# Scalable Spectral-Geometric-Algebraic Multigrid and Schur Complement Preconditioning for Nonlinear, Multiscale, Heterogeneous Flow in Earth's Mantle

#### Johann Rudi

Institute for Computational Engineering and Sciences, The University of Texas at Austin, USA

Co-Advisors

Omar Ghattas (UT Austin) and Georg Stadler (New York University)

Collaborators

Tobin Isaac (U Chicago), Michael Gurnis (Caltech), and from IBM Research – Zurich: Cristiano I. Malossi, Peter W.J. Staar, Yves Ineichen, Costas Bekas, Alessandro Curioni

## Outline

#### Earth's mantle convection: Driving application & solver challenges

Preconditioner for the inverse Schur complement: Weighted BFBT

Preconditioning with Hybrid Spectral–Geometric–Algebraic Multigrid

Numerical results: Algorithmic & parallel scalability

## Mantle convection & plate tectonics

- Mantle convection is the thermal convection in earth's upper ~3000 km
- It controls the thermal and geological evolution of the Earth
- Solid rock in the mantle moves like viscous incompressible fluid on time scales of millions of years
- Driver for plate tectonics, earthquakes, tsunamis, volcanos



Subducting slab (Credit: Schubert, Turcotte, Olsen)



Convection layering (Credit: Pearson Prentice Hall, Inc.)

- Main drivers of plate motion: negative buoyancy forces or convective shear traction?
- Key process governing the occurrence of great earthquakes: material properties between the plates or tectonic stress?

#### What we know: Observational data

- Current plate motion from GPS and magnetic anomalies
- Plate deformation obtained from dense GPS networks
- Average viscosity in regions affected by post-glacial rebound
- Topography indicating normal traction at earth's surface



Plate motion (Credit: Pearson Prentice Hall, Inc.)

Additional knowledge contributing to mantle rheology:

- Location and geometry of plates, plate boundaries, and subducting slabs (from seismicity)
- Rock rheology extrapolated from laboratory experiments
- Images of present-day earth structure (by correlating seismic wave speed with temperature)

#### What we would like to learn: Rheological parameters

Globally constant parameters affecting viscosity and nonlinearity:

- ► Scaling factor of the upper mantle viscosity (down to ~660 km depth)
- Stress exponent controlling severity of strain rate weakening
- Yield strength governing plastic yielding phenomena

Local, spatially varying parameters:

Coupling strength / energy dissipation between plates



(Credit: Alisic)

# Mantle flow governed by incompressible Stokes equations Nonlinear incompressible Stokes PDE (w/ free-slip & no-normal flow BC):

 $\begin{aligned} -\nabla \cdot \left[\mu(\boldsymbol{u})\left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\mathsf{T}}\right)\right] + \nabla p = \boldsymbol{f} & \text{viscosity } \mu, \text{ RHS forcing } \boldsymbol{f} \\ -\nabla \cdot \boldsymbol{u} = 0 & \text{seek: velocity } \boldsymbol{u}, \text{ pressure } p \end{aligned}$ 

Linearization (with Newton), then discretization (with inf-sup stable F.E.):

$$\begin{bmatrix} \mathbf{A} & \mathbf{B}^\mathsf{T} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{u}} \\ \tilde{\mathbf{p}} \end{bmatrix} = \begin{bmatrix} -\mathbf{r}_1 \\ -\mathbf{r}_2 \end{bmatrix}$$

- High-order finite element shape functions
- ▶ Inf-sup stable velocity-pressure pairings:  $\mathbb{Q}_k \times \mathbb{P}_{k-1}^{\text{disc}}$  with order  $k \ge 2$
- Locally mass conservative due to discontinuous, modal pressure
- Adaptive mesh refinement resolving fine-scale features of mantle
- Non-conforming hexahedral meshes with "hanging nodes"

### Severe challenges for parallel scalable solvers

... arising in Earth's mantle convection:

- Severe nonlinearity, heterogeneity, and anisotropy due to Earth's rheology (strain rate weakening, plastic yielding)
- ► Sharp viscosity gradients in narrow regions (6 orders of magnitude drop in ~5 km)
- ► Wide range of spatial scales and highly localized features, e.g., plate boundaries of size O(1 km) influence plate motion at continental scales of O(1000 km)
- Adaptive mesh refinement is essential
- ► High-order finite elements Q<sub>k</sub> × P<sup>disc</sup><sub>k-1</sub>, order k ≥ 2, with local mass conservation; yields a difficult to deal with discontinuous, modal pressure approximation





Viscosity (colors) and locally refined mesh.

