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How current TRNGs work

Essentially, use ring oscillators (a ring of logic gates that produces an
oscillation, acting as a negative feedback loop) in which the thermal
noise of the circuit causes random phase shifts.

Output from two or more of these are often combined through an
XOR gate or a binary tree of XOR gates to increase the density in
time of the phase shifts.

Markettos and Moore, 2009 (Cryptographic Hardware and Embedded Systems)
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How current TRNGs work - and how they are hacked

Markettos and Moore, 2009 (Cryptographic Hardware and Embedded Systems)

The result is sampled at a non-commensurate frequency, to produce a
sequence of bits with positive entropy.

Injection of a signal at an appropriate frequency can eliminate much
of the phase shifting, rendering the signal more predictable.

Idea: An intrinsically chaotic circuit may be more robust to hacking.
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2. Rambus circuit
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The idea

Scott Best, of Rambus, Inc. (California), proposed a design that
would have an inherently broader power spectrum and should thus be
more resistant to hacking.

The idea is to use a circuit that is intrinsically chaotic, even before
considering the thermal noise that is always present. Thus, the circuit
without noise should already have a positive Lyapunov exponent.

The Rambus circuit is still based on the ring oscillator idea, but with
local feedback and feedforward connections to mimic the logic of CA
Rule 30 (the 30th of Wolfram’s Elementary Cellular Automata).

Rule 30 produces irregular (‘chaotic’) behaviour in Cellular Automata.

Edwards, et al. (UVic) SIAM 2018 6 / 39



The idea

Scott Best, of Rambus, Inc. (California), proposed a design that
would have an inherently broader power spectrum and should thus be
more resistant to hacking.

The idea is to use a circuit that is intrinsically chaotic, even before
considering the thermal noise that is always present. Thus, the circuit
without noise should already have a positive Lyapunov exponent.

The Rambus circuit is still based on the ring oscillator idea, but with
local feedback and feedforward connections to mimic the logic of CA
Rule 30 (the 30th of Wolfram’s Elementary Cellular Automata).

Rule 30 produces irregular (‘chaotic’) behaviour in Cellular Automata.

Edwards, et al. (UVic) SIAM 2018 6 / 39



CA Rule 30

Rule 30: x
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CA Rule 30
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CA Rule 30 - infinite number of cells
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CA Rule 30 - 9 cell ring
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The Rambus circuit

xi yi zi

ui

zi−1

· · ·
zi+1

· · ·

· · ·

· · ·

· · ·

1

ui ← zi OR zi+1

xi ← ui XOR zi−1

yi ← NOT xi

zi ← NOT yi
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Rambus circuit equations (4n-dimensional model)

dxi
dt

= κxi (s+(zi−1)s−(ui ) + s−(zi−1)s+(ui ))− γxi xi
dyi
dt

= κyi s
−(xi )− γyi yi

dzi
dt

= κzi s
−(yi )− γzi zi

dui
dt

= κui (1− s−(zi )s
−(zi+1))− γuiui

where

s+(x ; θ) =

{
0 if x < θ
1 if x > θ

and s−(x ; θ) = 1− s+(x ; θ),

and κxi , γxi , etc., and θ are positive constants.
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Rambus circuit equations (3n-dimensional model)

More simply, if we take the OR gate (ui ) to be instantaneous,

dxi
dt

= κxi f (zi−1, zi , zi+1)− γxi xi
dyi
dt

= κyi s
−(xi )− γyi yi

dzi
dt

= κzi s
−(yi )− γzi zi

where

f (zi−1, zi , zi+1) = s−(zi−1)
(
1− s−(zi )s

−(zi+1)
)
+s+(zi−1)s−(zi )s

−(zi+1),

s+ and s− are as before, and the constants are adjusted appropriately.
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Rambus circuit equations (n-dimensional model)

Since the inverters are thought to be quicker in practice, we could obtain a
lower-dimensional model by eliminating yi or zi or both, or even reduce the
logic of each unit to a single equation:

dxi
dt

= κxi f (xi−1, xi , xi+1)− γxi xi

where

f (xi−1, xi , xi+1) = s−(xi−1)
(
1− s−(xi )s

−(xi+1)
)
+s+(xi−1)s−(xi )s

−(xi+1),

s+ and s− are as before, and the constants are adjusted appropriately.

All of these equations are in the form of Glass networks, as used to model
gene regulation!
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3. Qualitative gene network modelling
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Modeling gene regulation by Glass networks

1 2

3

ẋ1 = κ1s
+(x2)− γ1x1

ẋ2 = κ2s
−(x1)s+(x3)− γ2x2

ẋ3 = κ3s
−(x3)− γ3x3
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Behaviour of the dynamical system

2-D example:
ẋ1 = s+(x1)s+(x2) + s−(x1)s−(x2)− γ1x1,
ẋ2 = s−(x1)− γ2x2

1/γ1 > θ1, 1/γ2 > θ2
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ẋi = αi − γix , xi ∈ Bi, so xi → αi
γi



Behaviour of the dynamical system

2-D example:
ẋ1 = s+(x1)s+(x2) + s−(x1)s−(x2)− γ1x1,
ẋ2 = s−(x1)− γ2x2
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What happens when x1 = θ1?
What happens at x1 = θ1, x2 = θ2?

