)	
for	the	Helmholtz	equation	in	2D.	

• A	general	idea	that	extends	to	3D.	

The	idea	is	as	follows:	

• Even	though	the	integral	is	nearly	singular,	
the	field that	is	produces	is	smooth.	

• Create	a	local	expansion	around	a	center	𝑧7	away	from	the	boundary.	
• The	coefficients in	the	expansion	will	be	evaluated	using	upsampled

quadrature	(will	get	to	what	that	means).	
• Evaluate	the	local	expansion	to	obtain	the	result.	

Start	discussion	in	2D	for	Laplace	equation,	before	we	move	to	Stokes	in	3D.		
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Quadrature	by	expansion	(QBX)	

• For	Laplace	double	layer	in	2D	

for	center	𝑧7 such	that	 𝑧 − 𝑧7 < 𝑤 − 𝑧7 .

• Coefficients	𝑎# computed	using	upsampled quadrature,	
⟹	approximation	𝑎Ð#

• The	Green’s	function	is	split,	

𝐺 𝑧,𝑤 = m 𝐴# 𝑤, 𝑧7 𝐵#(𝑧, 𝑧7)
j

#`7

𝜑 𝑧 = Im m 𝑎# 𝑧 − 𝑧7 #,
j

#`7

𝜑 𝑧 =
1
2𝜋n 𝜇 𝑤 Im

d	𝑤
𝑤 − 𝑧 								

q

𝑎# =
1
2𝜋n

𝜇 𝑤
𝑤 − 𝑧7 #�a d	𝑤								

q

we	get



QBX error	
• The	error	when	truncating	to	𝑝	terms,	and	evaluating	coefficients	

by	quadrature:

Typical	error	plot:	

𝜑 𝑧 − 𝜑¦ 𝑧 = Im m 𝑎# 𝑧 − 𝑧7 # − Im m 𝑎Ð# 𝑧 − 𝑧7 #
¦

#`7

j

#`7

= Im m 𝑎# 𝑧 − 𝑧7 #
j

#`¦�a

+ Im m(𝑎# − 𝑎Ð#) 𝑧 − 𝑧7 #
¦

#`7

Truncation	error	𝑒Ó Coefficient	error	𝑒Ô
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QBX error	
• Truncation	error	𝑒Ó controlled	by	number	of	terms	𝑝.
• Coefficient	error	𝑒Ô	comes	from	numerically	evaluating
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10 -15

10 -10

10 -5

10 0

err.

e
Q

e
T

𝑎# =
1
2𝜋n

𝜇 𝑤
𝑤 − 𝑧7 #�a d	𝑤, 		𝑚 = 0,… , 𝑝.							

q

• Assuming	𝜇	well	resolved	on	16-point	
discretization	of	panel.

• Coefficients	more	difficult	to	evaluate	
as	𝑚 increases.		

• Evaluate	using	a	higher	order	GL	rule.	
• Must	interpolate	𝜇 to	this	finer	GL	

grid	on	panel	(upsample).

How	high	order	GL	rule	is	needed	for	a	certain	accuracy?	
- Use	error	estimates.		
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• Study	the	quadrature	error	for																																	as	a	function	of	𝑧7.

Error	from	one	panel	- higher	powers
n

1
𝑧 − 𝑧7 ¦ d𝑧

Æ

𝑅/[𝑓¦] ≅ 𝑒(Õ*
¦ 𝑡7 =

2𝜋
𝑝 − 1 !	

2𝑛 + 1

𝑡7U − 1
�

¦�a 1

𝑡7 + 𝑡7U − 1
�

U/�a

• From	theorem	for	integral																															we	have:	

• Including	also	parameterization	of	
a	curved	panel	𝛾 yields

𝑒(Õ*
Æ,¦ 𝑧7 =

𝑒(Õ*
¦ 𝑡7

𝛾Ö 𝑡7
¦�a

	

n
1

𝑡 − 𝑡7 ¦ d𝑡
a

�a

(and	hence	𝛾Ö 𝑡7 does	
not	enter	for	𝑝 = 1).	

z0

z = �(t)

𝑧7 = 𝛾 𝑡7 .