# Outline

#### Earth's mantle convection: Driving application & solver challenges

#### Preconditioner for the inverse Schur complement: Weighted BFBT

Preconditioning with Hybrid Spectral–Geometric–Algebraic Multigrid

Numerical results: Algorithmic & parallel scalability

#### Preconditioning of saddle-point systems from PDEs

Iterative scheme with upper triangular block preconditioning:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B}^{\mathsf{T}} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{A}} & \mathbf{B}^{\mathsf{T}} \\ \mathbf{0} & \tilde{\mathbf{S}} \end{bmatrix}^{-1} \begin{bmatrix} \tilde{\tilde{\mathbf{u}}} \\ \tilde{\tilde{\mathbf{p}}} \end{bmatrix} = \begin{bmatrix} -\mathbf{r}_1 \\ -\mathbf{r}_2 \end{bmatrix} \qquad \tilde{\mathbf{A}}^{-1} \approx \mathbf{A}^{-1} \\ \tilde{\mathbf{S}}^{-1} \approx \mathbf{S}^{-1} \coloneqq (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\mathsf{T}})^{-1}$$

Commonly occurring preconditioning challenge in CS&E:

Creeping non-Newtonian fluid modeled by incompressible Stokes equations with power-law rheology yields spatially-varying and highly heterogeneous viscosity µ after linearization.

#### Preconditioning of saddle-point systems from PDEs

Iterative scheme with upper triangular block preconditioning:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B}^{\mathsf{T}} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{A}} & \mathbf{B}^{\mathsf{T}} \\ \mathbf{0} & \tilde{\mathbf{S}} \end{bmatrix}^{-1} \begin{bmatrix} \tilde{\tilde{\mathbf{u}}} \\ \tilde{\tilde{\mathbf{p}}} \end{bmatrix} = \begin{bmatrix} -\mathbf{r}_1 \\ -\mathbf{r}_2 \end{bmatrix} \qquad \tilde{\mathbf{A}}^{-1} \approx \mathbf{A}^{-1} \\ \tilde{\mathbf{S}}^{-1} \approx \mathbf{S}^{-1} \coloneqq (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\mathsf{T}})^{-1}$$

Commonly occurring preconditioning challenge in CS&E:

 Creeping non-Newtonian fluid modeled by incompressible Stokes equations with power-law rheology yields spatially-varying and highly heterogeneous viscosity µ after linearization.

Possible preconditioners for the inverse Schur complement  $S^{-1}$ :

- ► Viscosity-weighted pressure mass matrix, M<sub>p</sub>(1/µ): [Burstedde, Ghattas, Stadler, et al., 2009], [Grinevich and Olshanskii, 2009]
- BFBT for Navier–Stokes: [Elman, 1999], [Silvester, Elman, Kay, Wathen, 2001], [Kay, Loghin, Wathen, 2002], [Elman, Tuminaro, 2009]
- ▶ BFBT for variable-viscosity Stokes: [May, Moresi, 2008]

# Weighted BFBT: Inverse Schur complement approximation $\begin{bmatrix} \mathbf{A} & \mathbf{B}^{\mathsf{T}} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{A}} & \mathbf{B}^{\mathsf{T}} \\ \mathbf{0} & \tilde{\mathbf{S}} \end{bmatrix}^{-1} \begin{bmatrix} \tilde{\tilde{\mathbf{u}}} \\ \tilde{\tilde{\mathbf{p}}} \end{bmatrix} = \begin{bmatrix} -\mathbf{r}_1 \\ -\mathbf{r}_2 \end{bmatrix} \quad \tilde{\mathbf{A}}^{-1} \approx \mathbf{A}^{-1} \\ \tilde{\mathbf{S}}^{-1} \approx (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\mathsf{T}})^{-1}$

