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1. Motivation (1)
(p. 1)

Many application software need an efficient solver for linear
systems from (or related to) the discretization of PDEs like

−div(D grad(u)) + v grad(u) + c u = f (+BC)

� De facto standard for a long time: direct solvers

To substitute them one needs
� a black box solver

(we provide the matrix & rhs, it returns the solution)
� that is robust

(stable performance with respect to changes in the BC,
PDE coeff., geometry & discretization grid)

� Efficient solver means:
solve the system in near linear time: elapsed

n×#cores ≈ (small) cst
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Multigrid methods:
often robust, always efficient → good candidates

AMG variants: designed to work black box – user friendly?

� In principle, yes: AMG stands for Algebraic Multigrid, where
“algebraic” means that all algorithmic components are derived
from the matrix itself

→ the user passes the matrix to the soft and that’s it

� In practice, many people use an AMG software without knowing
much about it

. . .

but many others experienced struggling with variant selection
and parameters tuning before getting satisfactory results
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Our approach for more user friendliness: make it simpler!

Principle: Keep many features common to AMG methods
� Basic two-grid scheme which alternates smoothing iterations

and coarse grid corrections

� Gauss–Seidel for smoothing

� Coarse grid correction based on a prolongation matrix P

built from the system matrix A

P is n× nc (nc : number of coarse variables)

The coarse grid matrix is Ac = PT AP

� Proceed recursively

Set up phase: to define coarser and coarser levels

Solve phase: approximate solution of coarse systems
based on the two grid scheme at coarse level
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. . . but

do not try to find a P which imitates geometric multigrid
(even for model problems)
nor focus on the accuracy of the coarse model

Instead, select P as simple & sparse as possible while
keeping the two-grid convergence rate under control

This is achieved with prolongation P based on plain aggregation



2. Aggregation-based AMG (3)
(p. 5)

Coarsening by plain aggregation

Coarse unknowns: 1 per aggregate and vice-versa
Prolongation P : piecewise constant

Coarse grid matrix: obtained by a simple summation

PiJ =

{

1 if i ∈ GJ

0 otherwise
, (Ac)ij =

∑

k∈Gi

∑

ℓ∈Gj

akℓ

G
1

G
2

G
3

G
4

→



2. Aggregation-based AMG (4)
(p. 6)

Convergence analysis

Under some assumptions, it can be shown that the two-grid
spectral radius (or condition number) is bounded as a function of

K = max
i=1,...,nc

KGi

where KGi
is a quantity associated to aggregate Gi that is easy

(and relatively cheap) to assess

KGi
characterize thus the quality of the aggregate Gi

The theory is rigorous for M-matrices (possibly nonsymmetric), with
heuristic extensions to matrices with nonnegative row-sum
(in practice, works as long as the negative offdiagonal
connections “dominate” the positive ones)



2. Aggregation-based AMG (5)
(p. 7)

Quality aware aggregation algorithm

Basic principle: build aggregates in a greedy fashion, trying to
optimize the quality indicator KGi

while keeping it
in any case within prescribed bounds

In that way, some minimal convergence properties are guaranteed,
making the method particularly robust

(The two-grid convergence rate is under control)



2. Aggregation-based AMG (6)
(p. 8)

Illustration of how it may work
Regular grid, 3rd order finite elements (p3) for Poisson

(nnz(A) ≈ 16n)

Fine grid Level 1

Level 2 Level 3
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No free lunch theorem:
We gained something, where are the downsides?

(1) The two-grid convergence rate is not as good as can be with
more classical AMG methods

However, using the method as a preconditioner for CG or
GMRES/GCR, the impact on the number of iterations is limited and
can be offset by
� a cheaper setup
� a lower cost per iteration, thanks to

� cheap smoothing
(only 1 GS sweep for pre- and post-smoothing)

� lighter coarse grid matrices
(with less rows and less nonzero entries per row)
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(2) Not optimal with standard multigrid V- or W-cycles
(the number of iterations grows with the number
of levels and hence with the matrix size)

Solution: Enhanced multigrid cycle: the K-cycle

In a multigrid algorithm, the coarse systems Acuc = rc

are approximately solved with a few iterations of the
two-grid method at the considered (coarse) level
(recursivity: this way one moves to a further coarser level)

� 1 stationary iteration: V-cycle

� 2 stationary iterations: W-cycle

� 2 iter. with Krylov (CG/GMRES) acceleration: K-cycle

Same workflow and about the same cost as with the W-cycle,
but major robustness enhancement



3. AGMG (1)
(p. 11)

Iterative solution with
AGgregation-based algebraic MultiGrid

Linear system solver software package
� Black box

� FORTRAN 90 (easy interface with C & C++)

� Matlab interface
>> x=agmg(A,y);

>> x=agmg(A,y,1); % SPD case

� Free academic license
Professional version available (with extra features)



3. AGMG (robustness study) (2)
(p. 12)

Robustness
Assessed on a large test suite of discrete second order elliptic
PDEs, comprising
� problems on 2D/3D regular grids and on 2D/3D unstructured

grids, some with strong local refinement

� problems with (big) jumps and/or (large) anisotropy
in the PDE coefficients

� symmetric (SPD) and nonsymmetric problems
(2D/3D convection-diffusion with dominating convection)

� finite difference and finite element
(up to p4) discretizations

Size: Minimal: 5× 105 – Maximal: 3.× 107

nnz per row: Minimal: 5. – Maximal: 74.