𝑧 = 𝛾(𝑡)
𝑡 ∈ ℂ

𝑡7
𝑧7

−1 1



Error	from	one	panel	– higher	powers

Colors:	Measured	numerical	errors.	
Black	contours:	Error	estimate	𝑒¯°±

¦ 𝑡7 /	𝑒(Õ*
Æ,¦ 𝑧7 .

𝑛 = 16

n
1

𝑧 − 𝑧7 Y d𝑧
Æ

n
1

𝑧 − 𝑧7 a7 d𝑧
Æ

𝑛 = 32



Local	QBX	expansions

• Error	estimate	can	for	each	𝑧	determine	if	regular	quadrature	will	
be	sufficient	for	all	panels.	

• If	not:	form	a	”local”	QBX	expansion	including	contributions	from	
panels	nearby	the	evaluation	point.	

• A truncation	error	estimate	for	global QBX	expansions	derived	by	
Epstein	et	al.,	but	involves	an	unknown	constant.	

𝜑 𝑧 =
1
2𝜋n 𝜇 𝑤 Im

d	𝑤
𝑤 − 𝑧 								

q

For	a	set	of	points	𝑧 ∈ Ω,	we	want	to	approximate

with	an	error	no	larger	than	a	given	tolerance	TOL.

• The	double	layer	density	𝜇 𝑤 	has	been	computed	at	the	GL	nodes	
at	each	panel	(𝑛 = 16 nodes)	and	is	assumed	to	be	well	resolved.	



Adaptive	QBX

For	a	set	of	points	𝑧 ∈ Ω,	we	want	to	approximate

with	an	error	no	larger	than	a	given	tolerance	TOL.

If	𝑧 close	enough	such	that	a	local	QBX	expansion	will	be	formed:	

af Klinteberg &	T.,		ArXiv,	2017.

𝜑 𝑧 =
1
2𝜋n 𝜇 𝑤 Im

d	𝑤
𝑤 − 𝑧 								

q

Compute	coefficient	after	coefficient	on	the	fly.	
For	each	coefficient,	use	error	estimate	to	determine	the	upsampling.	
Magnitude	of	coefficients	will	tell	when	to	terminate.	



Adaptive	QBX
• Working	mode	for	AQBX:	

– For	each	term	added	to	expansion,	error	decreases.	

0 2 4 6 8 10
10�17

10�13
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10�5

10�1

m

|um � u|
|ãm � am|
EQ(m)

|am|
TOL

– Coefficient	error	grows	with	𝑚.	
– Shift	to	larger	upsampling factor	when	error	estimate	predicts	it	is	needed.	



Results	for	Helmholtz	equation
Solution	𝑢 𝑧 to	the	exterior	Dirichlet problem

𝑢 𝑧 Re	𝑢 𝑧

100 Gauss-Legendre	panels	
of	order	16 and	equal	
arclength h.	

Wave	number	𝑘 = 4/ℎ.

𝑇𝑂𝐿 = 10�\ 𝑇𝑂𝐿 = 10�Ú 𝑇𝑂𝐿 = 10�aU

Zoomed	in	error	plots	



QBX	in	3D
• Denote	by	Ω the	domain	exterior	to	a	

sphere,	and	consider

• Double	layer	integral	formulation	solved	
to	high	accuracy,	to	obtain	the	source	
density	q,	defined	on	the	surface	of	the	
sphere.	

Velocity	𝒖 𝒙 for	any 𝒙 ∈ Ω defined	as

A	slice	of	the	exact	solution	for	a	
sphere	traveling	to	the	left	with	
constant	speed.

𝜇Δ𝒖 = 𝛻𝑝, 𝛻 ⋅ 𝒖 = 0 𝒙 ∈ Ω
𝒖 𝒙 = 𝒖Û 𝒙 																									 𝒙 ∈ 𝜕Ω		

𝑢B 𝒙 = n 𝒒Ý 𝒚
��

𝑇Bℓ# 𝒙 − 𝒚 𝒏4# 𝒚 𝑑𝑆𝒚, 𝑗 = 1,2,3

𝑇Bℓ# 𝒓 = −6
𝑟B𝑟ℓ𝑟#
𝑟 Y



The	Stresslet double	layer	potential
The	Stresslet potential

can	be	expanded	using	its	relation	to	the	harmonic	double	layer	
potential

where

The	three components	of	the	Stresslet potential	can	be	expanded	
using	four	expansions	of	the	harmonic	double	layer potential.		