# Weighted BFBT: Inverse Schur complement approximation $\begin{bmatrix} \mathbf{A} & \mathbf{B}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{A}} & \mathbf{B}^{\mathsf{T}} \end{bmatrix}^{-1} \begin{bmatrix} \tilde{\mathbf{u}} \end{bmatrix} \quad \begin{bmatrix} -\mathbf{r}_1 \end{bmatrix} \quad \tilde{\mathbf{A}}^{-1} \approx \mathbf{A}^{-1}$

$$\begin{bmatrix} \mathbf{I} & \mathbf{B} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{B} \\ \mathbf{0} & \tilde{\mathbf{S}} \end{bmatrix} \begin{bmatrix} \mathbf{I} \\ \tilde{\tilde{\mathbf{p}}} \end{bmatrix} = \begin{bmatrix} \mathbf{I} \\ -\mathbf{r}_2 \end{bmatrix} \quad \tilde{\mathbf{S}}^{-1} \approx (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\mathsf{T}})^{-1}$$

From a "commutator relationship" leading to a least-squares minimization problem, we derive the BFBT approximation:

$$\tilde{\mathbf{S}}_{\mathsf{w}\text{-}\mathsf{B}\mathsf{F}\mathsf{B}\mathsf{T}}^{-1} \coloneqq \underbrace{\left(\mathbf{B}\mathbf{C}_w^{-1}\mathbf{B}^\mathsf{T}\right)^{-1}}_{\mathsf{Poisson solve}} \left(\mathbf{B}\mathbf{C}_w^{-1}\mathbf{A}\mathbf{D}_w^{-1}\mathbf{B}^\mathsf{T}\right) \underbrace{\left(\mathbf{B}\mathbf{D}_w^{-1}\mathbf{B}^\mathsf{T}\right)^{-1}}_{\mathsf{Poisson solve}}$$

# Weighted BFBT: Inverse Schur complement approximation $\begin{bmatrix} \mathbf{A} & \mathbf{B}^{\mathsf{T}} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{A}} & \mathbf{B}^{\mathsf{T}} \\ \mathbf{0} & \tilde{\mathbf{S}} \end{bmatrix}^{-1} \begin{bmatrix} \tilde{\tilde{\mathbf{u}}} \\ \tilde{\tilde{\mathbf{p}}} \end{bmatrix} = \begin{bmatrix} -\mathbf{r}_1 \\ -\mathbf{r}_2 \end{bmatrix} \quad \begin{array}{c} \tilde{\mathbf{A}}^{-1} \approx \mathbf{A}^{-1} \to \mathsf{MG} \mathsf{V}\text{-cycle} \\ \tilde{\mathbf{S}}^{-1} \approx (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\mathsf{T}})^{-1} \end{array}$

From a "commutator relationship" leading to a least-squares minimization problem, we derive the BFBT approximation:

$$\tilde{\mathbf{S}}_{\mathsf{w}\text{-}\mathsf{B}\mathsf{F}\mathsf{B}\mathsf{T}}^{-1} \coloneqq \underbrace{\left(\mathbf{B}\mathbf{C}_w^{-1}\mathbf{B}^\mathsf{T}\right)^{-1}}_{\to \mathsf{M}\mathsf{G}} \left(\mathbf{B}\mathbf{C}_w^{-1}\mathbf{A}\mathbf{D}_w^{-1}\mathbf{B}^\mathsf{T}\right) \underbrace{\left(\mathbf{B}\mathbf{D}_w^{-1}\mathbf{B}^\mathsf{T}\right)^{-1}}_{\to \mathsf{M}\mathsf{G}} \underbrace{\left(\mathbf{B}$$

Choice of diagonal weighting matrices  $C_w$ ,  $D_w$  is critical for efficacy & robustness with respect to viscosity variations.

