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Mantle convection & plate tectonics
I Mantle convection is the thermal

convection in earth’s upper ∼3000 km
I It controls the thermal and geological

evolution of the Earth
I Solid rock in the mantle moves like

viscous incompressible fluid on time
scales of millions of years

I Driver for plate tectonics, earthquakes,
tsunamis, volcanos

Subducting slab (Credit: Schubert, Turcotte, Olsen)

Convection layering (Credit: Pearson Prentice Hall, Inc.)

I Main drivers of plate motion:
negative buoyancy forces or
convective shear traction?

I Key process governing the
occurrence of great
earthquakes: material
properties between the plates
or tectonic stress?



“Scalable Multigrid and Schur Complement Preconditioning for Flow in Earth’s Mantle” by Johann Rudi

What we know: Observational data
I Current plate motion from GPS

and magnetic anomalies
I Plate deformation obtained

from dense GPS networks
I Average viscosity in regions

affected by post-glacial rebound
I Topography indicating normal

traction at earth’s surface
Plate motion (Credit: Pearson Prentice Hall, Inc.)

Additional knowledge contributing to mantle rheology:
I Location and geometry of plates, plate boundaries, and subducting

slabs (from seismicity)
I Rock rheology extrapolated from laboratory experiments
I Images of present-day earth structure (by correlating seismic wave

speed with temperature)
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What we would like to learn: Rheological parameters
Globally constant parameters affecting viscosity and nonlinearity:

I Scaling factor of the upper mantle viscosity (down to ∼660 km depth)
I Stress exponent controlling severity of strain rate weakening
I Yield strength governing plastic yielding phenomena

Local, spatially varying parameters:
I Coupling strength / energy dissipation between plates

(Credit: Alisic)
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Mantle flow governed by incompressible Stokes equations
Nonlinear incompressible Stokes PDE (w/ free-slip & no-normal flow BC):

−∇ ·
[
µ(u) (∇u +∇uT)

]
+∇p = f viscosity µ, RHS forcing f
−∇ · u = 0 seek: velocity u, pressure p

Linearization (with Newton), then discretization (with inf-sup stable F.E.):[
A BT

B 0

] [
ũ
p̃

]
=
[
−r1
−r2

]

I High-order finite element shape functions
I Inf-sup stable velocity–pressure pairings: Qk × Pdisc

k−1 with order k ≥ 2
I Locally mass conservative due to discontinuous, modal pressure
I Adaptive mesh refinement resolving fine-scale features of mantle
I Non-conforming hexahedral meshes with “hanging nodes”
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Severe challenges for parallel scalable solvers
. . . arising in Earth’s mantle convection:

I Severe nonlinearity, heterogeneity, and
anisotropy due to Earth’s rheology (strain rate
weakening, plastic yielding)

I Sharp viscosity gradients in narrow regions
(6 orders of magnitude drop in ∼5 km)

I Wide range of spatial scales and highly
localized features, e.g., plate boundaries of size
O(1 km) influence plate motion at continental
scales of O(1000 km)

I Adaptive mesh refinement is essential
I High-order finite elements Qk × Pdisc

k−1, order
k ≥ 2, with local mass conservation; yields a
difficult to deal with discontinuous, modal
pressure approximation

Viscosity (colors) and
locally refined mesh.
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Preconditioning of saddle-point systems from PDEs
Iterative scheme with upper triangular block preconditioning:[

A BT

B 0

] [
Ã BT

0 S̃

]−1 [˜̃u
˜̃p

]
=
[
−r1
−r2

]
Ã−1 ≈ A−1

S̃−1 ≈ S−1 := (BA−1BT)−1

Commonly occurring preconditioning challenge in CS&E:
I Creeping non-Newtonian fluid modeled by incompressible Stokes

equations with power-law rheology yields spatially-varying and highly
heterogeneous viscosity µ after linearization.

