

A User-Friendly Highly Scalable AMG Solver

Yvan Notay*

Université Libre de Bruxelles Service de Métrologie Nucléaire

Atlanta, February 3, 2017

^{*} Supported by the Belgian FNRS http://homepages.ulb.ac.be/~ynotay

1. Motivation (1)

(p. 1) **ULB**

Many application software need an efficient solver for linear systems from (or related to) the discretization of PDEs like

 $-\operatorname{div}(D\operatorname{grad}(u)) + \operatorname{v}\operatorname{grad}(u) + c u = f \quad (+BC)$

- De facto standard for a long time: direct solvers To substitute them one needs
 - a black box solver (we provide the matrix & rhs, it returns the solution)
 - that is robust

(stable performance with respect to changes in the BC, PDE coeff., geometry & discretization grid)

Efficient solver means:

solve the system in near linear time: $\frac{\text{elapsed}}{n \times \# \text{cores}} \approx (\text{small}) \text{ cst}$

1. Motivation (2)

Multigrid methods:

often robust, always efficient \rightarrow good candidates

AMG variants: designed to work black box

1. Motivation (2)

Multigrid methods:

often robust, always efficient \rightarrow good candidates

AMG variants: designed to work black box – user friendly?

In principle, yes: AMG stands for Algebraic Multigrid, where "algebraic" means that all algorithmic components are derived from the matrix itself

(p. 2)

- \rightarrow the user passes the matrix to the soft and that's it
- In practice, many people use an AMG software without knowing much about it

1. Motivation (2)

Multigrid methods:

often robust, always efficient \rightarrow good candidates

AMG variants: designed to work black box – user friendly?

In principle, yes: AMG stands for Algebraic Multigrid, where "algebraic" means that all algorithmic components are derived from the matrix itself

(p. 2)

- \rightarrow the user passes the matrix to the soft and that's it
- In practice, many people use an AMG software without knowing much about it

. . .

but many others experienced struggling with variant selection and parameters tuning before getting satisfactory results

Our approach for more user friendliness: make it simpler!

- Our approach for more user friendliness: make it simpler!
- Principle: Keep many features common to AMG methods
 - Basic two-grid scheme which alternates smoothing iterations and coarse grid corrections
 - Gauss–Seidel for smoothing
 - Coarse grid correction based on a prolongation matrix *P* built from the system matrix *A*

P is $n \times n_c$ (n_c : number of coarse variables)

The coarse grid matrix is $A_c = P^T A P$

- Our approach for more user friendliness: make it simpler!
- Principle: Keep many features common to AMG methods
 - Basic two-grid scheme which alternates smoothing iterations and coarse grid corrections
 - Gauss–Seidel for smoothing
 - Coarse grid correction based on a prolongation matrix *P* built from the system matrix *A*

P is $n \times n_c$ (n_c : number of coarse variables)

The coarse grid matrix is $A_c = P^T A P$

Proceed recursively

Set up phase: to define coarser and coarser levels

Solve phase: approximate solution of coarse systems based on the two grid scheme at coarse level

(p. 4)

UIB

...but

do not try to find a *P* which imitates geometric multigrid (even for model problems) nor focus on the accuracy of the coarse model

IIIR

(p. 4)

...but

do not try to find a *P* which imitates geometric multigrid (even for model problems) nor focus on the accuracy of the coarse model

Instead, select *P* as simple & sparse as possible while keeping the two-grid convergence rate under control

IIIR

(p. 4)

...but

do not try to find a *P* which imitates geometric multigrid (even for model problems) nor focus on the accuracy of the coarse model

Instead, select *P* as simple & sparse as possible while keeping the two-grid convergence rate under control

This is achieved with prolongation *P* based on plain aggregation

UBB

(p. 5)

Coarsening by plain aggregation

Coarse unknowns: 1 per aggregate and vice-versa Prolongation *P* : piecewise constant Coarse grid matrix: obtained by a simple summation

Convergence analysis

Under some assumptions, it can be shown that the two-grid spectral radius (or condition number) is bounded as a function of

 $K = \max_{i=1,\dots,n_c} K_{G_i}$

(p. 6)

where K_{G_i} is a quantity associated to aggregate G_i that is easy (and relatively cheap) to assess

 K_{G_i} characterize thus the quality of the aggregate G_i

The theory is rigorous for M-matrices (possibly nonsymmetric), with heuristic extensions to matrices with nonnegative row-sum (in practice, works as long as the negative offdiagonal connections "dominate" the positive ones)

- Quality aware aggregation algorithm
- Basic principle: build aggregates in a greedy fashion, trying to optimize the quality indicator K_{G_i} while keeping it in any case within prescribed bounds
- In that way, some minimal convergence properties are guaranteed, making the method particularly robust

IIIR

(p. 7)

(The two-grid convergence rate is under control)

Illustration of how it may work

Regular grid, 3rd order finite elements (p3) for Poisson

 $(nnz(A) \approx 16 n)$

ULB

(p. 8)

(p. 9) **ULB**

No free lunch theorem:

We gained something, where are the downsides?

