Transport and Feedback in Models of Self-Organizing Vegetation Patterns

Mary Silber Committee on Computational & Applied Math +Department of Statistics University of Chicago

in collaboration with Punit Gandhi (MBI) & Sarah Iams (Harvard) Karna Gowda (UIUC) & Lucien Werner (Caltech) Sara Bonetti (Duke) & Amilcare Porporato (Princeton)

supported by NSF-DMS

Outline

- background: pictures & a movie(!) of vegetation patterns
- background: reaction-advection-diffusion vegetation models
- topographic influence vegetation band arcing & topographic confinement (work with Punit Gandhi, Karna Gowda, Sarah lams, Lucien Werner)

Wed. 4pm MS88

 modeling the biomass feedback on transport - some preliminary results (work with Punit Gandhi, Sarah lams, Sara Bonetti, Amilcare Porporato)

Self-organized vegetation

Deblauwe V, Barbier N, Couteron P, Lejeune O, Bogaert J. The global biogeography of semi-arid periodic vegetation patterns. Global Ecology and Biogeography. 2008.

Environmental modulation of self-organized periodic vegetation patterns in Sudan

Vincent Deblauwe, Pierre Couteron, Olivier Lejeune, Jan Bogaert and Nicolas Barbier Ecography 34: 990–1001, 2011

Increasing aridity

Topographic Influence: Upslope migration, Arcing, Channeling

0

1 km

km

3D

1,000

1km

500

1952

km

2006

m

0

⁸⁹⁸ Karna Gowda ¹, Sarah lams² & Mary Silber³ (2018)

Karna Gowda's "movie"

and the

1.3

Contraction of the

13 Martin

- 2

13

1

Reaction-Advection-Diffusion Models of Vegetation Patterns

Regular and Irregular Patterns in Semiarid Vegetation

Christopher A. Klausmeier

Diversity of Vegetation Patterns and Desertification

J. von Hardenberg,^{1,4} E. Meron,^{1,3} M. Shachak,² and Y. Zarmi^{1,3}

Self-Organization of Vegetation in Arid Ecosystems

Max Rietkerk,^{1,2,*} Maarten C. Boerlijst,^{3,†} Frank van Langevelde,^{2,4,‡} Reinier HilleRisLambers,^{3,§} Johan van de Koppel,^{5,6,||} Lalit Kumar,^{7,#} Herbert H. T. Prins,^{2,**} and André M. de Roos^{3,††}

Ecosystem Engineers: From Pattern Formation to Habitat Creation

E. Gilad,^{1,2} J. von Hardenberg,³ A. Provenzale,^{3,4} M. Shachak,⁵ and E. Meron^{2,1}

Rise and Fall of Periodic Patterns for a Generalized Klausmeier–Gray–Scott Model

Sjors van der Stelt 🖂 , Arjen Doelman, Geertje Hek, Jens D. M. Rademacher

See Borgogno et al., Reviews of Geophysics (2009)

PRI (2001)

Am. Nat. (2002)

PRL (2004)

JNLS (2013)

PRL (2001)

Science (1999)

Regular and Irregular Patterns in Semiarid Vegetation

Christopher A. Klausmeier

11 JUNE 1999 VOL 284 SCIENCE

Fig. 1. Regular vegetation stripes near Niamey, Niger.

Reaction-Advection-Diffusion Models of Vegetation Patterns

Regular and Irregular Patterns in Semiarid Vegetation

Christopher A. Klausmeier

Science (1999)

Diversity of Vegetation Patterns and Desertification

J. von Hardenberg,^{1,4} E. Meron,^{1,3} M. Shachak,² and Y. Zarmi^{1,3}

Self-Organization of Vegetation in Arid Ecosystems

Max Rietkerk,^{1,2,*} Maarten C. Boerlijst,^{3,†} Frank van Langevelde,^{2,4,‡} Reinier HilleRisLambers,^{3,§} Johan van de Koppel,^{5,6,||} Lalit Kumar,^{7,#} Herbert H. T. Prins,^{2,**} and André M. de Roos^{3,††}

