Domain specific languages and automated code generation
expressiveness and high performance

P. E. Farrell (Oxford)

P. E. Farrell!:2

LUniversity of Oxford

2Simula Research Laboratory, Oslo

March 17, 2015

Domain specific languages in FEniCS

March 17, 2015

WAL

Mathematical languages and code generation

[A]n automatically coded problem, which has been concisely stated in a
language which does not resemble a machine language, will be executed in
about the same time that would be required had the problem been
laboriously hand coded.

Such a system will, make experimental investigation of various
mathematical models and numerical methods more feasible and convenient
both in human and economic terms.

— John Backus, Specifications for the IBM Mathematical Formula
Translating System, 1954

P. E. Famell (Oxford) Domain specific languages in FEniCS March 17, 2015 2/19

Main idea of this talk

Main idea

Represent the variational problem to be solved as data.

Generate C++ code with a special compiler.
Developing finite element models becomes significantly faster.

Generated code can run faster (than busy humans would bother).

: k ; "
This enables lots of automatic program transformations!

P. E. Famrell (Oxford) Domain specific languages in FEniCS March 17, 2015

Introduction

The people responsible

(a) Martin Alnzes (b) Anders Logg (c) Garth Wells

P. E. Farrell (Oxford) Domain specific languages in FEniCS March 17, 2015 4 /19

Maths and code: |

Start with the strong equation:

~Au=F &
u=0 on 0f)

Multiply by a test function and integrate over the domain:

-L(a-u)ud;n:fﬂfvdx

Integrate by parts end set v = () on the Dirichlet boundary:

/Vu-Vud:r=/f1:dx
(2 Q

In code:

F = inner(grad(u), grad(v))#*dx - inner(f, v)=*dx

P. E. Farrell (Oxford) March 17, 2015

Maths and code: |l

Too simple? Let's make it harder:

-V (y(u)Vu)=f in
u=0 on 9%

Y(w) = (& + 5 [Vuf?) 272

P. E. Farrell (Oxford) Domain specific languages in FEniCS March 17, 2015 6/19

Maths and code: ||

Coupled problems? Let's try Navier—Stokes:

P. E. Farrell (Oxford) Domain specific languages in FEniCS March 17, 2015 T/19

Maths and code: IV

Optimisation constrained by an eigenvalue problem?

minimise / o,
Q

subject to — V?¢ = \¢ in 2
=0 on 652

/@2:1
()

P. E. Farrell (Oxford) Domain specific languages in FEniCS

March 17, 2015

8/19

Automated program transformations

|- Jacobian calculation

Mathematical idea

Given the problem residual F, calculate J = F'.

Jacobian calculation

Forming each element of J requires taking analytic or discrete derivatives
of the system of equations with respect to w. This can be both error-prone
and time consuming.

— Knoll and Keye$, Jacobian—free Newton—Krylov methods, 2004

P. E. Farrell (Oxford) Domain specific languages in FEniCS March 17, 2015 9/19

Automated program transformations

lI: tangent predictors

Mathematical idea

Given a change to a parameter dm, what will be the linearised change in
solution du?
F(u,m)=0
OF OF

— —%(5'& — a—mt‘}m =%

P. E. Famrell (Oxford) Domain specific languages in FEniCS March 17, 2015 10/ 19

Automated program transformations
l1l: deflation

Mathematical idea

Given
» the problem residual F/: V - W
» a solution r € V, F(r) =0, F'(r) nonsingular
» reV, r#r

construct a new nonlinear problem G : V — Z such that:

» (Preservation of solutions.) F(7) =0 <= G(7) = 0.

» (Deflation pro"perty.) Newton's method applied to G will never
converge to r again, starting from any initial guess.

P. E. Famrell (Oxford) Domain specific languages in FEniCS March 17, 2015

Automated program transformations

IV: Why are transient adjoints hard?

