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Abrupt climate changes
Rare events with a huge impact

Jupiter’s Zonal Jets
An example of a geophysical turbulent flow (Coriolis force, huge Reynolds number, ...)

Jupiter’s troposphere Jupiter’s motions (Voyager)
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Two challenges in climate dynamics
Rare transitions and Jupiter’s abrupt climate changes

Probability and dynamics of extreme heat waves

Abrupt climate changes
Rare events with a huge impact

Jupiter’s Zonal Jets
We look for a theoretical description of zonal jets

Jupiter’s troposphere Jupiter’s zonal winds (Voyager and
Cassini, from Porco et al 2003)

F. Bouchet CNRS–ENSL Large deviation theory and climate.



Two challenges in climate dynamics
Rare transitions and Jupiter’s abrupt climate changes

Probability and dynamics of extreme heat waves

Abrupt climate changes
Rare events with a huge impact

Jupiter’s Abrupt Climate Change
Have we lost one of Jupiter’s jets ?

Jupiter’s white ovals (see
Youssef and Marcus 2005)

The white ovals appeared in 1939-1940 (Rogers 1995). Following
an instability of one of the zonal jets?
F. Bouchet CNRS–ENSL Large deviation theory and climate.
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Abrupt Climate Changes (Last Glacial Period)
Long times matter

Temperature versus time: Dansgaard–Oeschger events (S. Rahmstorf)

What is the dynamics and probability of abrupt climate
changes?
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Random Transitions in Turbulence Problems
Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

Magnetic field timeseries Zoom on transition paths
(VKS experiment)

In turbulent flows, transitions from one attractor to another
(reactive paths) often occur through a predictable path.
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The Main Scientific Issues

How to characterize and predict the attractors of turbulent
geophysical flows?
Can we compute the transition paths and the transition rates?
For most geophysical problems, an approach through direct
numerical simulations is impossible (trade off between realistic
turbulence representation and physical time - here one needs
both).
Can we devise new theoretical and numerical tools to tackle
these issues?
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Extreme Heat Waves
Example: the 2003 heat wave over western Europe

July 20 2003-August 20 2003 land surface temperature minus the
average for the same period for years 2001, 2002 and 2004

(TERRA MODIS).
F. Bouchet CNRS–ENSL Large deviation theory and climate.
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Rare Events with a Huge Impact

Heat waves, rogue waves, floods, droughts, extreme
precipitations, and so on

The scientific questions:
What is the probability and the dynamics of those rare events?
Is the dynamics leading to such rare events predictable?
How to sample rare events, their probability, and their
dynamics.
Are direct numerical simulations a reasonable approach?
Can we devise new theoretical and numerical tools to tackle
these issues?
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Kramers’ Problem: a Pedagogical Example for Bistability

Historical example: Computation by Kramer of Arrhenius’ law for
a bistable mechanical system with stochastic noise

dx
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=−dV
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The problem was solved by Kramer (30’). Modern approach: path
integral formulation (instanton theory, physicists) or large deviation
theory (Freidlin–Wentzell, mathematicians).
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Freidlin–Wentzell Theory

For dynamical systems with weak noises

dx
dt

= b(x) +
√
2εη (t) .

Path integral representation of transition probabilities
(Onsager–Machlup, 53’):

P (x−1,T ;x1,0) =
∫ x(T )=x−1

x(0)=x1
e−

1
4ε

∫T
0 [ẋ−b(x)]2D [x] .

We consider a saddle point approximation (WKB), and obtain
the Arrhenius law as a large deviation result λ �

ε↓0
e−

∆V
ε with

∆V = inf
T≥0

inf
{x(t)|x(0)=x1 and x(T )=x−1 }

{
1
4

∫ T

0
[ẋ−b(x)]2 dt

}
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Most Transition Paths Follow the Instanton

In the weak noise limit, most transition paths follow the most
probable path (instanton)

Figure by Eric Van
den Eijnden

Arrhenius law then follows, for both gradient (reversible) and
non gradient (irreversible) dynamics

λ �
ε→0

e−
∆V

ε .

F. Bouchet CNRS–ENSL Large deviation theory and climate.



Two challenges in climate dynamics
Rare transitions and Jupiter’s abrupt climate changes

Probability and dynamics of extreme heat waves

Weak noise large deviations (Freidlin–Wentzell)
Rare transitions for zonal jets
Averaging and large deviations for zonal jet slow dynamics

Random Transitions in Turbulence Problems
Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

Magnetic field timeseries Zoom on transition paths

(VKS experiment)

In turbulent flows, transitions from one attractor to another
(reactive paths) often occur through a predictable path.

F. Bouchet CNRS–ENSL Large deviation theory and climate.



Two challenges in climate dynamics
Rare transitions and Jupiter’s abrupt climate changes

Probability and dynamics of extreme heat waves

Weak noise large deviations (Freidlin–Wentzell)
Rare transitions for zonal jets
Averaging and large deviations for zonal jet slow dynamics

Transition Rates Beyond Large Deviations: the
Eyring–Kramers Formula

Large deviation theory gives the exponential factor for the
transition rate λ = 1/τ exp(−∆V /ε):

lim
ε→0

ε logλ =−∆V .