Possible preconditioners for the inverse Schur complement S−1:
I Viscosity-weighted pressure mass matrix, Mp(1/µ): [Burstedde,

Ghattas, Stadler, et al., 2009], [Grinevich and Olshanskii, 2009]
I BFBT for Navier–Stokes: [Elman, 1999], [Silvester, Elman, Kay,

Wathen, 2001], [Kay, Loghin, Wathen, 2002], [Elman,Tuminaro, 2009]
I BFBT for variable-viscosity Stokes: [May, Moresi, 2008]
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Weighted BFBT: Inverse Schur complement approximation[
A BT

B 0

] [
Ã BT

0 S̃

]−1 [˜̃u
˜̃p

]
=
[
−r1
−r2

]
Ã−1 ≈ A−1

S̃−1 ≈ (BA−1BT)−1

From a “commutator relationship” leading to a least-squares minimization
problem, we derive the BFBT approximation:

S̃−1
w-BFBT :=

(
BC−1

w BT
)−1

︸ ︷︷ ︸
Poisson solve

(
BC−1

w AD−1
w BT

) (
BD−1

w BT
)−1

︸ ︷︷ ︸
Poisson solve

Choice of diagonal weighting matrices Cw , Dw is critical for efficacy &
robustness with respect to viscosity variations.

I [May, Moresi, 2008] introduces Cw , Dw based on entries of A
I [Rudi, Malossi, Isaac, et al., 2015] uses Cw = Dw := diag(A)
I [Rudi, Stadler, Ghattas, 2017] proposes Cw = Dw := M̃u(√µ)
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Weighted BFBT: Inverse Schur complement approximation[
A BT

B 0

] [
Ã BT

0 S̃

]−1 [˜̃u
˜̃p

]
=
[
−r1
−r2

]
Ã−1 ≈ A−1 → MG V-cycle
S̃−1 ≈ (BA−1BT)−1

From a “commutator relationship” leading to a least-squares minimization
problem, we derive the BFBT approximation:

S̃−1
w-BFBT :=

(
BC−1

w BT
)−1

︸ ︷︷ ︸
→ MG V-cycle

(
BC−1

w AD−1
w BT

) (
BD−1

w BT
)−1

︸ ︷︷ ︸
→ MG V-cycle

Choice of diagonal weighting matrices Cw , Dw is critical for efficacy &
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I [May, Moresi, 2008] introduces Cw , Dw based on entries of A
I [Rudi, Malossi, Isaac, et al., 2015] uses Cw = Dw := diag(A)
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Benchmark problem: Multiple sinkers at random locations

Two parameters increase problem difficulty:
I Number of sinkers n at random points ci

I Dynamic ratio DR(µ) := µmax/µmin

Smooth but highly varying viscosity µ is defined as:

µ(x) := (µmax − µmin)(1− χn(x)) + µmin

χn(x) :=
n∏

i=1
1− exp

[
−d max

(
0, |ci − x| − w

2

)2
]

(where µmin, µmax, d,w are constant)

Smooth viscosity
(colors) with highest
value (blue) assumed
inside spheres;
streamlines show
velocity field.
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Comparison of Schur complement preconditioners

I Convergence of GMRES for benchmark problem with challenging viscosity µ
I k is velocity discretization order and ` is refinement level of uniform mesh
I w-BFBT, where Cw = Dw := M̃u(√µ), combines robust convergence of

diag(A)-BFBT with improved algorithmic scalability when order k increases
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Robustness of w-BFBT w.r.t. viscosity variations
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I Graph shows excerpt from more extensive numerical study
I Preconditioner Mp(1/µ) becomes ineffective as sinker count increases
I w-BFBT is largely unaffected by viscosity variations, which makes it

advantageous for highly heterogeneous problems
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Spectral equivalence for w-BFBT
Theorem: [Rudi, Stadler, Ghattas, 2017] Assume an infinite-dimensional
w-BFBT approximation of the Schur complement:

S̃w-BFBT := K ∗w(Bw A wB∗)−1Kw , K ∗w := BwB∗, w ≡ µ−
1
2

Then S̃w-BFBT is equivalent to S = BA−1B∗,(
S̃w-BFBT q , q

)
≤ (Sq , q) ≤ Cw-BFBT

(
S̃w-BFBT q , q

)
for all q,

with a constant based on weighted Poincaré–Friedrichs’ and Korn’s ineq.

