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Particle filtering is an importance sampling approach to the
Bayesian estimation problem for dynamical systems.

Main points:
I Particle filtering basics
I Why particle filters are cool in theory
I Mode of failure in high-dimensional practice
I Our approach to reduce the curse of dimensionality
I Example on a toy model



4

BACKGROUND LIKELIHOODS EXAMPLE

IMPORTANCE SAMPLING

To approximate ‘target’ distribution µ:
1. Draw ensemble of Ne ‘particles’ from some ‘proposal’

distribution (that’s easy to simulate)
2. assign each particle a positive weight 0 < w(i) < 1 such

that
∑

i w(i) = 1 and specially rigged so that

µ ≈ µNe :=

Ne∑
i=1

w(i)δ(x− x(i))

Simple computations can give us the right weights so that
for any ϕ ∈ Cb, 〈µNe , ϕ〉 → 〈µ, ϕ〉 as Ne →∞.
(Weak convergence.)
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SEQUENTIAL IMPORTANCE SAMPLING (SIS)
1. Start with posterior (analysis) importance sample

(ensemble) at assimilation timestep k− 1

2. Propagate by proposal kernel P
(

x(i)k |x
(i)
0:k−1,yk

)
3. Reweight so ensemble

{(
x(i)k ,w

(i)
k

)}
becomes valid

importance approximation of posterior at assimilation
timestep k:

w(i)
k ∝ w(i)

k−1

P
(

yk|x
(i)
k

)
P
(

x(i)k |x
(i)
k−1

)
P
(

x(i)k |x
(i)
0:k−1,yk

) .

with likelihood P (yk|xk) and transition prior P
(

x(i)k |x
(i)
k−1

)
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HERDING CATS (PARTICLES)
Particles can wander from observations.
Closest particle then has much higher likelihood, picking up
almost all the weight.
Specifically:

w(i)
k ∝ P

(
yk|x

(i)
k

)
w(i)

k−1

If one particle has w(i) ≈ 1 then the UQ is bad. Define

Effective Sample Size = ESS =

(∑
i

(w(i))2

)−1

1 ≤ ESS ≤ Ne.
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COLLAPSE

The PF has ‘collapsed’ when ESS� N.

To fix, resample: eliminate particles with small weights,
replicate ones with large weights, resetting all weights to 1/N
(gross simplification).
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Prior
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Prior
Observation
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Dynamic
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Prior
Observation

Dynamic
COLLAPSE!

Resample
& propagate
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SEQUENTIAL IMPORTANCE SAMPLING WITH

RESAMPLING (SIR)

SIR weakly converges1 to the Bayesian posterior as Ne →∞
with extremely permissive constraints on prior, transition
kernel, and likelihood.

That’s useful for UQ of non-Gaussian and nonlinear problems!

The SIR PF does not work well for high-dimensional problems.

1D. Crisan
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Snyder et al.2 consider SIR with linear Gaussian obs:

y = Hx + ξ, ξ ∼ N (0,R)

To avoid collapse, they show you need Ne ∼ exp{τ 2/2}, where

τ 2 =
∑

k

λ2
k

(
3
2
λ2

k + 1
)

Where, for the ‘standard proposal’,

P = Cov[R−1/2Hx]

and λ2
k are the eigenvalues of P.

2Bengtsson, Bickel, & Li 2008; Snyder, Bengtsson, Bickel, & Anderson 2008
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∃ optimal proposal and related ways to improve required
number of particles by incorporating observations into
proposal:

I Snyder, Bengtsson, & Morzfeld (2015) showed that the
number of required particles is exponential in the ‘effective
dimension’ even in best case scenario of optimal proposal3

I Chorin, Morzfeld, & Tu (2009–present) develop an
‘implicit’ PF that approximates the optimal proposal

I Ades & van Leeuwen (2009–present) develop an
‘equivalent weights’ PF that is related to (but not
equivalent to) the optimal proposal

3See also Agapiou, Papaspiliopoulos, Sanz-Alonso, and Stuart (2017) for
precise non-asymptotic results
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FIDDLING WITH THE LIKELIHOOD

In practice (e.g. for satellite obs) the likelihood is rarely known
precicesly. Common to assume spatially-uncorrelated
observation errors for serial processing in EnKF.

If we can choose R to increase EnKF computational efficiency,
why not choose it to avoid PF collapse?
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FIDDLING WITH THE LIKELIHOOD

Revisit Snyder estimate: need Ne ∼ exp{τ 2/2}, where

τ 2 =
∑

k

λ2
k

(
3
2
λ2

k + 1
)

P = Cov[R−1/2Hx]

Idea: increase variance at scales that don’t matter that much.