Ecosystem Engineers: From Pattern Formation to Habitat Creation

E. Gilad,^{1,2} J. von Hardenberg,³ A. Provenzale,^{3,4} M. Shachak,⁵ and E. Meron^{2,1}

Rise and Fall of Periodic Patterns for a Generalized Klausmeier–Gray–Scott Model

Sjors van der Stelt 🖂 , Arjen Doelman, Geertje Hek, Jens D. M. Rademacher

PRL (2001)

Am. Nat. (2002)

PRL (2004)

JNLS (2013)

See Borgogno et al., Reviews of Geophysics (2009)

John E. Pearson SCIENCE • VOL. 261 • 9 JULY 1993

P. Gray and S. K. Scott, *Chem. Eng. Sci.* **38**, 29 (1983); *ibid.* **39**, 1087 (1984); *J. Phys. Chem.* **89**,

$$\frac{\partial U}{\partial t} = D_u \nabla^2 U - UV^2 + F(1 - U)$$
$$\frac{\partial V}{\partial t} = D_v \nabla^2 V + UV^2 - (F + k)V$$

$$U + 2V \rightarrow 3V$$
$$V \rightarrow P$$

Complex Patterns in a Simple System

John E. Pearson SCIENCE • VOL. 261 • 9 JULY 1993

Regular and Irregular Patterns in Semiarid Vegetation

Christopher A. Klausmeier

$$\frac{\partial W}{\partial T} = A - LW - RWN^2 + V \frac{\partial W}{\partial X}$$

$$\frac{\partial N}{\partial T} = RJWN^2 - MN + D\left(\frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial Y^2}\right)N$$

$$W = \frac{A}{L}U$$
$$N = \frac{AJ}{L}V$$
$$T = \frac{L^2}{A^2 J^2 R} t$$

P. Gray and S. K. Scott, *Chem. Eng. Sci.* **38**, 29 (1983); *ibid.* **39**, 1087 (1984); *J. Phys. Chem.* **89**,

$$\frac{\partial U}{\partial t} = D_u \nabla^2 U - UV^2 + F(1 - U)$$
$$\frac{\partial V}{\partial t} = D_v \nabla^2 V + UV^2 - (F + k)V$$
$$\mathbf{V}$$
$$\mathbf{V}$$
$$F = \frac{L^3}{A^2 J^2 R} \quad k = \frac{L^2 (M - L)}{A^2 J^2 R}$$

Complex Patterns in a Simple System

John E. Pearson SCIENCE • VOL. 261 • 9 JULY 1993

Topographic Influence: it's about the water.

0

1 km

1,000

A topographic mechanism for arcing of dryland vegetation bands $\underbrace{\mathsf{Wed.~4pm~MS88}}$

Punit Gandhi^{*}, Lucien Werner[†], Sarah Iams[‡], Karna Gowda[§], Mary Silber[¶]

A.Regular and Irregular Patterns in Semiarid Vegetation

Vegetation Bands in Ethiopia (MAP<150 mm, AI~0.08)

Gandhi et al. (2018) Iams Wed. 4pm MS88

Vegetation Bands in Texas (MAP>300 mm, AI~0.19)

Gandhi et al. (2018) Iams Wed. 4pm MS88

B. Rietkerk model - a framework for explicitly modeling infiltration feedback, Klausmeier's "water" -> surface water+soil water

Am. Nat. (2002)

PRL (2004)

Self-Organization of Vegetation in Arid Ecosystems

Max Rietkerk,^{1,2,*} Maarten C. Boerlijst,^{3,†} Frank van Langevelde,^{2,4,‡} Reinier HilleRisLambers,^{3,§} Johan van de Koppel,^{5,6,||} Lalit Kumar,^{7,#} Herbert H. T. Prins,^{2,**} and André M. de Roos^{3,††}

See also:

Ecosystem Engineers: From Pattern Formation to Habitat Creation

E. Gilad,^{1,2} J. von Hardenberg,³ A. Provenzale,^{3,4} M. Shachak,⁵ and E. Meron^{2,1}

C. And yet another, with the help of our ecohydrologist friends (Sara Bonetti, Amilcare Porporato)

$$\partial_{T}H = R(T) + K \left(\frac{B+fQ}{B+Q}\right) \left(\frac{H}{H+A}\right) \left(\frac{1-s}{1-s+\beta}\right) + \sqrt{S} K_{w} \partial_{X} \left(\frac{H}{1+NB}\right) \qquad \text{surface water}$$
infiltration
$$\phi Z_{r} \partial_{T}s = K \left(\frac{B+fQ}{B+Q}\right) \left(\frac{H}{H+A}\right) \left(\frac{1-s}{1-s+\beta}\right) - rs - \Gamma sB \qquad \text{soil moisture}$$

$$s \in [0,1]$$

$$transpiration-growth$$

$$\partial_{T}B = D_{b} \partial_{X}^{2}B - mB + w\Gamma sB(K_{b} - B) \qquad \text{biomass density}$$

Aim 1: better constrain some model parameters. Price: resolving fast timescales.

Challenge: 3 timescales for "reaction kinetics" years, days, hours

Water transport?

VEGETATION ARCS IN SOMALILAND

BY C. F. HEMMING

Anti-Locust Research Centre, London

(1965, Journal of Ecology)

In the bare areas between the arcs much of the rain runs off as sheet-flow, and this gradually removes the fine material from the surface together with light-weight litter, such as the remains of dead grass and animal excreta. These materials are deposited where the sheet-flow is arrested by the next vegetation arc down the slope. In the dry season

Aim 2: Incorporate feedback in transport

Some Preliminary Results on the Transport Parameters: $\sqrt{S}K_w \partial_X \left(\frac{H}{1+NB}\right)$

approach 1:

choose Turing-Hopf onset parameters: (k_c, Ω_c, p_c) for a *constant* rain input p based on observations (100 m wavelength, 30 cm/yr migration speed, 50-500 mm/year precipitation, typical 0.5% grade S = 0.005)

solve for transport parameters: $(D_b, K_w, N) = (2 \ cm^2/day, \ 3 \times 10^8 \ cm/day, \ 5 \times 10^4 \ cm^2/kg)$

approach 2:

choose transport parameters (K_w, N) based on order of magnitude estimates from Manning equation: $V = \frac{1}{n} \sqrt{S} H^{2/3}$

n = "Manning roughness coefficient" $n = 0.01 - 0.03 \ s/m^{1/3} \text{ (bare ground)}$ $n = 0.1 - 0.8 \ s/m^{1/3} \text{ (dense shrubs)}$ $H = 1 - 5 \ cm$

$$K_w = 10^7 - 10^8 \ cm/day \ \square$$
$$N = 10^4 - 10^5 \ cm^2/kg \ \square$$
$$D_b = 10^{-2} - 10^3 \ cm^2/day \ \square$$

(Note: for these linear stability calculations, with constant precip, we can neglect the infiltration feedback nonlinearities.)

Three Models, Three Forms to Biomass-Water Feedback

$$w_{t} = p - w - wb^{2} + vw_{x} - \begin{cases} h_{t} = p - I(b)h + vh_{x} \\ w_{t} = -w + I(b)h - \gamma G(w)b + w_{xx} \end{cases}$$

$$\partial_T H = \frac{R(T)}{R(T)} - K \left(\frac{B+fQ}{B+Q}\right) \left(\frac{H}{H+A}\right) \left(\frac{1-s}{1-s+\beta}\right) + \sqrt{S} K_w \partial_X \left(\frac{H}{1+NB}\right)$$

Claims:

(1) Exploiting topographic heterogeneity is a good idea.

(2) To do this, we will need to better model surface water transport.

Question: Is claim (2) true?