- ▶ [May, Moresi, 2008] introduces  $\mathbf{C}_w$ ,  $\mathbf{D}_w$  based on entries of  $\mathbf{A}$
- ▶ [Rudi, Malossi, Isaac, et al., 2015] uses  $\mathbf{C}_w = \mathbf{D}_w \coloneqq \operatorname{diag}(\mathbf{A})$
- ▶ [Rudi, Stadler, Ghattas, 2017] proposes  $\mathbf{C}_w = \mathbf{D}_w \coloneqq \tilde{\mathbf{M}}_u(\sqrt{\mu})$

## Benchmark problem: Multiple sinkers at random locations

Two parameters increase problem difficulty:

- Number of sinkers n at random points  $c_i$
- Dynamic ratio  $DR(\mu) \coloneqq \mu_{max}/\mu_{min}$

Smooth but highly varying viscosity  $\mu$  is defined as:

$$\mu(\boldsymbol{x}) \coloneqq (\mu_{\max} - \mu_{\min})(1 - \chi_n(\boldsymbol{x})) + \mu_{\min}$$
$$\chi_n(\boldsymbol{x}) \coloneqq \prod_{i=1}^n 1 - \exp\left[-d \max\left(0, |\boldsymbol{c}_i - \boldsymbol{x}| - \frac{w}{2}\right)^2\right]$$

(where  $\mu_{\min}, \mu_{\max}, d, w$  are constant)



Smooth viscosity (colors) with highest value (blue) assumed inside spheres; streamlines show velocity field.



- Convergence of GMRES for benchmark problem with challenging viscosity  $\mu$ 

- k is velocity discretization order and  $\ell$  is refinement level of uniform mesh
- ▶ w-BFBT, where C<sub>w</sub> = D<sub>w</sub> := M̃<sub>u</sub>(√µ), combines robust convergence of diag(A)-BFBT with improved algorithmic scalability when order k increases

### Robustness of w-BFBT w.r.t. viscosity variations





- Graph shows excerpt from more extensive numerical study
- Preconditioner  $\mathbf{M}_p(1/\mu)$  becomes ineffective as sinker count increases
- w-BFBT is largely unaffected by viscosity variations, which makes it advantageous for highly heterogeneous problems

#### Spectral equivalence for w-BFBT

**Theorem:** [Rudi, Stadler, Ghattas, 2017] Assume an infinite-dimensional w-BFBT approximation of the Schur complement:

$$\tilde{S}_{w-BFBT} := K_w^* (Bw A w B^*)^{-1} K_w, \quad K_w^* := Bw B^*, \quad w \equiv \mu^{-\frac{1}{2}}$$

Then  $\tilde{S}_{w-BFBT}$  is equivalent to  $S = BA^{-1}B^*$ ,

$$\left( \tilde{S}_{ ext{w-BFBT}} q \,, q 
ight) \leq \left( Sq \,, q 
ight) \leq C_{ ext{w-BFBT}} \left( \tilde{S}_{ ext{w-BFBT}} q \,, q 
ight) \quad ext{for all } q,$$

with a constant based on weighted Poincaré-Friedrichs' and Korn's ineq.

$$C_{\mathsf{w}\text{-}\mathsf{BFBT}} \coloneqq \left(1 + \frac{1}{4} \|\nabla\mu\|_{L^{\infty}(\Omega)^d}^2\right) \left(C_{P,\mu}^2 + 1\right) C_{K,\mu}^2$$

**Remark:** For a constant viscosity  $\mu \equiv 1$  the equivalence relationship holds with classical Poincaré–Friedrichs' and Korn's inequalities.

### Proof idea (Spectral equivalence for w-BFBT)

1. Establish a "sup-form" for approx. and exact Schur complements:

$$\left( \tilde{S}_{\text{w-BFBT}} q, q \right) = \sup_{p} \frac{\left( B^* p, wB^* q \right)^2}{\left( wAwB^* p, B^* p \right)}$$
$$\left( Sq, q \right) = \sup_{\boldsymbol{v}} \frac{\left( \boldsymbol{v}, wB^* q \right)^2}{\left( wAw\boldsymbol{v}, \boldsymbol{v} \right)}$$