𝑢B 𝒙 = n 𝒒Ý 𝒚
��

𝑇Bℓ# 𝒙 − 𝒚 𝒏4# 𝒚 𝑑𝑆𝒚, 𝑗 = 1,2,3

𝑢B 𝒙 =m 𝑥ℓ
𝜕
𝜕𝑥B

− 𝛿Bℓ 𝐷 𝑞ℓ𝒏 + 𝑛ℓ𝒒 𝒙 −
𝜕
𝜕𝑥B

𝐷 𝑦#𝑞#𝒏 + 𝑦#𝑛#𝒒
K

ℓ`a

(𝒙)

𝐷 𝝆 𝒙 = n 𝝆 ⋅ 𝛻�
1

𝒙 − 𝒚
q

𝑑𝑆�



Spherical	harmonics	expansion	

The	starting	point	is	the	spherical	harmonics	expansion	
of	the	harmonic	potential,	about	a	point	c,	

The	spherical	coordinate	system	is	centered	at	c,

The	expansion	is	valid	for	 𝒙 − 𝒄 = 𝑟) < 𝑟� = 𝒚 − 𝒄 .

Source	point	y,
Target	(evaluation)	point	x
Expansion	center	c

c

y

x

1
𝒙 − 𝒚 =m

4𝜋
2ℓ + 1 m 𝑟)ℓ

ℓ

#`�ℓ

𝑌ℓ�# 𝜃), 𝜙)
1

𝑟�ℓ�a
𝑌ℓ# 𝜃�, 𝜙�

j

ℓ`7

𝑟), 𝜃), 𝜙) = 𝒙 − 𝒄, 𝑟�, 𝜃�, 𝜙� = 𝒚 − 𝒄

𝑌ℓ# 𝜃, 𝜙 =
2ℓ + 1
4	𝜋

ℓ − 𝑚 !
ℓ + 𝑚 !

�
𝑃ℓ# cos 𝜃 	𝑒,#æ

Associated	Legendre	function

𝑟�

𝑟)
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The	Laplace	double	layer	potential	
For	a	Laplace	double	layer	potential	from	a	vector	density	𝝆

the	expansion	about	𝒄 becomes

Expansion	coefficients	defined	through	smooth	integrals.	

Expansion	valid	inside	sphere	centered	at	c	that	touches	Γ	,
and	at	intersection	point	of	 Γ and	sphere.

Ψ 𝒄 = 𝐷 𝝆 𝒙 = n 𝝆 ⋅ 𝛻�
1

𝒙 − 𝒚
q

𝑑𝑆�

Ψ 𝒙 =m
4𝜋

2ℓ + 1 m 	𝑟)ℓ
ℓ

#`�ℓ

𝑌ℓ�# 𝜃), 𝜙) n 𝝆 ⋅ 𝛻�
1

𝑟�ℓ�a
𝑌ℓ# 𝜃�, 𝜙�

q

𝑑𝑆�
j

ℓ`7

𝜶Ý#(𝒄)



Error	in	velocity	field	– introducing	one	expansion

One	spherical	harmonics	expansion	is	introduced.	Within	the	expansion	radius,
the	local	expansion	is	evaluated	instead	of	computing	the	integral	directly.	



• First	consider	rigid	bodies	of	a	simple	shape:	spheroids.
• Precompute to	make	evaluations	faster.
• Reduce	storage	by	using	geometric	symmetries	of	the	

spheroids.	

QBX	for	the	Stresslet	
• Truncate	expansions	at	ℓ = 𝑝, and	evaluate	

coefficients	by	numerical	quadrature.
• To	reduce	error:	Interpolate	double	layer	

density	to	finer	grid	before	computing	
integrals	=		upsample discretization	of	
surface	with	upsampling factor	𝜅.	

• The	accuracy	is	increasing	with	p	and	𝜅, 
but	so	is	the	computational	cost.