But the prefactor 1/τ is also essential in giving the time scale.
For gradient dynamics dx

dt =−∇V +
√

2εη(t), the Eyring–Kramers
formula (Landauer and Swanson, 1961, Langer, 1969?) gives

λ ∼
ε→0

|λ∗|
2π

√
detHessV (x1)

|detHessV (x∗)|
exp
(
−∆V

ε

)
,

where λ∗ is the unstable direction eigenvalue, at the saddle
point.
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Proof of the Eyring–Kramers Formula for Reversible
(Gradient) Dynamics

First proof (using potential theory and capacities): Bovier,
Eckhoff, Gayrard, and Klein (2004).
Generalizations to non quadratic saddle points, SPDE in
dimension d = 1. See the review: Berglund (2011).
An Eyring–Kramers formula for SPDE in dimension d = 2:
Berglund, Di Gesu, and Weber (arXiv 2016).
What is the prefactor for irreversible (non-gradient) dynamics?
Formal results by Maier and Stein (1997) (for 2 degrees of
freedom), Schuss (2009).
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Transition Rates for Irreversible (Non-Gradient) Dynamics

dx
dt

= b(x) +
√
2εη (t) .

We assume that there exists a transverse decomposition in the
instanton neighborhood

b(x) =−∇V (x) +G(x) with for all x, ∇V (x).G(x) = 0.

The transition rate then reads

λ ∼
ε→0

|λ∗|
2π

√
detHessV (x1)

|detHessV (x∗)|
exp
(
−∆V

ε

)
exp
{
−
∫ +∞

−∞

dt [∇.G(X (t))]

}
,

where λ∗ is the negative eigenvalue corresponding to the
unstable direction at the saddle point, for the dynamics (and
not for V ) and {X (t)} is the instanton.

F. Bouchet and J. Reygner, AHP 2016
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Jupiter’s Zonal Jets
We look for a theoretical description of zonal jets

Jupiter’s atmosphere
Jupiter’s zonal winds (Voyager and
Cassini, from Porco et al 2003)
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The Barotropic Quasi-Geostrophic Equations

The simplest model for geostrophic turbulence.
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q = ν∆ω−αω +

√
2αfs ,

where ω = (∇∧v) .ez is the vorticity, q = ω + βy is the Potential
Vorticity (PV), β is the Coriolis parameter, fs is a random Gaussian
field with correlation 〈fS(x, t)fS(x′, t ′)〉= C (x−x′)δ (t− t ′).

A reasonable model for Jupiter’s zonal jets.

F. Bouchet CNRS–ENSL Large deviation theory and climate.
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The 2D Stochastic Navier-Stokes Equations (β = 0)

∂ω

∂ t
+u.∇ω = ν∆ω +

√
νfs

Some recent mathematical results: Bricmont, Debussche,
Hairer, Kuksin, Kupiainen, Mattingly, Shirikyan, Sinai, ...

Existence of a stationary measure µν . Existence of limν→0 µν ,
In this limit, almost all trajectories are solutions of the 2D
Euler equations.

Kuksin, S. B., & Shirikyan, A. (2012). Mathematics of two-dimensional
turbulence. Cambridge University Press.

We would like to describe the invariant measure

F. Bouchet CNRS–ENSL Large deviation theory and climate.
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Dynamics of the Barotropic Quasi-Geostrophic Equations

Top: Zonally averaged vorticity (Hovmöller diagram and red curve)
and velocity (green). Bottom: vorticity field
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Multistability for Quasi-Geostrophic Jets

Jupiter’s atmosphere
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QG zonal turbulent jets
Multiple attractors had been observed previously by B. Farrell
and P. Ioannou.
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Rare Transitions Between Quasigeostrophic Jets
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0
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|q2|

αt

|q3|

Rare transitions for quasigeostrophic jets (with E. Simonnet)

This is the first observation of spontaneous transitions.
How to predict those rare transitions? What is their
probability? Which theoretical approach?
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Rare Events and Adaptive Multilevel Splitting (AMS)
AMS: an algorithm to compute rare events, for instance rare transition paths

Rare event algorithms: Kahn and Harris (1953), Chandler,
Vanden-Eijnden, Schuss, Del Moral, Dupuis, ...
The adaptive multilevel splitting algorithm:

1

1 branched on 2

3
2

x

Q1Q2 Q3

Q1 < Q2 < Q3

A

B

N = 3 trajectories

AMS algorithm

Strategy: selection and cloning.
Probability estimate:

α̂ = (1−1/N)K , where

N is the clone number and K
the iteration number.

