Domain specific languages and automated code generation: high expressiveness and high performance

P. E. Farrell^{1,2}

¹University of Oxford

²Simula Research Laboratory, Oslo

March 17, 2015

A quote

Mathematical languages and code generation

[A]n automatically coded problem, which has been concisely stated in a language which does not resemble a machine language, will be executed in about the same time that would be required had the problem been laboriously hand coded.

. . .

Such a system will make experimental investigation of various mathematical models and numerical methods more feasible and convenient both in human and economic terms.

John Backus, Specifications for the IBM Mathematical <u>Formula</u>
 <u>Translating System</u>, 1954

Main idea of this talk

Main idea

Represent the variational problem to be solved as data.

- Generate C++ code with a special compiler.
- Developing finite element models becomes significantly faster.
- Generated code can run faster (than busy humans would bother).
- This enables lots of automatic program transformations!

The people responsible

(a) Martin Alnæs

(b) Anders Logg

(c) Garth Wells

Maths and code: I

Start with the strong equation:

$$-\Delta u = f$$
 in Ω
$$u = 0$$
 on $\partial \Omega$

Multiply by a test function and integrate over the domain:

$$-\int_{\Omega} (\Delta u) v \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x$$

Integrate by parts and set v=0 on the Dirichlet boundary:

$$\int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x$$

In code:

Maths and code: II

Too simple? Let's make it harder:

$$-\nabla \cdot (\gamma(u)\nabla u) = f \quad \text{ in } \Omega$$
$$u = 0 \quad \text{ on } \partial \Omega$$

where

$$\gamma(u) = (\epsilon^2 + \frac{1}{2} |\nabla u|^2)^{(p-2)/2}$$

Maths and code: III

Coupled problems? Let's try Navier-Stokes:

$$\begin{split} -\frac{1}{\mathrm{Re}} \nabla^2 u + u \cdot \nabla u + \nabla p &= 0, \\ \nabla \cdot u &= 0, \end{split}$$

Maths and code: IV

Optimisation constrained by an eigenvalue problem?

minimise
$$\int_{\Omega} \phi$$
 subject to $-\nabla^2 \phi = \lambda \phi$ in Ω
$$\phi = 0$$
 on $\delta \Omega$
$$\int_{\Omega} \phi^2 = 1$$

I: Jacobian calculation

Mathematical idea

Given the problem residual F, calculate J = F'.

Jacobian calculation

Forming each element of J requires taking analytic or discrete derivatives of the system of equations with respect to u. This can be both error-prone and time consuming.

- Knoll and Keyes, Jacobian-free Newton-Krylov methods, 2004

II: tangent predictors

Mathematical idea

Given a change to a parameter δm , what will be the linearised change in solution δu ?

$$F(u,m) = 0$$

$$\implies \frac{\partial F}{\partial u} \delta u + \frac{\partial F}{\partial m} \delta m = 0$$

III: deflation

Mathematical idea

Given

- \blacktriangleright the problem residual $F:V\to W$
- ▶ a solution $r \in V$, F(r) = 0, F'(r) nonsingular
- $\tilde{r} \in V, \, \tilde{r} \neq r$

construct a new nonlinear problem $G: V \rightarrow Z$ such that:

- ▶ (Preservation of solutions.) $F(\tilde{r}) = 0 \iff G(\tilde{r}) = 0$.
- Deflation property.) Newton's method applied to G will never converge to r again, starting from any initial guess.

IV: Why are transient adjoints hard?

- Adjoints reverse propagation of information:
 - IVPs induce terminal-value problems
 - Parallel communication flows the other way
- Precise form depends sensitively on the problem
 - Must be modified whenever PDE, discretisation, parameter, prior, likelihood change
- Practical implementation requires checkpointing
 - Control flow must weave between forward and adjoint solution
 - Delicately balance memory and disk I/O
 - Expert knowledge required to make this work on HPC

Conclusion

Adjoint derivation should be automated.

 $\begin{array}{c} \text{discrete forward equations} & \xrightarrow{\text{implement}} & \text{forward code} \\ \\ \text{adjoin} \downarrow \\ \\ \text{adjoint code} \end{array}$

Difficulties

- ► Loses mathematical structure of problem
- Usually very inefficient (Naumann (2011): 3–30× slower)
- Major intervention to work in parallel

Page 35 of 52

 $\begin{array}{c} \text{discrete forward equations} & \xrightarrow{\text{implement}} & \text{forward code} \\ \\ \text{adjoin} & \\ \\ \text{adjoint code} \end{array}$

A better idea

Adjoin the equations, not the code!

Page 36 of 52

A better idea

Adjoin the equations, not the code!

Advantages

- ► Retains mathematical structure of problem
- Achieves optimal theoretical performance for adjoint
- Works naturally in parallel

IV: dolfin-adjoint

dolfin-adjoint takes the adjoint of FEniCS models.

```
from dolfin import *
```

Page 39 of 52

IV: optimisations

Optimisations

Having the high-level structure available allows for many optimisations that are very difficult to do in general.

IV: two-phase linearisation

Forward problem

Solve F(u, m) = 0 (taking N linear solves).

Piggyback linearisation

Differentiate through each of the N iterations.

4

IV: two-phase linearisation

Forward problem

Solve F(u, m) = 0 (taking N linear solves).

Two-phase linearisation

Solve in one iteration

$$\frac{\partial F}{\partial u}\dot{u} = -\frac{\partial F}{\partial m}\dot{m}.$$

Advantage

A huge gain in efficiency (\precedex number of nonlinear iterations)

IV: two-phase linearisation of the p-Laplace equation

p-Laplace equation

$$-\nabla \cdot (\underbrace{(\epsilon^2 + \frac{1}{2} |\nabla u|^2)^{p-2/2}}_{\gamma(u)} \nabla u) = f$$

IV: two-phase linearisation of the p-Laplace equation

Operation	Time (s)	R
forward model	2949.8	1
Piggyback	2890.7	0.9799
Two-phase	14.3	0.0048

k

Conclusions

Domain specific languages allow for huge productivity gains.

k