(p. 9) **ULB**

No free lunch theorem:

We gained something, where are the downsides?

(1) The two-grid convergence rate is not as good as can be with more classical AMG methods

No free lunch theorem:

We gained something, where are the downsides?

(1) The two-grid convergence rate is not as good as can be with more classical AMG methods

IIIR

(p. 9)

However, using the method as a preconditioner for CG or GMRES/GCR, the impact on the number of iterations is limited and can be offset by

- a cheaper setup
- a lower cost per iteration, thanks to
 - cheap smoothing (only 1 GS sweep for pre- and post-smoothing)
 - lighter coarse grid matrices (with less rows and less nonzero entries per row)

(p. 10)

ULB

(2) Not optimal with standard multigrid V- or W-cycles (the number of iterations grows with the number of levels and hence with the matrix size)

ULB

(p. 10)

(2) Not optimal with standard multigrid V- or W-cycles (the number of iterations grows with the number of levels and hence with the matrix size)

Solution: Enhanced multigrid cycle: the K-cycle

IIIR

(p. 10)

- (2) Not optimal with standard multigrid V- or W-cycles (the number of iterations grows with the number of levels and hence with the matrix size)
- Solution: Enhanced multigrid cycle: the K-cycle
- In a multigrid algorithm, the coarse systems $A_c \mathbf{u}_c = \mathbf{r}_c$ are approximately solved with a few iterations of the two-grid method at the considered (coarse) level (recursivity: this way one moves to a further coarser level)
 - 1 stationary iteration: V-cycle
 - 2 stationary iterations: W-cycle

(p. 10)

- (2) Not optimal with standard multigrid V- or W-cycles (the number of iterations grows with the number of levels and hence with the matrix size)
- Solution: Enhanced multigrid cycle: the K-cycle
- In a multigrid algorithm, the coarse systems $A_c \mathbf{u}_c = \mathbf{r}_c$ are approximately solved with a few iterations of the two-grid method at the considered (coarse) level (recursivity: this way one moves to a further coarser level)
 - 1 stationary iteration: V-cycle
 - 2 stationary iterations: W-cycle
 - 2 iter. with Krylov (CG/GMRES) acceleration: K-cycle Same workflow and about the same cost as with the W-cycle, but major robustness enhancement

3. AGMG (1)

Iterative solution with AGgregation-based algebraic MultiGrid

- Linear system solver software package
 - Black box
 - FORTRAN 90 (easy interface with C & C++)
 - Matlab interface
 - >> x=agmg(A,y);
 - >> x=agmg(A,y,1); % SPD case

Free academic license Professional version available (with extra features)

3. AGMG (robustness study) (2)

Robustness

Assessed on a large test suite of discrete second order elliptic PDEs, comprising

- problems on 2D/3D regular grids and on 2D/3D unstructured grids, some with strong local refinement
- problems with (big) jumps and/or (large) anisotropy in the PDE coefficients
- symmetric (SPD) and nonsymmetric problems (2D/3D convection-diffusion with dominating convection)
- finite difference and finite element (up to p4) discretizations

Size: Minimal: 5×10^5 – Maximal: 3×10^7

nnz per row: Minimal: 5. – Maximal: 74.

(p. 12)

3. AGMG (robustness study) (3)

(p. 13)

Total wall clock time in microseconds per unknown or nnz – vs – problem index (problems ordered by increasing number of nnz per row)

(Desktop workstation – Intel XEON E5-2620 at 2.10GHz – 2017)

3. AGMG (comparative study) (4)

(p. 14) **ULB**

Comparison with some other methods

- AMG(Hyp): a classical AMG method (Hypre library)
- AMG(HSL): a classical AMG method (HSL library)
- ILUPACK: efficient threshold-based ILU preconditioner
- Matlab \: Matlab sparse direct solver (UMFPACK)
- All methods but the last with Krylov subspace acceleration lterations stopped when $\frac{\|\mathbf{r}_k\|}{\|\mathbf{r}_0\|} < 10^{-6}$