Cérou, Guyader (2007). Cérou, Guyader, Lelièvre, and Pommier (2011).
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A Transition from 2 to 3 Jets

Top: Zonally averaged vorticity (Hovmöller diagram and red curve)
and velocity (green). Bottom: vorticity field
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Atmosphere Jet “Instantons” Computed using the AMS
AMS: an algorithm to compute rare events, for instance rare reactive trajectories

Transition trajectories between 2 and 3 jet states

The dynamics of turbulent transitions is predictible.
Asymmetry between forward and backward transitions.
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Transition Rates for Unreachable Regimes Through DNS
With the AMS we can estimate huge average transition times
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0.22 · 10−3 25.0 d ∞

Average transition time versus α

With the AMS algorithm, we study transitions that would
require an astronomical computation time using direct
numerical simulations.
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Which Mathematical Framework for the Inertial Limit?

Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q =−αω +

√
2αfs .

Inertial limit: spin up or spin down time = 1/α � 1 = jet
inertial time scale (a relevant assumption for Jupiter).
This is an averaging problem for an Hamiltonian system
perturbed by weak non Hamiltonian forces.
The Hamiltonian system is an infinite dimensional one with an
infinite number of conserved quantities.
We will need to consider large deviations for the slow process.

F. Bouchet CNRS–ENSL Large deviation theory and climate.
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Gaussian Fluctuations Do Not Describe Rare Transitions

∂U

∂ t
= F (U) +

√
ασ(U, t)
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Minimizer

Minimizer (quad approx)

Relaxation path

(Figure from F. Bouchet, T. Grafke, T. Tangarife, and E.
Vanden-Eijnden, J. Stat. Phys. 2016)
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Zonal Jet Conclusions

We have computed rare transitions between zonal jets, similar
to Jupiter’s abrupt climate changes, that can not be computed
using direct numerical simulations (with E. S.).
We have partial results for the justification of averaging
(ergodicity, etc ...), (with C.N., and T.T.).
For small scale forces, the average Reynolds stress can be
computed explicitly and is universal. We have a good
qualitative agreement with Jupiter’s jets. (with E.W.).
The rare transitions involve non-Gaussian fluctuations of the
Reynolds stress.
A theory based on large deviations can be derived for the
computation of transition rates and transition paths between
zonal jets (with T.G., B..M., T.T., and E. V-E).

http://perso.ens-lyon.fr/freddy.bouchet/
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Anthropogenic Causes of the 2010 Heat Wave

(Dole et al., 2011)

Return time of monthly
temperature

(Otto et al., 2012)
A clear anthropogenic impact.
What are the dynamical mechanisms for such extreme events?
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The Jet Stream, Rossby Waves, and Blocking Events

Higher troposphere winds

F. Bouchet CNRS–ENSL Large deviation theory and climate.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}




Two challenges in climate dynamics
Rare transitions and Jupiter’s abrupt climate changes

Probability and dynamics of extreme heat waves

The jet stream, blocking events, and heat waves
Sampling extreme heat waves using large deviations

45-Day Averaged Temperature over Europe (Plasim Model)
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Numerical Computation of Donsker–Varadhan Large
Deviations

Importance sampling: how to sample efficiently the tilted
distribution

P̃k

(
{X (t)}0≤t≤T

)
=

1
exp(Tλ(k))

P0
(
{X (t)}0≤t≤T

)
exp

[
k
∫ T

0
A(X (t))dt

]
?

We use the Giardina–Kurchan–Leconte–Tailleur algorithm
(Giardina et al 2006).
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Importance Sampling of Extreme Heat Waves in a Climate
Model
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Heat wave number
At fixed numerical cost, we get hundreds more heat waves
with the large deviation algorithm than with the control run.
We can consider interesting dynamical studies.
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A Typical Heat Wave

500 HPa geopotential height and temperature anomalies
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Heat Wave Conditional Statistics and Teleconnection
Patterns
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500 HPa geopotential height anomalies and temperature anomalies

Heat wave statistics defined as statistics conditioned with
1
T

∫ T
0 Temp(X (t))dt > 2°C, with T = 40days.
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Collaborators

An Eyring-Kramers formula for transition rates of
non-reversible stochastic differential equations (with J.
Reygner).
Numerical simulation of abrupt transitions for Jupiter zonal
jets using Adaptive Multilevel Splitting algorithms (with J.
Rolland and E. Simonnet (Nice)).
Ergodicity and averaging for the quasi-geostrophic dynamics
(with C. Nardini (post-doc) and T. Tangarife (PHD)).
Averaging, large deviations, and transitions for Jupiter jets
(with T. Grafke and E. Vanden-Eijnden).
Sampling extreme heat waves using large deviation algorithms
(with J. Wouters and F. Ragone, project AXA).

http://perso.ens-lyon.fr/freddy.bouchet/
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Summary and Perspectives

Large deviation theory can be applied to geophysical
turbulence and climate.
This is the main approach for non-equilibrium statistical
mechanics applied to climate dynamics.
With rare event algorithms, we can compute probability of rare
events that can not be sampled using direct numerical
simulations. This should have a huge impact on future
computations of climate extremes and rare transitions.
The dynamics leading to rare events is usually predictable,
even for turbulent flows.

http://perso.ens-lyon.fr/freddy.bouchet/
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