• Surface	parameterization	𝒙(𝜃, 𝜑)
• Trapezoidal	rule	in	𝜑, 0 ≤ 𝜑 < 2𝜋	
• Gauss-Legendre	quadrature	in	𝜃, 0 ≤ 𝜃 ≤ 𝜋.

Expansion	order	𝑝,	
upsampling factor	𝜅.



Constructing	an	efficient	quadrature	method

• Spheroid	discretized	with 𝑁 = 𝑛ê×𝑛ì points,	
source	density	𝒒	defined	in	these	points.	

• Can	construct	a	matrix	𝐴, of	size	3𝑁¦×3𝑁¦ such	
that	

yields	the	3𝑁¦ expansion	coefficients	for	center	𝒄í.
• The	upsampling has	been	“hidden” in	𝐴,.

One	center	corresponding
to	each	grid	point

Rotation	and	mirror	
symmetry	greatly	reduces	

the	need	of	precomputation.

• Rotational	symmetry:	Only	need	to	
compute	and	save	𝐴, for	𝑛ê expansion	
centers,	mirror	symmetry	is	reducing	
that	to	𝑛ê/2.	

• Each	ellipsoid	is	the	same	modulo	its	
orientation	- precompute only		for	one	
reference	body.

𝒛, = 𝐴,𝒒



QBX	for	solid	spheroids	in	Stokes	flow	
• In	3D:	no	limit	for	the	kernel	on	the	surface.	QBX	used	also	to	

evaluate	for	“on-surface”	target	points,	i.e.	singular	integrals.	

Validation	case,	
HJ	Wilson,	JCP	2013.	

131 randomly	positioned	oblate	spheroids	in	a	
periodic	box,	at	a	volume	concentration	of	24%.	
Background	flow	entering	from	left.	
Streamlines	in	black.	

af Klinteberg &	T.,		J.	Comput.	Phys.,	2016.



What	about	drops	in	3D?

C.	Sorgentone &	T,	ArXiv 2017.	



Going	further?	
• QBX	for	solid	spheroids:	

– Upsampling can	be	taken	“sufficiently”	large,	cost	hidden	in	
precomputation (done	for	one	spheroid	only).

– Expansion	order	affects	computational	cost	and	must	be	chosen.

Ψ 𝒙 ≈m
4𝜋

2ℓ + 1 m 𝜶Ý#(𝒄)	𝑟)ℓ
ℓ

#`�ℓ

𝑌ℓ�# 𝜃), 𝜙)

¦

ℓ`7

𝜶Ý# 𝒄 = n 𝝆 ⋅ 𝛻�
1

𝑟�ℓ�a
𝑌ℓ# 𝜃�, 𝜙�

q

𝑑𝑆�

Expansion	for	Laplace	double	layer:

c

y

x

• What	about	e.g.	deformable	drops?
– Precomputation	not	possible,	geometry	of	

surface	is	time-dependent.
– Cost	of	QBX	will	be	large.	For	a	given	expansion	

order	𝑝,	number	of	terms	in	sum	is	O 𝑝U .

Separation	between	source	and	target:

- Coefficients depend	on	sources.

- Expansion	can	be	evaluated	for	different	
targets (within	radius	of	convergence).

𝑟)
𝑟�



• What	if	each	expansion	is	used	only	once	or	a	few	times?	
• Is	it	worth	paying	for	separation	between	source	and	target?
• We	have

but	what	we	really	started	with	was

Target	specific	expansions	

1
𝒙 − 𝒚 =m

4𝜋
2ℓ + 1 m 𝑟)ℓ

ℓ

#`�ℓ

𝑌ℓ�# 𝜃), 𝜙)
1

𝑟�ℓ�a
𝑌ℓ# 𝜃�, 𝜙�

j

ℓ`7

1
𝒙 − 𝒚 =m

𝑟)ℓ

𝑟�ℓ�a
𝑃ℓ (cos 𝜃) ,

j

ℓ`7

- 𝑃ℓ:	Legendre	polynomial	of	degree	ℓ.
- 𝜃:	Angle	between	𝒙 − 𝒄 and	𝒚 − 𝒄.

c

y

x

𝑟)
𝑟�

• We	can	build	a	target	specific	QBX	expansion	from	this	expression		
(w	M.	Siegel)	
– Number	of	terms	will	be	p + 1 as	compared	to	O 𝑝U for	the	same	

expansion.
– Coefficients	will	be	target	specific,	and	can	be	used	only	for	one	target.