For geophysical forecast, viscous damping means that
small scales don’t matter much.
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Consider the case where H = I, and R and Cov[x] are
simultaneously diagonalizable. Then

λ2
k =

σ2
k
γ2

k

where σ2
k are eigvals of Cov[x], and γ2

k are eigvals of R.

x is an ordinary random field – realizations are, e.g.,
continuously differentiable – so the spectrum must decay.

lim
k→∞

σ2
k = 0
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σk → 0 is good news: even if the grid is refined ad infinitum, τ 2

might converge to a finite value

τ 2 =
∑

k

λ2
k

(
3
2
λ2

k + 1
)
, λ2

k =
σ2

k
γ2

k

But presumably the observation error is also a continuous field,
so γk → 0 also. This is BAD for τ 2.

But it’s widely accepted to use a spatially-uncorrelated obs
error model, which has constant γk. This is good for τ 2.

Why not use γ2
k →∞, which is even better for τ 2?

Changing the likelihood changes the posterior.
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Changing the likelihood changes the posterior. Yes, but...
I a white likelihood already does that (sometimes)
I and you needn’t change the posterior much:

Consider again a fully-Gaussian case with H = I and
simultaneously-diagonalizable R and Cov[x].

The spectrum of the posterior is

σ2
kγ

2
k

σ2
k + γ2

k

At small scales (large k), the posterior variance is small,
regardless of how you choose γk (because σk is small).

As long as γk is correct at large scales, the posterior will be
correct at large scales.
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CONNECTION TO SMOOTHING

Our approach is like truncation/projection onto a large-scale
subspace, but with a gradual cutoff.

Assuming jagged observation errors is equivalent to smoothing
the observations by applying R−1/2, and then assuming
uncorrelated errors

ŷ = R−1/2y = R−1/2Hx + ξ̂, ξ̂ ∼ N (0, I)

Note that this is not equivalent to assuming uncorrelated obs
error and then smoothing.
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EXAMPLE

As a the linear SPDE

du
dt

=

(
−b− c

d
dx

+ ν
d2

dx2

)
u + Ft, (1)

in a 2π-periodic domain where the forcing is Gaussian, white in
time, with spatial spectrum (1 + |k|)−1.
2048 Fourier modes, b = 1, c = 2π, and ν = 1/9.

Observations are taken on a regular spatial grid, at discrete
times; the true obs errors are smooth (Gaussian, zero-mean).

We compare posteriors using true R, R = γ2I, or a second-order
finite-difference discretization of γ2(1− `2∂2

x).
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First we compute the exact solution of the filtering problem
using the Kalman filter. The filter covariance converges
exponentially to a steady state; we use this information to
compute τ 2:
64 obs:

I True R: τ 2 = 87, N ≈ 1019

I R = γ2I: τ 2 = 162, N ≈ 1035

I Generalized, `2 = 2: τ 2 = 16, N ≈ 3000
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τ2 versus GRF length scale

ℓ
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QUANTIFYING UNCERTAINTY QUANTIFICATION

We use the Continuous Ranked Probability Score (CRPS) to
quantify the skill of our full PF estimate.



30

BACKGROUND LIKELIHOODS EXAMPLE

Nobs=16
nobs=32
Nobs=64
Nobs=128

C
P
R
S

CRPS vs GRF length scale squared

0.28

0.18

0.26

0.24

0.22

0.20

0.30

ℓ2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



31

BACKGROUND LIKELIHOODS EXAMPLE



32

BACKGROUND LIKELIHOODS EXAMPLE

WHY USE γ2(1− `2∂2
x)?

There’s a link between PDEs and Gaussian random fields:
the discretization of an elliptic, self-adjoint PDE approximates
the precision matrix of a random field. 4

We reverse this:
a discretization of a self-adjoint elliptic PDE approximates the
covariance matrix of a jagged random field.

Admits covariance structure that is exploitable for
computational efficiency (including multiresolution) even on
nonuniform grids.

4E.g. Lindgren, Rue, & Lindström, J R Stat Soc 2011
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Conclusions & Future Directions

I Using a generalized random field for the obs error model
can reduce incidence of PF collapse.

I The price to pay is that the posterior is only accurate on
large scales; in practice that might be OK.

I We plan to continue development of approaches to
discretizing R, esp. for scattered obs, and to apply to real
meteorological data.

I Our approach probably won’t be a silver bullet, but can be
combined with implicit sampling/optimal-proposal and
with localization.

Thanks to Jeff Anderson, Greg Beylkin & Chris Snyder for
helpful discussions.
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THE END!

Questions?

gregor.robinson@colorado.edu

@precompact

gregor.robinson@colorado.edu
@precompact
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