3. AGMG (comparative study) (5)

UB

(p. 15)

Wall clock time in microseconds per unknown – vs – # unknowns (Computing node – Intel XEON L5420 processors at 2.50GHz – 2012)

3. AGMG (comparative study) (6)

ULB

(p. 16)

Wall clock time in microseconds per unknown – vs – # unknowns (Computing node – Intel XEON L5420 processors at 2.50GHz – 2012)

4. Parallelization (1)

General strategy

Partitioning of the unknowns \rightarrow distribution of matrix rows

Setup phase

Aggregation algorithm: unchanged but aggregates are only formed with unknowns in a same partition

(p. 17

\rightarrow inherently parallel

Only few communications needed to form the next coarse grid matrix

4. Parallelization (1)

General strategy

Partitioning of the unknowns \rightarrow distribution of matrix rows

Setup phase

Aggregation algorithm: unchanged but aggregates are only formed with unknowns in a same partition

(p. 17

\rightarrow inherently parallel

Only few communications needed to form the next coarse grid matrix

Solve phase

- Smoothing: Truncated Gauss-Seidel, ignoring connections between different partitions → inherently parallel
- Grid transfer operations: inherently parallel

4. Parallelization (2)

Nothing more needed for efficient multithreading (OpenMP)

Global results for the test suite:

Time per unknown

ULB

(p. 18)

Total wall clock time in microseconds per unknown or nnz – vs – problem index

(Desktop workstation – Intel XEON E5-2620 at 2.10GHz – 2017)

4. Parallelization (3)

MPI: the Bottom level solver can be a bottleneck

More frequently called than with the V-cycle \rightarrow more critical

4. Parallelization (3)

- MPI: the Bottom level solver can be a bottleneck
 - More frequently called than with the V-cycle → more critical
 - Sequential AGMG uses a sparse direct solver, but parallel versions of these do not scale well enough

4. Parallelization (3)

- MPI: the Bottom level solver can be a bottleneck
 - More frequently called than with the V-cycle → more critical
 - Sequential AGMG uses a sparse direct solver, but parallel versions of these do not scale well enough
 - Thus: dedicated Iterative bottom level solver Rationale:
 - only a small % of total flops
 - \rightarrow some suboptimality is harmless
 - few unknowns involved
 - \rightarrow needs a method that scales well despite this

Our choice:

a simplified two-level domain decomposition method

4. Parallelization (4)

Iterative bottom level solver

- Aggregation-based two-grid method (one further level: very coarse grid)
- All unknowns on a same process form 1 aggregate (very coarse grid: size = number of processes (cores))

(p. 20

 Better smoother: Block Jacobi (sparse direct solver for the local part of the matrix)

Solution of very coarse grid systems: Sparse direct solver

4. Parallelization (4)

Iterative bottom level solver for massive parallelism

- Aggregation-based two-grid method (one further level: very coarse grid)
- All unknowns on a same process form 1 aggregate (very coarse grid: size = number of processes (cores))

Better smoother:

Block Jacobi

(sparse direct solver for the local part of the matrix) Apply sequential AGMG to the local part of the matrix Allows us to use only 4 levels whatever the matrix size

Solution of very coarse grid systems:

Sparse direct solver

AGMG again, sequential or parallel within subgroups of processes (depending on the size of the systems)

4. Parallelization (5)

(p. 21) **ULB**

Performance of AGMG on supercomputers

3D Poisson (FD) on HERMIT (HPC – Cray XE6 – 2014)

Times reported are total wall clock times in seconds

4. Parallelization (6)

3D Poisson (FD) on JUQUEEN (HPC – IBM BG/Q – 2014)

Weak scalability:

Time – vs – # unknowns

ULB

(p. 22)

Times reported are total wall clock times in seconds

5. Extensions

Stokes problems

- Simple algebraic transformation to reinforce the weight of the diagonal blocks (literally: pre-conditioning)
- Then, use the block version of AGMG, that constraints the aggregate to be formed with a single type of unknown at a time (velocity component, pressure)
 - \rightarrow monolithic AMG, faster than block preconditioning

5. Extensions

Stokes problems

Simple algebraic transformation to reinforce the weight of the diagonal blocks (literally: pre-conditioning)

(p. 23)

- Then, use the block version of AGMG, that constraints the aggregate to be formed with a single type of unknown at a time (velocity component, pressure)
 - \rightarrow monolithic AMG, faster than block preconditioning