Cw-BFBT :=
(
1 + 1

4 ‖∇µ‖
2
L∞(Ω)d

)(
C 2

P,µ + 1
)
C 2

K ,µ

Remark: For a constant viscosity µ ≡ 1 the equivalence relationship holds
with classical Poincaré–Friedrichs’ and Korn’s inequalities.
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Proof idea (Spectral equivalence for w-BFBT)
1. Establish a “sup-form” for approx. and exact Schur complements:(

S̃w-BFBT q , q
)

= sup
p

(B∗p , wB∗q)2

(wAwB∗p , B∗p)

(Sq , q) = sup
v

(v , wB∗q)2

(wAwv , v)

2. Lower estimate (with constant one) follows immediately.
3. For the upper estimate, derive that

1
2Cµ,w

‖wB∗q‖2(H−1(Ω))d ≤
(
S̃w-BFBT q , q

)
,

(Sq , q) ≤ sup
v

∥∥w−1v
∥∥2

(H1(Ω))d ‖wB∗q‖2(H−1(Ω))d

2
∥∥∥√µ 1

2(∇v +∇vT)
∥∥∥2

(L2(Ω))d×d

.

Result follows with weighted Poincaré–Friedrichs’ and Korn’s ineq.
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Spectrum comparisons of preconditioned Schur matrices
2D Stokes problem discretized with Pbubble

2 × Pdisc
1 elements (FEniCS library)

I As the problem difficulty (i.e., sinker counts) increases, the spreading of
small eigenvalues for Mp(1/µ) becomes more severe, which is
disadvantageous for Krylov solver convergence.

I w-BFBT remains largely unaffected by increased difficulty, which results in
convergence that is robust with respect to viscosity variations.
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HMG: Hybrid spectral–geometric–algebraic multigrid
HMG hierarchy

spectral
p-coarsening
geometric

h-coarsening
algebraic
coars.

high-order F.E.
matrix-free apply
lin F.E., mat-free

core-thinning
#cores < 1000

small MPI communicator
single core

HMG V-cycle

p-MG

h-MG

AMG

direct

high-order
L2-projection

linear
L2-projection

linear
projection

I Multigrid hierarchy of nested meshes is generated from an adaptively refined
octree-based mesh via spectral–geometric coarsening

I Re-discretization of PDEs at coarser levels
I Parallel repartitioning of coarser meshes for load-balancing (crucial for AMR);

sufficiently coarse meshes occupy only subsets of cores
I Coarse grid solver: AMG (from PETSc) invoked on small core counts
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HMG: Hybrid spectral–geometric–algebraic multigrid
HMG hierarchy

spectral
p-coarsening
geometric

h-coarsening
algebraic
coars.

high-order F.E.
matrix-free apply
lin F.E., mat-free

core-thinning
#cores < 1000

small MPI communicator
single core

HMG V-cycle

p-MG

h-MG

AMG

direct

high-order
L2-projection

linear
L2-projection

linear
projection

I High-order L2-projection onto coarser levels; restriction & interpolation are
adjoints of each other in L2-sense

I Chebyshev accelerated Jacobi smoother (Cheb. from PETSc) with tensorized
matrix-free high-order stiffness apply; assembly of high-order diagonal only

I Efficacy, i.e., error reduction, of HMG V-cycles is independent of core count
I No collective communication needed in spectral–geometric MG cycles
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HMG: Hybrid spectral–geometric–algebraic multigrid
HMG hierarchy
pressure space

spectral
p-coarsening
geometric

h-coarsening
algebraic
coars.

discont. modal

high-order F.E.
matrix-free apply
lin F.E., mat-free

core-thinning
#cores < 1000

small MPI communicator
single core

HMG V-cycle

p-MG

h-MG

AMG

direct

modal to
nodal proj.
high-order

L2-projection

linear
L2-projection

linear
projection

I High-order L2-projection onto coarser levels; restriction & interpolation are
adjoints of each other in L2-sense

I Chebyshev accelerated Jacobi smoother (Cheb. from PETSc) with tensorized
matrix-free high-order stiffness apply; assembly of high-order diagonal only