Lower estimate (with constant one) follows immediately.
 For the upper estimate, derive that

$$\frac{1}{2C_{\mu,w}} \|wB^*q\|_{(H^{-1}(\Omega))^d}^2 \le \left(\tilde{S}_{w\text{-BFBT}} q, q\right),$$
$$(Sq, q) \le \sup_{\boldsymbol{v}} \frac{\|w^{-1}\boldsymbol{v}\|_{(H^{1}(\Omega))^d}^2 \|wB^*q\|_{(H^{-1}(\Omega))^d}^2}{2\left\|\sqrt{\mu}\,\frac{1}{2}(\nabla\boldsymbol{v}+\nabla\boldsymbol{v}^{\mathsf{T}})\right\|_{(L^2(\Omega))^{d\times d}}^2}.$$

Result follows with weighted Poincaré-Friedrichs' and Korn's ineq.

#### Spectrum comparisons of preconditioned Schur matrices

2D Stokes problem discretized with  $\mathbb{P}_2^{\text{bubble}} \times \mathbb{P}_1^{\text{disc}}$  elements (FEniCS library)



- ► As the problem difficulty (i.e., sinker counts) increases, the spreading of small eigenvalues for M<sub>p</sub>(1/µ) becomes more severe, which is disadvantageous for Krylov solver convergence.
- w-BFBT remains largely unaffected by increased difficulty, which results in convergence that is robust with respect to viscosity variations.

# Outline

Earth's mantle convection: Driving application & solver challenges

Preconditioner for the inverse Schur complement: Weighted BFBT

Preconditioning with Hybrid Spectral-Geometric-Algebraic Multigrid

Numerical results: Algorithmic & parallel scalability

## HMG: Hybrid spectral-geometric-algebraic multigrid

HMG hierarchy

HMG V-cycle



- Multigrid hierarchy of nested meshes is generated from an adaptively refined octree-based mesh via spectral-geometric coarsening
- Re-discretization of PDEs at coarser levels
- Parallel repartitioning of coarser meshes for load-balancing (crucial for AMR); sufficiently coarse meshes occupy only subsets of cores
- Coarse grid solver: AMG (from PETSc) invoked on small core counts

# HMG: Hybrid spectral-geometric-algebraic multigrid

HMG hierarchy

HMG V-cycle



- ► High-order L<sup>2</sup>-projection onto coarser levels; restriction & interpolation are adjoints of each other in L<sup>2</sup>-sense
- Chebyshev accelerated Jacobi smoother (Cheb. from PETSc) with tensorized matrix-free high-order stiffness apply; assembly of high-order diagonal only
- ► Efficacy, i.e., error reduction, of HMG V-cycles is independent of core count
- ► No collective communication needed in spectral-geometric MG cycles

### HMG: Hybrid spectral-geometric-algebraic multigrid



- High-order L<sup>2</sup>-projection onto coarser levels; restriction & interpolation are adjoints of each other in L<sup>2</sup>-sense
- Chebyshev accelerated Jacobi smoother (Cheb. from PETSc) with tensorized matrix-free high-order stiffness apply; assembly of high-order diagonal only
- ► Efficacy, i.e., error reduction, of HMG V-cycles is independent of core count
- ► No collective communication needed in spectral-geometric MG cycles

#### p4est: Parallel forest-of-octrees AMR library [p4est.org]

Scalable geometric multigrid coarsening due to:

- ► Forest-of-octree based meshes enable fast refinement/coarsening
- Octrees and space filling curves used for fast neighbor search, mesh repartitioning, and 2:1 mesh balancing in parallel



Colors depict different processor cores. (Credit: Burstedde, et al.)

## Geometric coarsening: Repartitioning & core-thinning

- Parallel repartitioning of locally refined meshes for load balancing
- Core-thinning to avoid excessive communication in multigrid cycle
- Reduced MPI communicators containing only non-empty cores
- Ensure coarsening across core boundaries: Partition families of octants/elements on same core for next coarsening sweep



*Colors* depict different processor cores, *numbers* indicate element count on each core. [Sundar, Biros, Burstedde, Rudi, Ghattas, Stadler, 2012]