Graph Laplacians

- Standard aggregation based on multiple pairwise matching is inefficient for some exotic sparsity patterns
- Robustness recovered with Degree aware Rooted Aggregation (DRA)
 - ... can be also combined with quality control
 - The resulting method is significantly faster than LAMG

AGMG: AMG method with "simplified" coarsening Benefits:

- AGMG: AMG method with "simplified" coarsening Benefits:
 - ♦ Explicit control of the two-grid convergence rate
 → Robustness

- (p. 24)
- AGMG: AMG method with "simplified" coarsening Benefits:
 - ♦ Explicit control of the two-grid convergence rate
 → Robustness
 - Connectivity pattern on the coarse grids: similar or sparser than that on the fine grid (
 – no complexity issue with the recursive use)

- AGMG: AMG method with "simplified" coarsening Benefits:
 - ♦ Explicit control of the two-grid convergence rate
 → Robustness
 - Connectivity pattern on the coarse grids: similar or sparser than that on the fine grid (
 – no complexity issue with the recursive use)

(p. 24)

Easy parallelization

(At large scale, need clever bottom level solver)

- AGMG: AMG method with "simplified" coarsening Benefits:
 - ♦ Explicit control of the two-grid convergence rate
 → Robustness
 - Connectivity pattern on the coarse grids: similar or sparser than that on the fine grid (
 – no complexity issue with the recursive use)

(p. 24)

- Easy parallelization (At large scale, need clever bottom level solver)
- Only one variant, no parameter tuning needed
 → userfriendliness

- AGMG: AMG method with "simplified" coarsening Benefits:
 - ♦ Explicit control of the two-grid convergence rate
 → Robustness
 - ♦ Connectivity pattern on the coarse grids: similar or sparser than that on the fine grid (→ no complexity issue with the recursive use)
 - Easy parallelization (At large scale, need clever bottom level solver)
 - ♦ Only one variant, no parameter tuning needed
 → userfriendliness
 - Can be faster than other state-of-the-art solvers

- AGMG: AMG method with "simplified" coarsening Benefits:
 - ♦ Explicit control of the two-grid convergence rate
 → Robustness
 - Connectivity pattern on the coarse grids: similar or sparser than that on the fine grid (
 – no complexity issue with the recursive use)

(p. 24)

- Easy parallelization (At large scale, need clever bottom level solver)
- ♦ Only one variant, no parameter tuning needed
 → userfriendliness
- Can be faster than other state-of-the-art solvers
- Fairly small setup time: especially well suited when only a modest accuracy is needed

Selected references

The K-cycle

http://homepages.ulb.ac.be/~ynotay/AGMG

- Recursive Krylov-based multigrid cycles (with P. S. Vassilevski), NLAA, 2008
- Two-grid analysis of aggregation-based methods
- Algebraic analysis of aggregation-based multigrid (with A. Napov), NLAA, 2011 AGMG and quality aware aggregation
- An aggregation-based algebraic multigrid method, ETNA, 2010.
- An algebraic multigrid method with guaranteed convergence rate (with A. Napov), SISC, 2012
- Aggregation-based algebraic multigrid for convection-diffusion equations, SISC, 2012
- Algebraic multigrid for moderate order finite elements (with A. Napov), SISC, 2014 Parallelization
- A massively parallel solver for discrete Poisson-like problems, J. Comput. Physics, 2015
- **Graph Laplacians**
- An efficient multigrid method for graph Laplacian systems II: robust aggregation (with A. Napov), SISC, to appear
- AMG for Stokes
- Algebraic multigrid for Stokes equations, SISC, to appear

Selected references

http://homepages.ulb.ac.be/~ynotay/AGMG

!! Thank you **!!**

ULB

The K-cycle

- Recursive Krylov-based multigrid cycles (with P. S. Vassilevski), NLAA, 2008
- Two-grid analysis of aggregation-based methods
- Algebraic analysis of aggregation-based multigrid (with A. Napov), NLAA, 2011 AGMG and quality aware aggregation
- An aggregation-based algebraic multigrid method, ETNA, 2010.
- An algebraic multigrid method with guaranteed convergence rate (with A. Napov), SISC, 2012
- Aggregation-based algebraic multigrid for convection-diffusion equations, SISC, 2012
- Algebraic multigrid for moderate order finite elements (with A. Napov), SISC, 2014 Parallelization
- A massively parallel solver for discrete Poisson-like problems, J. Comput. Physics, 2015
- **Graph Laplacians**
- An efficient multigrid method for graph Laplacian systems II: robust aggregation (with A. Napov), SISC, to appear
- AMG for Stokes
- Algebraic multigrid for Stokes equations, SISC, to appear