3. AGMG (robustness study) (3)
(p. 13)

Time per unknown Time per nnz
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– vs – problem index

(problems ordered by increasing number of nnz per row)

(Desktop workstation – Intel XEON E5-2620 at 2.10GHz – 2017)



3. AGMG (comparative study) (4)
(p. 14)

Comparison with some other methods

� AMG(Hyp): a classical AMG method (Hypre library)

� AMG(HSL): a classical AMG method (HSL library)

� ILUPACK: efficient threshold-based ILU preconditioner

� Matlab \: Matlab sparse direct solver (UMFPACK)

All methods but the last with Krylov subspace acceleration

Iterations stopped when
‖rk‖
‖r0‖

< 10−6



3. AGMG (comparative study) (5)
(p. 15)

POISSON 2D, FE(P3) CONVECTION-DIFFUSION 2D, FD
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General strategy

Partitioning of the unknowns → distribution of matrix rows

� Setup phase
Aggregation algorithm: unchanged but aggregates are only
formed with unknowns in a same partition

→ inherently parallel

Only few communications needed to form the next coarse grid
matrix

� Solve phase

� Smoothing: Truncated Gauss-Seidel, ignoring connections
between different partitions → inherently parallel

� Grid transfer operations: inherently parallel



4. Parallelization (2)
(p. 18)

Nothing more needed for efficient multithreading (OpenMP)

Global results for the test suite:
Time per unknown Time per nnz
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– vs – problem index

(Desktop workstation – Intel XEON E5-2620 at 2.10GHz – 2017)
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MPI: the Bottom level solver can be a bottleneck

� More frequently called than with the V-cycle
→ more critical

� Sequential AGMG uses a sparse direct solver, but parallel
versions of these do not scale well enough

� Thus: dedicated Iterative bottom level solver
Rationale:
� only a small % of total flops

→ some suboptimality is harmless
� few unknowns involved

→ needs a method that scales well despite this

Our choice:
a simplified two-level domain decomposition method



4. Parallelization (4)
(p. 20)

Iterative bottom level solver

� Aggregation-based two-grid method
(one further level: very coarse grid)

� All unknowns on a same process form 1 aggregate
(very coarse grid: size = number of processes (cores))

� Better smoother:
Block Jacobi
(sparse direct solver for the local part of the matrix)

� Solution of very coarse grid systems:
Sparse direct solver



4. Parallelization (4)
(p. 20)

Iterative bottom level solver for massive parallelism

� Aggregation-based two-grid method
(one further level: very coarse grid)

� All unknowns on a same process form 1 aggregate
(very coarse grid: size = number of processes (cores))

� Better smoother:
Block Jacobi
(sparse direct solver for the local part of the matrix)
Apply sequential AGMG to the local part of the matrix
Allows us to use only 4 levels whatever the matrix size

� Solution of very coarse grid systems:
Sparse direct solver
AGMG again, sequential or parallel within subgroups of
processes (depending on the size of the systems)



4. Parallelization (5)
(p. 21)

Performance of AGMG on supercomputers

3D Poisson (FD) on HERMIT (HPC – Cray XE6 – 2014)

Weak scalability Strong scalability

Time – vs – # unknowns Time – vs – number of cores
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4. Parallelization (6)
(p. 22)

3D Poisson (FD) on JUQUEEN (HPC – IBM BG/Q – 2014)

Weak scalability:

Time – vs – # unknowns
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→ monolithic AMG, faster than block preconditioning
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Stokes problems
� Simple algebraic transformation to reinforce the weight of the

diagonal blocks (literally: pre-conditioning)

� Then, use the block version of AGMG, that constraints the
aggregate to be formed with a single type of unknown at a time
(velocity component, pressure)

→ monolithic AMG, faster than block preconditioning

Graph Laplacians
� Standard aggregation based on multiple pairwise matching is

inefficient for some exotic sparsity patterns

� Robustness recovered with Degree aware Rooted Aggregation
(DRA)

. . . can be also combined with quality control

� The resulting method is significantly faster than LAMG
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6. Conclusions
(p. 24)

� AGMG: AMG method with “simplified” coarsening
Benefits:
� Explicit control of the two-grid convergence rate

→ Robustness
� Connectivity pattern on the coarse grids:

similar or sparser than that on the fine grid
(→ no complexity issue with the recursive use)

� Easy parallelization
(At large scale, need clever bottom level solver)

� Only one variant, no parameter tuning needed
→ userfriendliness

� Can be faster than other state-of-the-art solvers

� Fairly small setup time: especially well suited when only a
modest accuracy is needed
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