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Energy focusing in thin elastic sheets
Experimental setup: Take a thin elastic
sheet and subject it to boundary
conditions that force it to form sharp
folds or vertices.

Rigorous formulation:
simply connected Lipschitz domain Ω ⊂ R

2: elastic sheet in
the undeformed configuration;
y : Ω→ R

3: deformation map;
elastic energy:

Ih(y ,Ω) :=

∫
Ω

∣∣∣DyT Dy − g0
∣∣∣2 + h2

∣∣∣D2y
∣∣∣2

=

∫
Ω
‖gy − g0‖2 + h2

∣∣∣D2y
∣∣∣2

(gy = y∗e(3), e(3) =Euclidean metric on R3, g0=reference metric.)
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Tensile boundary conditions

Looking for lower und upper bounds, both as expansions in
the small parameter h
Crumpling: too hard. Alternative problem: Impose tensile
boundary conditions. I.e., choose Dirichlet boundary
conditions such that there exists a unique (Lipschitz) isometric
immersion, which is singular (infinite bending energy)
Every deviation from the singular configuration is penalized by
the membrane term; the balance between the two leads to an
(optimal) lower bound
If short maps (i.e., maps y with DyT Dy < Id) are permissible
by the boundary conditions, this method of proof breaks down
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Why are lower bounds difficult? (for non-tensile b.c.)

Theorem (Nash ’54, Kuiper ’59)
Let (M, g) be a Riemannian manifold of dimension n, m ≥ n + 1.
Any short immersion of M into Rm can be uniformly approximated
by isometric immersions of class C1.

Thus: For a given reference metric g , there exists a huge set of maps
that are very close to isometric immersions. The theory behind this is
Gromov’s h-principle. How to exclude these degrees of freedom?

Isometric embedding of the flat torus into R3 (Borrelli, Jabrane, Lazarus, Thibert, PNAS ’12)
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The single disclination
Experimental setup: Remove a sector from a
circular thin sheet and glue the edges back together
Instead of “removing a sector” we may equivalently
“shorten the reference metric in the angular
direction”,

ŷ(x) =
√

1−∆2x + ∆|x |ez

g∆ =DŷT Dŷ

⇒ g∆(x) = Id2×2 −∆2x̂⊥ ⊗ x̂⊥

0 < ∆ < 1, domain = B1 = B(0, 1) ⊂ R
2 with

x̂ = x/|x |,

x̂⊥ =

(
0 −1
1 0

)
x̂
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Main result

g∆ =Id−∆2x̂⊥ ⊗ x̂⊥, gy = DyT Dy

Ih,∆(y) =

∫
B1
|gy − g∆|2 + h2|D2y |2dx

Theorem (O. ’15)
There exists a constant C = C(∆) > 0 such that

2π∆2h2
(
| log h| − 3

2 log | log h|
)

≤ inf
y∈W 2,2(B1;R3)

Ih,∆(y) ≤ 2π∆2h2| log h|+ C

for all small enough h.
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An ansatz for lower bounds for the single disclination

The “right” curvature like quantity is K(y) :=
∑3

i=1 det D2yi .

Main idea

Use K(y) as a control variable for lower bounds of both, the
membrane and bending term.

To deal with the membrane term, use the formulation of the
determinant det D2v as a very weak Hessian,
det D2v = (v,1v,2),12 − 1

2 (|v,1|2),22 − 1
2 (|v,2|2),11

Hence, we have

3∑
i=1

det D2yi = (y,1 · y,2),12 −
1
2 (|y,1|2),22 −

1
2 (|y,2|2),11
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Main idea continued
=⇒

∑
i det D2yi − det D2ŷi =

(gy − g∆)12,12 − 1
2 (gy − g∆)11,22 − 1

2 (gy − g∆)22,11

Explicit calculation yields det D2ŷi = π∆2δ0

=⇒
∥∥∑i det D2yi − π∆2δ0

∥∥
W−2,1 . membrane energy, i.e.,

we obtain control over
∑

i det D2yi − π∆2δ0 in W−2,1

through the membrane energy
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Lower bound for bending through ∫ ∑
i det D2yi

Bending: Note that by the coarea formula,∣∣∣∫Bρ∑i det D2yidx
∣∣∣ ≤∑i L2(Dyi (Bρ)). By the isoperimetric

inequality in R2, we can get a lower bound for
∑

i
∫
∂Bρ |D

2yi |:

Lemma

For v ∈ C2(B1) and 0 ≤ r ≤ 1,

∫
∂Br
|D2v |dH1 ≥

√
4π
∣∣∣∣∫

Br
det D2vdx

∣∣∣∣ .
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More results: 3d elasticity

Ωh :=B1 × [−h/2, h/2] , Ŷ (x , z) = ŷ(x) + zνŷ

g (3)
∆ (x , z) =Id3×3 −∆2x̂⊥ ⊗ x̂⊥

Eh,∆(Y ) =

∫
Ωh

dist 2
(

DY (x), SO(3)

√
g (3)

∆ (x)

)
dL3(x) .

Theorem (O., ’15)
Let 0 < ∆ < 1. There exists a constant C = C(∆) with the
following property: For h small enough,

1
C | log h| ≤ inf

y∈W 2,2(Ωh;R3)
h−2Eh,∆(y) ≤ 2π∆2 (| log h|+ C) .

Proof: Translate lower bounds of Ih,∆(y) into bounds in 3d elasticity through
Geometric Rigidity by Friesecke, James, Müller.
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More results: The Föppl-von Kármán model

IvK
h,∆ =

∫
B1

∣∣∣∣sym Du +
1
2Dv ⊗ Dv + ∆ eϕ ⊗ eϕ

∣∣∣∣2 + h2|D2v |2dx

Theorem (O. ’15)

There exists a constant C = C(∆) > 0 with the following
property: For h small enough,

4π∆ (| log h| − 2 log | log h|)− C
≤h−2 inf

(u,v)∈W 1,2(B1;R2)×W 2,2(B1)
IvK
h,∆(u, v) ≤ 4π∆| log h|+ C .
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More results: Convergence of almost minimizers to the
singular cone

ŷ : B1 → R
3, ŷ(x) =

√
1−∆2x + ∆|x |e3 .

Theorem (Müller, O., ’15)

Let yh ∈W 2,2(B1;R3) be a sequence with
Ih,∆(yh) ≤ 2π∆2h2(| log h|+ C). Then up to Euclidean motions,
we have for every 0 < ρ < 1,

yh ⇀ ŷ in W 2,2(B1 \ Bρ;R3) .

Important tools in the proof: Lower bounds for Ih,∆(y)+ Structure
result for flat W 2,2 surfaces (Pakzad’04, Hornung ’11)
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Summary/Outlook

Main results: Lower bounds for a single disclination in a
geometrically fully nonlinear plate model, in 3-dimensional nonlinear
elasticity and in the Föppl-von Kármán model. Moreover,
minimizers of the elastic energy converge to the singular cone as
h→ 0 weakly in W 2,2

loc (B1 \ {0};R3)

Key to the first result is to look at a curvature-like quantity, that
gives control over certain properties of the graph of Dy . The lower
bound follows by an isoperimetric inequality
Can this idea be applied to other problems of a similar flavor?
(D-cones? Non-conical geometries?)
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