» Adjoints reverse propagation of information:

» |IVPs induce terminal-value problems
» Parallel communication flows the other way

» Precise form depends sensitively on the problem

» Must be modified whenever PDE, discretisation, parameter,
prior, likelihood change

» Practical implementation requires checkpointing

» Control flow must weave between forward and adjoint solution
» Delicately balance memory and disk |/0O
» Expert knowledge required to make this work on HPC

Conclusion

Adjoint derivation should be automated.

P. E. Farrell (Oxford) Domain specific languages in FEniCS March 17, 2015 12 /19

Automated program transformations

IV: transient adjoint derivation

implement '
» | forward code |

'ldiscrete forward equations

adjoinl

adjoint code

Difficulties

» Loses mathematical structure of problem
» Usually very inefficient (Naumann (2011): 3-30x slower)

» Major intervention to work in parallel

P. E. Farrell (Oxford) Domain specific languages in FEniCS March 17, 2015

Automated program transformations

IV: transient adjoint derivation

s : implement | '
'ldlscrete forward equations » | forward code

adjoin‘l'

’ adjoint code

A better idea

x Adjoin the equations, not the code!

P. E. Farrell (Oxford) Domain specific languages in FEniCS March 17, 2015

Automated program transformations

IV: transient adjoint derivation

code generation

» | forward code

ldiscrete forward equations

| symbolic manipulation

|
b

= T : code generation | o
ldlscrete adjoint equations = : iadjomt code

A better idea

x Adjoin the equations, not the code!

P. E. Famrell (Oxford) Domain specific languages in FEniCS March 17, 2015

Automated program transformations

IV: transient adjoint derivation

code generation

‘discrete forward equations

» | forward code |

i symbolic manipulation

b

code generation

ldiscrete adjoint equations > !adjoint code

Advantages

: X :
» Retains mathematical structure of problem
» Achieves optimal theoretical performance for adjoint

» Works naturally in parallel

P. E. Farrell (Oxford) Domain specific languages in FEniCS March 17, 2015

Automated program transformations

IV: dolfin-adjoint

dolfin-adjoint takes the adjoint of FEniCS models.

from dolfin import *

while t < T: .
solve(F == 0, u)

P. E. Farrell (Oxford) Domain specific languages in FEniCS March 17, 2015 14 /19

Automated program transformations

IV: optimisations

Optimisations

Having the high-level structure available allows for many optimisations
that are very difficult to do in general.

P. E. Farrell (Oxford) Domain specific languages in FEniCS March 17, 2015 15 /19

Automated program transformations

IV: two-phase linearisation

Forward problem

Solve F'(u,m) = 0 (taking N linear solves).

Piggyback linearisation

Differentiate through each of the N iterations.

P. E. Famrell (Oxford) Domain specific languages in FEniCS March 17, 2015 16 / 19

Automated program transformations

IV: two-phase linearisation

Forward problem

Solve F'(u,m) = 0 (taking N linear solves).

Two-phase linearisation

Solve in one iteration

oF OoF
—i = ———10.

ou om

Advantage

A huge gain in efficiency (o< number of nonlinear iterations)

P. E. Farrell (Oxford)

March 17, 2015

Automated program transformations

IV: two-phase linearisation of the p-Laplace equation

p-Laplace equation

V(€@ + 5 VP22 Vu) = f

L. o
Y

v(u)

P. E. Farrell (Oxford) Domain specific languages in FEniCS March 17, 2015

Automated program transformations

IV: two-phase linearisation of the p-Laplace equation

Operation Time (s) R

forward model | 2949.8 1
Piggyback 2890.7 | 0.9799
Two-phase 143 0.0048

P. E. Famrell (Oxford) Domain specific languages in FEniCS March 17, 2015

Conclusions

» Domain specific languages allow for huge productivity gains.

P. E. Famrell (Oxford) Domain specific languages in FEniCS March 17, 2015 19 /19

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

