

Finding the Hierarchy of Dense Subgraphs using Nucleus Decompositions

A. Erdem Sarıyüce*, C. Seshadhri+, Ali Pınar#, Ümit V. Çatalyürek*

*The Ohio State University

+ University of California, Santa Cruz

Sandia National Labs, Livermore

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Graphs are globally sparse... yet locally dense.

- Graphs in real world are SPARSE
 - Number of vertices = millions
 - Number of edges ≈ 10 X vertices
 - Two random vertices unlikely to be connected (prob = 10⁻⁵)
- But they contain many dense substructures
 - Within dense region, two random vertices highly likely to be connected (prob = 0.4)

Community detection: label most/all vertices

Dense subgraph discovery: Regions with lots of "activity"

Many applications find dense subgraphs

List is long, time is short. Why don't you just trust me?

- Finding communities, spam link farms [Gibson et al., 2005]
- Graph visualization [Alvarez-Hamelin et al., 2006]
- Real-time story identification [Angel et al., 2012]
- DNA motif detection [Fratkin et al., 2006]
- Finding correlated genes [Zhang and Horvath, 2005]
- Finding price value motifs in financial data [Du et al., 2009]
- Graph compression [Buehrer and Chellapilla, 2008]
- Distance query indexing [Jin et al., 2009]
- Throughput of social networking sites [Gionis et al., 2013]
- To name a few...

Dense subgraphs Concept is intuitive, yet formalizations are tricky

- Factors for consideration: size, density of internal edges, density of external edges
- Many formalizations lead to NP-hard problems, and heuristics are used.
- Hard to distinguish, whether an observation is an artifact of the heuristic or not.

- Our goal:
 - Can we formulate the problem such that the result is well-defined?
 - Can we find all dense graph not just the densest?
 - Is there a "natural" hierarchy of dense subgraphs?
 - Can we design efficient, provable algorithms and minimize heuristics/ approximations?

K-cores in graphs

Unit of observation: vertex

Witness: Edge

- k-core of a graph is its largest induced subgraph, where degree of each vertex is at least k.
- Introduced by [Matula and Beck, 1983]
- Algorithm
 - Compute degrees
 - Iteratively remove in increasing order
 - Assign K value during removal
- O(|E|) complexity

Unit of observation: Edge

Witness: Triangle

- K-truss of a graph is its largest induced subgraph, where each edge participates in at least k triangles.
- Introduced by Cohen and Parthasarathy independently.
- Applied to visualization and dense graph finding

Decompositions lead to hierarchies

Caveat: k-core decomposition typically leads to long chains as opposed to well-branched trees.

Let us go a step further: Nucleus Decomposition

DEFINITION 1. Let r < s be positive integers and S be a set of $K_s s$ in G.

- $K_r(S)$ the set of K_rs contained in some $S \in S$.
- The number of $S \in \mathcal{S}$ containing $R \in K_r(\mathcal{S})$ is the \mathcal{S} -degree of that K_r .
- Two K_rs R, R' are S-connected if there exists a sequence $R = R_1, R_2, \ldots, R_k = R'$ in $K_r(S)$ such that for each i, some $S \in S$ contains $R_i \cup R_{i+1}$.

DEFINITION 2. Let k, r, and s be positive integers such that r < s. A k-(r,s)-nucleus is a maximal union S of $K_s s$ such that:

- The S-degree of any $R \in K_r(S)$ is at least k.
- Any R, R' ∈ K_r(S) are S-connected.

refers to the size of the unit of observation

s refers to the size of the witness + unit

k is the number of witnesses; not a parameter we sweep through k

Examples of nuclei

- k-(3,4) nucleus: subgraph formed by maximal union of triangles. Every triangle in at least k four-cliques
- k-(1,2) is core decomposition
- k-(2,3) is truss decomposition

Edge (2-clique) and 3-clique interaction

Edge (2-clique) and 4-clique interaction

nucleus

Two 1-(3,4) nuclei

Properties of nuclei decomposition

Sandia National Laboratories

- Well-defined property of the graph
 - Not heuristic
 - No optimization
 - Deterministic
- Forest of nuclei
 - Smaller k-(r,s) contained in larger k-(r,s)
 - Hierarchy of dense subgraphs
 - Finding many and understanding relations

Overlaps of nuclei

- For r >= 2, lower order structures can be shared among nuclei
- No overlaps for k-cores!

Two 1-(3,4) nuclei

Nucleus decomposition finds dense subgraphs

- We can find many dense subgraphs, not just one at the same time.
- Solution qualities can match the state of the art tools.

Distributions of dense structures

 Finding many dense structures enables producing a density structure profile.

Hierarchy reveals structure among communities.

- Results on experimental protein interaction data from Baylor College of Medicine.
- More than 50K vertices, 400K edges, but only few hundred nuclei, with tree of size 50

Hierarchies (facebook |V|: 4K, |E|: 88K)

Many dense structures overlap

Web-NotreDame

Overlap size is at least 5

How to compute nucleus decomposition

- Given r and s, find all k-(r,s) nuclei
- Just like k-core decomposition
- Find K values of all K,s

Algorithm 1: set-k(G, r, s)

- 1 Enumerate all K_r s and K_s s in G(V, E);
- 2 For every K_r R, initialize $\delta(R)$ to be the number of K_s s containing R;
- 3 Mark every K_r as unprocessed;
- 4 for each unprocessed K_r R with minimum $\delta(R)$ do

```
\kappa(R) = \delta(R);
5
```

Find set S of K_s s containing R;

for each $S \in \mathcal{S}$ do 7

if any K_r $R' \subset S$ is processed then

Continue:

for each K_r $R' \subset S$, $R' \neq R$ do 10

if $\delta(R') > \delta(R)$ then 11

 $\delta(R') = \delta(R') - 1 \; ;$

Mark R as processed; 13

14 return array $\kappa(\cdot)$;

Two ways to implement:

- Enumerate all K_rs and K_ss
 - Not feasible for large r, s
 - Huge space complexity
- Construct adj. lists of K_rs online (only enumerate K,s)
 - Better space complexity
 - Time complexity is

$$\begin{array}{ccc}
O(RT_r(G) + \sum_{v} ct_r(v)d(v)^{s-r}) \\
& & \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
\end{array}$$

12

Future Directions

- Applications of nucleus decomposition
 - Protein-protein and protein-gene interaction networks
 - Ongoing collaboration
- Larger values of r and s
 - Computational cost of increasing r and s is significant.
 - Preliminary experimentation for (4,5)
 - Very little quality benefit
 - Is (3,4) a sweet spot?
- Faster k-(3,4)
 - Clique enumeration
 - Parallel algorithms
 - GPU implementation of k-core [Jiang et al., 2014]
 - Pregel algorithm for k-truss [Shao et al., 2014]