• Same	idea	as	in	2D:	
– Expansion	order	determined	on	the	fly,	given	an	error	tolerance.	
– For	each	coefficient,	determine	what	upsampling is	needed.	

• For	this:	Need	error	estimates	in	3D!	

• Ongoing	work	with	Ludvig af Klinteberg and	Chiara	Sorgentone.	

AQBX	for	deformable	drops	in	3D?	

• Target	specific	expansions	to	reduce	the	
number	of	terms	in	expansion.	



Error	estimates	in	3D?	
3D	Laplace,	exterior	problem.
Measured	errors,	volume/slice.

Discontinuous	coloring	to	show	
error	levels.	



Error	estimates	in	3D?	
First	results	are	promising!

Colors:
Measured	numerical	errors.	
Black	contours:	
Error	estimate.



A	few	last	comments…

• Development	to	integrate	QBX	into	a	fast	multipole	method	
(FMM).	
– Global	QBX	in	2D	for	Helmholtz	equation:	M.	Rachh,	A.	Kloeckner

and	M.	O’Neil.	JCP,	2017.
– Ongoing	3D	work	by	A.	Kloeckner.	

• Order	of	expansions	larger than	in	regular	FMM	to	allow	for	shift	
of	expansions	to	QBX	centers.	

• Many	geometric	considerations,	a	very	complicated	code.	

• For	general	geometries,	FMM-QBX	should	be	the	way	to	go!
• AQBX	for	drops,	a	“local”	correction	for	each	drop,	might	well	

come	out	faster	for	simulations	with	many	drops	with	moderate	
resolution	on	each.	

• Precomputed	QBX	(for	geometries	where	possible)	hard	to	beat.



Thank	you!

Photo	from	Research	Day	in	
the	archipelago	of	Stockholm					
July	4-5,	2017.

Upper	row:	Shriram Srinivasan,	Chiara	Sorgentone,	Ludvig af Klinteberg,	A-K	T,	Erik	Lehto.	
Lower	row:	Davoud Saffar Shamshirgar,	Sara	Pålsson,	Fredrik	Fryklund,	Joar Bagge,	Federico	Izzo.

Many	thanks	also	to										
Michael	Siegel	and	Rikard Ojala!





Highly	accurate	numerical	methods	and	error	
estimates	for	evaluation	of	nearly	singular	

integrals	in	integral	equations

Anna-Karin	Tornberg
KTH	Mathematics,	Stockholm

SIAM	Annual	Meeting,	July	10-14,	2017.	



Evaluating	velocity	in	domain

• Can	be	done	as	a	post-processing step.	

• At	interface,	jump	in	the	double	layer	potential	

lim
ò→7

𝐾s[𝒖](𝒙 ± 𝜀𝒏4) = ∓4𝜋𝒖 𝒙 + 𝐾s 𝒖 𝒙 , 	𝒙 ∈ Γ

• Velocity	formulas	outside	and	inside	drops	differs,																
– Match	at	interface	due	to	jump	in	double	layer	potential.	

Ω1,µ1

Ω2,µ2

Ω3,µ3

Ω0,µ0

Γ1

Γ2

Γ3

• Derivatives	of	velocities	discontinuous										
at	interfaces	(𝜆 ≠ 1).

• Velocity	divergence	free	by	construction.	

• Including	also	solid	boundaries	yields	coupled	system	with	
integrals	both	over	fluid	interfaces	and	solid	boundaries.

Γ = ^ Γ#

_

#`a



Equations	

1
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Stokes	flow	in	2D

• In	the	case	of	only	drops,	and	no	solid	
boundaries,	we	use	a	complex	variable	
formulation (not	as	easy	to	dechifer as	the	one	
shown,	see	Kropinski,	JCP,	2001	).	

• Solid	boundaries	add	more	terms	in	integral	
equation,	must	solve	for	unknown	density	on		
solid	boundaries.	

• In	either	case,	write								
integrals	in	complex	form	and	
apply	interpolatory quadrature	
when	needed.