# Outline

Earth's mantle convection: Driving application & solver challenges

Preconditioner for the inverse Schur complement: Weighted BFBT

Preconditioning with Hybrid Spectral–Geometric–Algebraic Multigrid

Numerical results: Algorithmic & parallel scalability

#### Algorithmic scalability for HMG+w-BFBT

Number of iterations for solving elliptic sub-systems Au = f,  $(BD_w^{-1}B^T)p = Kp = g$ , and full Stokes system for benchmark sinker problem.



| l  | $u	ext{-DOF}$ $[	imes 10^6]$ | lt.<br>A | $p$ -DOF $[\times 10^6]$ | lt.<br>K | $\begin{array}{c} DOF \\ [\times 10^6] \end{array}$ | lt.<br><b>Stokes</b> |
|----|------------------------------|----------|--------------------------|----------|-----------------------------------------------------|----------------------|
| 4  | 0.11                         | 18       | 0.02                     | 8        | 0.12                                                | 40                   |
| 5  | 0.82                         | 18       | 0.13                     | 7        | 0.95                                                | 33                   |
| 6  | 6.44                         | 18       | 1.05                     | 6        | 7.49                                                | 33                   |
| 8  | 405.02                       | 18       | 67.11                    | 6        | 472.12                                              | 34                   |
| 10 | 25807.57                     | 18       | 4294.97                  | 6        | 30102.53                                            | 34                   |

Vary order k for fixed mesh refinement  $\ell=5$ 

| k | $u$ -DOF $[	imes 10^6]$ | lt.<br>A | $\begin{array}{c} p\text{-}DOF \\ [\times 10^6] \end{array}$ | lt.<br>K | $\begin{array}{c} DOF \\ [\times 10^6] \end{array}$ | lt.<br><b>Stokes</b> |
|---|-------------------------|----------|--------------------------------------------------------------|----------|-----------------------------------------------------|----------------------|
| 2 | 0.82                    | 18       | 0.13                                                         | 7        | 0.95                                                | 33                   |
| 3 | 2.74                    | 20       | 0.32                                                         | 8        | 3.07                                                | 37                   |
| 4 | 6.44                    | 20       | 0.66                                                         | 7        | 7.10                                                | 36                   |
| 6 | 21.56                   | 23       | 1.84                                                         | 12       | 23.40                                               | 50                   |
| 8 | 50.92                   | 22       | 3.93                                                         | 10       | 54.86                                               | 67                   |

Vary mesh refinement  $\ell$  for fixed order k = 2

## Parallel scalability: Global mantle convection problem setup



Discretization parameters to test parallel scalability:

- Finite element order k = 2 is fixed  $(\mathbb{Q}_k \times \mathbb{P}_{k-1}^{\text{disc}})$
- $\blacktriangleright$  Increase max mesh refinement  $\ell_{\rm max}$
- Refinement down to  $\sim$ 75 m local resolution
- Resulting mesh has 9 levels of refinement

Multigrid parameters for elliptic blocks  ${\bf A}$  and  ${\bf K}:$ 

▶ 1 HMG V-cycle with 3+3 smoothing

Hardware and target system:

- ► IBM Blue Gene/Q architecture
- Lawrence Livermore National Lab's Sequoia
- 96 racks resulting in 98,304 nodes and 1,572,864 cores

#### Extreme weak scalability on Sequoia supercomputer



[Rudi, Malossi, Isaac, Stadler, Gurnis, Staar, Ineichen, Bekas, Curioni, Ghattas, 2015]

# Summary & References

Summary of results:

- Weighted BFBT preconditioner for the for the Schur complement; scalable HMG-based BFBT algorithms, heterogeneity-robust weighting of BFBT and theoretical foundation.
- ► Hybrid spectral-geometric-algebraic multigrid; based on p4est library.
- Optimal or nearly optimal algorithmic scalability.
- ▶ Parallel scalability of solvers to 1.6 million cores.

References:

- ▶ Rudi, Stadler, Ghattas, SIAM J. Sci. Comput.(2017), to appear.
- Rudi, Malossi, Isaac, Stadler, Gurnis, Ineichen, Bekas, Curioni, and Ghattas, Proceedings of SC15 (2015), Gordon Bell Prize.
- Sundar, Biros, Burstedde, Rudi, Ghattas, and Stadler, Proceedings of SC12 (2012).