I Efficacy, i.e., error reduction, of HMG V-cycles is independent of core count
I No collective communication needed in spectral–geometric MG cycles
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p4est: Parallel forest-of-octrees AMR library [p4est.org]
Scalable geometric multigrid coarsening due to:

I Forest-of-octree based meshes enable fast refinement/coarsening
I Octrees and space filling curves used for fast neighbor search, mesh

repartitioning, and 2:1 mesh balancing in parallel
k0 k1

p0 p1 p1 p2

k0

k1

x0

y0

x1

y1

Colors depict different processor cores. (Credit: Burstedde, et al.)
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Geometric coarsening: Repartitioning & core-thinning
I Parallel repartitioning of locally refined meshes for load balancing
I Core-thinning to avoid excessive communication in multigrid cycle
I Reduced MPI communicators containing only non-empty cores
I Ensure coarsening across core boundaries: Partition families of

octants/elements on same core for next coarsening sweep

36 38 36 38 9 14 27 17 35 0 32 0

coarsen,
2:1 bal. partition

Colors depict different processor cores, numbers indicate element count on each core.
[Sundar, Biros, Burstedde, Rudi, Ghattas, Stadler, 2012]
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Algorithmic scalability for HMG+w-BFBT

Number of iterations for
solving elliptic sub-systems
Au = f ,
(BD−1

w BT)p = Kp = g,
and full Stokes system for
benchmark sinker problem.

Vary mesh refinement ` for fixed order k = 2

` u-DOF It. p-DOF It. DOF It.
[×106] A [×106] K [×106] Stokes

4 0.11 18 0.02 8 0.12 40
5 0.82 18 0.13 7 0.95 33
6 6.44 18 1.05 6 7.49 33
8 405.02 18 67.11 6 472.12 34
10 25807.57 18 4294.97 6 30102.53 34

Vary order k for fixed mesh refinement ` = 5

k u-DOF It. p-DOF It. DOF It.
[×106] A [×106] K [×106] Stokes

2 0.82 18 0.13 7 0.95 33
3 2.74 20 0.32 8 3.07 37
4 6.44 20 0.66 7 7.10 36
6 21.56 23 1.84 12 23.40 50
8 50.92 22 3.93 10 54.86 67
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Parallel scalability: Global mantle convection problem setup
Discretization parameters to test parallel scalability:

I Finite element order k = 2 is fixed (Qk × Pdisc
k−1)

I Increase max mesh refinement `max

I Refinement down to ∼75m local resolution
I Resulting mesh has 9 levels of refinement

Multigrid parameters for elliptic blocks A and K:
I 1 HMG V-cycle with 3+3 smoothing

Hardware and target system:
I IBM Blue Gene/Q architecture
I Lawrence Livermore National Lab’s Sequoia
I 96 racks resulting in 98,304 nodes and

1,572,864 cores
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Extreme weak scalability on Sequoia supercomputer

16,384 32,768 65,536 131,072 262,144 524,288 1,048,576 1,572,864
107
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0.98
0.99

1.03
1.03

1.03
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Number of cores (∼ 4×105 DOF/core)
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e Ideal weak scalability
Solve [DOF/(sec/iter)]
Setup [DOF/sec]

[Rudi, Malossi, Isaac, Stadler, Gurnis, Staar, Ineichen, Bekas, Curioni, Ghattas, 2015]
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Summary & References
Summary of results:

I Weighted BFBT preconditioner for the for the Schur complement; scalable
HMG-based BFBT algorithms, heterogeneity-robust weighting of BFBT and
theoretical foundation.

I Hybrid spectral–geometric–algebraic multigrid; based on p4est library.
I Optimal or nearly optimal algorithmic scalability.
I Parallel scalability of solvers to 1.6 million cores.

References:
I Rudi, Stadler, Ghattas, SIAM J. Sci. Comput.(2017), to appear.
I Rudi, Malossi, Isaac, Stadler, Gurnis, Ineichen, Bekas, Curioni, and Ghattas,

Proceedings of SC15 (2015), Gordon Bell Prize.
I Sundar, Biros, Burstedde, Rudi, Ghattas, and Stadler, Proceedings of SC12

(2012).
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