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Introduction: Energy focusing in thin elastic sheets

Energy focusing in thin elastic sheets

@ Experimental setup: Take a thin elastic
sheet and subject it to boundary
conditions that force it to form sharp
folds or vertices.

@ Rigorous formulation:
simply connected Lipschitz domain Q C R?: elastic sheet in
the undeformed configuration;
y : Q — R3: deformation map;
elastic energy:

v ) = [ [oyTDy — |+ D3
Z/Qllgy—goll2+h2\D2y‘2

(g, = y*e®, e®) =Euclidean metric on R3, gy=reference metric.)
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Introduction: Energy focusing in thin elastic sheets

Tensile boundary conditions

@ Looking for lower und upper bounds, both as expansions in
the small parameter h

@ Crumpling: too hard. Alternative problem: Impose tensile
boundary conditions. |.e., choose Dirichlet boundary
conditions such that there exists a unique (Lipschitz) isometric
immersion, which is singular (infinite bending energy)

@ Every deviation from the singular configuration is penalized by
the membrane term; the balance between the two leads to an
(optimal) lower bound

o If short maps (i.e., maps y with Dy Dy < Id) are permissible
by the boundary conditions, this method of proof breaks down

Heiner Olbermann Energy scaling law for a single disclination in a thin elastic shee



Introduction: Energy focusing in thin elastic sheets

Why are lower bounds difficult? (for non-tensile b.c.)

Theorem (Nash '54, Kuiper '59)

Let (M, g) be a Riemannian manifold of dimension n, m > n+ 1.
Any short immersion of M into R™ can be uniformly approximated
by isometric immersions of class C*.

Thus: For a given reference metric g, there exists a huge set of maps
that are very close to isometric immersions. The theory behind this is
Gromov's h-principle. How to exclude these degrees of freedom?

Isometric embedding of the flat torus into R3 (Borrelli, Jabrane, Lazarus, Thibert, PNAS *12)
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The single disclination — setup and main result

The single disclination

@ Experimental setup: Remove a sector from a
circular thin sheet and glue the edges back together

@ Instead of “removing a sector” we may equivalently
“shorten the reference metric in the angular
direction”,

P(x) =V1— A%2x + Alx|e,

gn =Dy " Dy

= ga(x) = Idpyo — A28 @ %

0 < A <1, domain = B; = B(0,1) C R? with

%= x/|x|,
0 -1
ol o
% (1 5 )X
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The single disclination — setup and main result

Main result

ga =Id — A’ @ %', g,=Dy"Dy

ha) = [ lg — gal* + 1|03y dx
1

Theorem (O. '15)
There exists a constant C = C(A) > 0 such that

3
2 A%h? (| log h| — > log | log h>

< inf I < 27 A%h?|log h| + C
*yewz'g(sl;m ha(y) < 2 [log Al +

for all small enough h.

Heiner Olbermann Energy scaling law for a single disclination in a thin elastic shee



Sketch of the proof

An ansatz for lower bounds for the single disclination

The “right” curvature like quantity is K(y) := Z?:l det D?y;.

@ Use K(y) as a control variable for lower bounds of both, the
membrane and bending term.

@ To deal with the membrane term, use the formulation of the
determinant det D?v as a very weak Hessian,
det D?v = (v1v2).12 — 3(Ival?) 22 — 3(Ival®) .1

@ Hence, we have

3
1 1
> det D% = (ya-y2)az = 5(IyaP)z = 5(1v2l)
i=1
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Sketch of the proof

o = Y .det D?y; — det D?y; =
(8 — &a)1212 — 2(8y — 8a)11,22 — 3(8y — 8a)22,11

o Explicit calculation yields det D?y; = 7A%5,

o — || det D?y; — 7rA250||W_2,1 < membrane energy, i.e.,
we obtain control over 3", det D?y; — mA2%6y in W21
through the membrane energy
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Sketch of the proof

Lower bound for bending through | 3°; det D?y;

Bending: Note that by the coarea formula,
‘IBP > det Dzyidx’ < 3, L%(Dyi(B,)). By the isoperimetric
inequality in R?, we can get a lower bound for Zifasp |D?y;|:

Forv € C?(By) and0 < r <1,

/ |D?v|dH! > \/47r
0By

/ det D2vdx
B,

Heiner Olbermann Energy scaling law for a single disclination in a thin elastic shee



More results

More results: 3d elasticity

Qy:=B1 x [—h/2,h/2], Y(x,z)=9(x)+ zv5
g (x,z) =Idsxs — A% @ %+

Ena(Y) = / dist2<DY(x),SO(3) gf)(x)> dci(x).
Qp

Theorem (0., '15)

Let 0 < A < 1. There exists a constant C = C(A) with the
following property: For h small enough,

1 a -2 2
— < < .
C‘ log h| < yeWQI,g(th;[R3) h=2Epa(y) < 27A*(|log h| + C)

Proof: Translate lower bounds of I, a(y) into bounds in 3d elasticity through
Geometric Rigidity by Friesecke, James, Miiller.
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More results

More results: The Foppl-von Karman model

1 2
sym Du + 5Dv® Dv+Ae,®e, + h?|D?v[2dx

IVK o
hA —
B

Theorem (O. '15)

There exists a constant C = C(A) > 0 with the following
property: For h small enough,

4w (|log h| — 2log|log h|) — C

<h™? Y (u,v) < 4nAllogh| + C.

inf
(u,v)EWL2(B;R2)x W2:2(By)
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More results

More results: Convergence of almost minimizers to the
singular cone

9:B =R 9(x)=V1—A2x+ Alx]es.

Theorem (Miiller, O., '15)

Let y" € W?2(By;R3) be a sequence with
Iha(y™) < 27A2h2(|log h| + C). Then up to Euclidean motions,
we have for every 0 < p < 1,

yh =y in W?(B;\ B, R%).

Important tools in the proof: Lower bounds for I o(y)+ Structure
result for flat W?2?2 surfaces (Pakzad'04, Hornung '11)
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More results

Summary/Outlook

@ Main results: Lower bounds for a single disclination in a
geometrically fully nonlinear plate model, in 3-dimensional nonlinear
elasticity and in the Foppl-von Kdrman model. Moreover,
minimizers of the elastic energy converge to the singular cone as
h — 0 weakly in W22(B; \ {0}; R?)

@ Key to the first result is to look at a curvature-like quantity, that
gives control over certain properties of the graph of Dy. The lower
bound follows by an isoperimetric inequality

@ Can this idea be applied to other problems of a similar flavor?
(D-cones? Non-conical geometries?)
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