Use Filippov analysis or singular perturbation.



4. Rambus circuit - behaviour analysis
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Steady states

n-dimensional model:

all-off state (00000) is locally stable, but basin of attraction is only
the all-off box

all-on state (11111) is unstable in all directions (all units try to turn
off)

if n is even, alternating state (010101 or 101010) is stable.

if n is odd, sequences of alternating units are locally stable but
perturbations of the alternating pattern must exist, and propagate
(e.g. 110101010 can’t persist)

Similar for higher-dimensional versions of the model.
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Perturbed alternating sequences

Still considering the n-dimensional model:

011010101→ 01θ010101→ 01θθ10101→ 010110101

so 11 propagates to the right two units at a time.

Call the corresponding variables x1, x2, x3, x4, . . ..
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Sliding solution
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Flow in the black wall is towards the focal point for the sliding motion:
i.e., the threshold intersection, if units are identical.
Singular perturbation analysis shows that flow from the threshold
intersection is into the 01 box.
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Singular perturbation analysis of threshold intersection

For identical unit parameters, WLOG take κi = γi = 1 and θ = 0.5.

Approximate the step functions by sigmoids:

Zi = H(xi ) =
x
1/q
i

θ1/q+x
1/q
i

≈ s+(xi ), limq→0H(xi ) = s+(xi )

Blow up the threshold intersection by translating from x3, x4 to Z3,Z4 and
τ = t/q:

Z ′3 =
Z3(1− Z3)

0.5
((1− Z3)(1− Z4)− 0.5)

Z ′4 =
Z4(1− Z4)

0.5
(1− Z3 − 0.5)

...and determine the flow of these ‘boundary layer’ equations.
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Singular perturbation analysis of threshold intersection
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Singular perturbation analysis of threshold intersection

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Z3

Z
4

●

● ●

●

●

In the black wall, x4 < θ ⇔ Z4 = 0 and Z3 = 0.5 during sliding, so we
start at (Z3,Z4) = (0.5, 0), which has eigenvalues λ1 < 0, λ2 = 0. Once
Z4 > 0, all solutions go to (0, 1), which corresponds to x3 < θ, x4 > θ.
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State space diagram (n = 5)
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The shaded region is attracting.
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Global dynamics

However, it takes an infinite time for the sliding approach to the threshold
intersection on the black wall (when units are identical).

Thus, globally, there is a heteroclinic cycle in which the double 1
propagates to the right around the ring twice.

When there are other variables oscillating (instead of sliding), as in the 3n
or 4n models,

the flow is able to pass the threshold intersections,

but with irregular timing,

and intermittent triggering of the next pair of units,

so more than one pair of units can be transitioning at the same time.

This leads to very complex switching sequences, and (we conjecture)
chaos.
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2n model, fast OR gate - 2 unit transition
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5. Rambus circuit - Numerical simulations
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Numerics for the 3n-dimensional model

We take κxi = γxi = µ and κy1 = κzi = γyi = γzi = ν.

After rescaling time, the dynamics is controlled by a single parameter
µ
ν or its inverse.

Edwards, et al. (UVic) SIAM 2018 30 / 39



Time series (xi variables only)

n = 5, µ = 1, ν = 0.6, random initial condition.
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Phase space projections

n = 5, µ = 1, ν = 0.6, random initial condition.

Edwards, et al. (UVic) SIAM 2018 32 / 39



Bifurcation diagram, varying µ
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n = 5, ν = 1. For each µ, 5000 successive values of x1 − θ are plotted on
a Poincaré section where x2 = θ: (101, θ01, 101, 010, 101)
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Estimating Lyapunov exponents

Method: compute in parallel a numerical solution of both the original
model, v̇ = f (v), and its associated variational equation
Ẏ = Df (v(t))Y , Y (0) = Id

Y is an N × N matrix and the Jacobian Df is evaluated along the
solution to the ODE v̇ = f (v)

The eigenvalues of the solution to the variational equation can in
theory be used to calculate Lyapunov exponents, but in practice the
existence of a positive exponent entails that all columns of Y become
(numerically) linearly dependent.

To achieve this, a QR decomposition of the approximate solution Y is
performed at regular time intervals, amounting to an
orthonormalization of the column space of Y .
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Time series (xi variables only) - 4n-dimensional model

n = 5, µ = 0.6, ν = 1, λ = 0.7, random initial condition.
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Phase space projections

n = 5, µ = 0.6, ν = 1, λ = 0.7, random initial condition.
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Lyapunov exponents - 4n system (smooth version)
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7. Conclusions
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Conclusions

There is convincing evidence that the Rambus circuit is intrinsically
chaotic for intervals of parameter values and n ≥ 5 odd, especially if
we use the 4n-dimensional model, but probably for the 3n-dimensional
model too.

Rambus has applied for a patent, and is currently seeking certification.

Robustness to hacking still needs to be demonstrated.

Earlier work on the gene network models suggests that other chaotic
designs are possible, not based on the ring-oscillator concept and,
thus, even further from anything with a dominant intrinsic frequency.

It is possible that such designs could either produce entropy at a
higher rate, or be even more robust to hacking, or both.
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