• Extension	of	Helsing &	Ojala,	
see	Ojala &	T.	,	JCP	2015.	

Ω1,µ1

Ω2,µ2

Ω3,µ3

Ω0,µ0

Γ1

Γ2

Γ3

 
Γ = Γ j

j=1

M



The	integral

n 𝒒ℓ 𝒙 𝑇Bℓ# 𝒙 − 𝒚 𝒏# 𝒚 d𝑆�
q

is	equivalent	to

∫ 𝜔 𝜏 Im 8ø
ø��	

+ ∫ 𝜔(𝜏) ùú øû��̅ 	8ø
øû��̅ �qq

where	𝒒a = Re{𝜔} and	𝒒U = Im{𝜔}



nuFFT

Polynomial interpolation

The	full	method

One	time	step
• Spectrally	interpolate	representation	of	curve																																									

from	equidistant	grid	to	Gauss	Legendre	panels	(by	NUFFT).		
• Solve	the	integral	equation	based	on	Gauss-Legendre	quadrature	rule,	

GMRES	and	FMM/Spectral	Ewald.	Use	special	quadrature	when	needed.
• Interpolate	velocities	to	equidistant	grid.
• Solve	for		arclength preserving	tangential	velocity	(FFTs	on	uniform	grid).	
• Update	position	of	interfaces.

• Hybrid	method:	switch	between	equidistant	and	Gauss-Legendre	
nodes	using	the	non-uniform	FFT	(NUFFT).	

• Adaptive 2nd	order	Runge-Kutta method																																											
for	time-stepping.

• Global	spatial	adaptivity:																																																																							
keep	∆𝑠 close	to	initial.			

• No	model	for	coalescence.



Two	drops	in	shear	flow

Clean	drops	as	black	contours.

Colored	contours	show	concentration	of	surfactant	
that	has	been	added	to	modified	the	surface	tension	
(not	discussed	here,	with	Sara	Pålsson).



Two	drops	in	extensional	flow
Clean	drops	as	black	contours.

Colored	contours	show	concentration	of	surfactant	that	has	been	
added	to	modified	the	surface	tension	(not	discussed	here).



Error	plots	for	Gauss-Legendre	quadrature
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• For	a	meromorphic function	f(z)	that	is	analytic	everywhere	
except	at	points	{𝑧a, … , 𝑧³} ,

where	C	is	now	a	large	contour	that	we	can	take	to	infinity.

• Can	show	that	
(Donaldson	end	Elliott,	1972),

• Assuming	𝑓(𝑧) analytic	on	and	within	C.

Estimates	via	contour	integrals

– 𝑘/ 𝑧 	depends	on	the	quadrature	rule.
– If	𝑓 is	a	real	function,	 𝑓(𝑧) is	a	complex	

extension	of	f.
– C	is	a	contour	that	encloses	Γ.

𝑅/ 𝑓 =
1
2𝜋𝑖

n 𝑓 𝑧 𝑘/ 𝑧 	d𝑧
ÿ

𝑅/ 𝑓 =
1
2𝜋𝑖

n 𝑓 𝑧 𝑘/ 𝑧 	d𝑧 −mRes[𝑓 𝑧 𝑘/ 𝑧 , 𝑧B]
³

B`aÿ



• For	the	n-point	Gauss-Legendre	rule

• No	closed	form,	but	in	the	limit	𝑛 → ∞

• Provides	an	accurate	approximation	also	for	moderately	large	n.
• Aiming	for	practical	estimates,	not	bounds!	
• Will	consider	functions

Estimates	via	contour	integrals,	contd

Pn:	Legendre	polynomial	of	degree	n.	

𝑓¦ 𝑡 =
1

𝑡 − 𝑡7 ¦ , 𝑡7 = 𝑎 + 𝑖𝑏

𝑔¦ 𝑡 =
1

𝑡 − 𝑎 U + 𝑏U ¦ , 											 −1 < 𝑎 < 1, 0 < 𝑏 ≪ 1

𝑘/ 𝑧 =
1

𝑃/ 𝑧
n

𝑃/(𝑡)
𝑧 − 𝑡

a

�a
	d𝑡

𝑘/ 𝑧 ≅
2𝜋

𝑧 + 𝑧U − 1� U/�a


