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Mathematical languages and code generation

[A]n automatically coded problem, which has been concisely stated in a
language which does not resemble a machine language, will be executed in
about the same time that would be required had the problem been
laboriously hand coded.

Such a system will, make experimental investigation of various
mathematical models and numerical methods more feasible and convenient
both in human and economic terms.

— John Backus, Specifications for the IBM Mathematical Formula
Translating System, 1954
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Main idea of this talk

Main idea

Represent the variational problem to be solved as data.

Generate C++ code with a special compiler.
Developing finite element models becomes significantly faster.

Generated code can run faster (than busy humans would bother).

: k ; "
This enables lots of automatic program transformations!
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Introduction

The people responsible

(a) Martin Alnzes (b) Anders Logg (c) Garth Wells
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Maths and code: |

Start with the strong equation:

~Au=F &
u=0 on 0f)

Multiply by a test function and integrate over the domain:

-L(a-u)ud;n:fﬂfvdx

Integrate by parts end set v = () on the Dirichlet boundary:

/Vu-Vud:r=/f1:dx
(2 Q

In code:

F = inner(grad(u), grad(v))#*dx - inner(f, v)=*dx
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Maths and code: |l

Too simple? Let's make it harder:

-V (y(u)Vu)=f in
u=0 on 9%

Y(w) = (& + 5 [Vuf?) 272
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Maths and code: ||

Coupled problems? Let's try Navier—Stokes:

P. E. Farrell (Oxford) Domain specific languages in FEniCS March 17, 2015 T/19



Maths and code: IV

Optimisation constrained by an eigenvalue problem?

minimise / o,
Q

subject to — V?¢ = \¢ in 2
=0 on 652

/@2:1
()
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Automated program transformations

|- Jacobian calculation

Mathematical idea

Given the problem residual F, calculate J = F'.

Jacobian calculation

Forming each element of J requires taking analytic or discrete derivatives
of the system of equations with respect to w. This can be both error-prone
and time consuming.

— Knoll and Keye$, Jacobian—free Newton—Krylov methods, 2004
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Automated program transformations

lI: tangent predictors

Mathematical idea

Given a change to a parameter dm, what will be the linearised change in
solution du?
F(u,m)=0
OF OF

— —%(5'& — a—mt‘}m =%
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Automated program transformations
l1l: deflation

Mathematical idea

Given
» the problem residual F/: V - W
» a solution r € V, F(r) =0, F'(r) nonsingular
» reV, r#r

construct a new nonlinear problem G : V — Z such that:

» (Preservation of solutions.) F(7) =0 <= G(7) = 0.

» (Deflation pro"perty.) Newton's method applied to G will never
converge to r again, starting from any initial guess.
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Automated program transformations

IV: Why are transient adjoints hard?

» Adjoints reverse propagation of information:

» |IVPs induce terminal-value problems
» Parallel communication flows the other way

» Precise form depends sensitively on the problem

» Must be modified whenever PDE, discretisation, parameter,
prior, likelihood change

» Practical implementation requires checkpointing

» Control flow must weave between forward and adjoint solution
» Delicately balance memory and disk |/0O
» Expert knowledge required to make this work on HPC

Conclusion

Adjoint derivation should be automated.
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Automated program transformations

IV: transient adjoint derivation

implement '
» | forward code |

'ldiscrete forward equations

adjoinl

adjoint code

Difficulties

» Loses mathematical structure of problem
» Usually very inefficient (Naumann (2011): 3-30x slower)

» Major intervention to work in parallel
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Automated program transformations

IV: transient adjoint derivation

s : implement | '
'ldlscrete forward equations » | forward code

adjoin‘l'

’ adjoint code

A better idea

x Adjoin the equations, not the code!
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Automated program transformations

IV: transient adjoint derivation

code generation

» | forward code

ldiscrete forward equations

| symbolic manipulation

|
b

= T : code generation | o
ldlscrete adjoint equations = : iadjomt code

A better idea

x Adjoin the equations, not the code!
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Automated program transformations

IV: transient adjoint derivation

code generation

‘discrete forward equations

» | forward code |

i symbolic manipulation

b

code generation

ldiscrete adjoint equations > !adjoint code

Advantages

: X :
» Retains mathematical structure of problem
» Achieves optimal theoretical performance for adjoint

» Works naturally in parallel
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Automated program transformations

IV: dolfin-adjoint

dolfin-adjoint takes the adjoint of FEniCS models.

from dolfin import *

while t < T: .
solve(F == 0, u)
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Automated program transformations

IV: optimisations

Optimisations

Having the high-level structure available allows for many optimisations
that are very difficult to do in general.
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Automated program transformations

IV: two-phase linearisation

Forward problem

Solve F'(u,m) = 0 (taking N linear solves).

Piggyback linearisation

Differentiate through each of the N iterations.
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Automated program transformations

IV: two-phase linearisation

Forward problem

Solve F'(u,m) = 0 (taking N linear solves).

Two-phase linearisation

Solve in one iteration

oF OoF
—i = ———10.

ou om

Advantage

A huge gain in efficiency (o< number of nonlinear iterations)
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Automated program transformations

IV: two-phase linearisation of the p-Laplace equation

p-Laplace equation

V(€@ + 5 VP22 Vu) = f

L. o
Y

v(u)

P. E. Farrell (Oxford) Domain specific languages in FEniCS March 17, 2015



Automated program transformations

IV: two-phase linearisation of the p-Laplace equation

Operation Time (s) R

forward model | 2949.8 1
Piggyback 2890.7 | 0.9799
Two-phase 143 0.0048
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Conclusions

» Domain specific languages allow for huge productivity gains.
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