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Imaging Science Today

Due to the data deluge, the area of imaging science is of tremendous
importance in today’s world.

Main Tasks

Acquisition

Preprocessing
I Denoising, Inpainting, ...

Analysis
I Feature Detection, ...

Storing
I Compression, ...

What has Applied Harmonic Analysis to offer?
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Applied Harmonic Analysis

Representation systems designed by Applied Harmonic Analysis concepts
have established themselves as a standard tool in applied mathematics,
computer science, and engineering.

Examples:

Wavelets.

Ridgelets.

Curvelets.

Shearlets.

...

Key Property:
Fast Algorithms combined with Sparse Approximation Properties!
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An Applied Harmonic Analysis Viewpoint

Exploit a carefully designed representation system (ψλ)λ∈Λ ⊆ H:

H 3 f −→ (〈f , ψλ〉)λ∈Λ −→
∑
λ∈Λ

〈f , ψλ〉ψλ = f .

Desiderata:

Special features encoded in the “large” coefficients | 〈f , ψλ〉 |.
Efficient representations:

f ≈
∑
λ∈ΛN

〈f , ψλ〉ψλ, #(ΛN) small

Goals:

Modification of the coefficients according to the task.

Derive high compression by considering only the “large” coefficients.
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Two Main Viewpoints

Decomposition:

H 3 f −→ (〈f , ψλ〉)λ∈Λ.

Preprocessing (e.g. denoising).

Analysis (e.g. feature detection).

Clustering/Classification.

...

Efficient Representations:

f =
∑
λ∈Λ

cλψλ.

Compression.

Regularization of inverse problems.

Ansatz functions for PDE solvers.

...
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Sparsity

Novel Paradigm:

For each class of data, there exists a sparsifying system!

Two Viewpoints of ‘Sparsifying System’:
Let C ⊆ H and (ψλ)λ ⊆ H.

Decay of Coefficients. Consider the decay for n→∞ of the sorted
sequence of coefficients

(|〈x , ψλn〉|)n for all x ∈ C.

Approximation Properties. Consider the decay for N →∞ of the
error of best N-term approximation, i.e.,

inf
#ΛN=N,(cλ)λ

∥∥∥x − ∑
λ∈ΛN

cλψλ

∥∥∥ for all x ∈ C.
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Sparsifying System

Functional Analytic Properties:

(ψλ)λ can be an orthonormal basis.

(ψλ)λ can form a frame, i.e., there exist 0 < A ≤ B <∞ with

A‖x‖2 ≤
∑
λ

|〈x , ψλ〉|2 ≤ B‖x‖2 for all x ∈ H.

Basic Facts about Frames:

The frame operator S : H → H, Sx =
∑

λ 〈x , ψλ〉ψλ is invertible.

The dual frame (ψ̃λ)λ := (S−1ψλ)λ yields

x =
∑
λ

〈x , ψλ〉 ψ̃λ =
∑
λ

〈x , ψ̃λ〉ψλ for all x ∈ H.

Some Advantages of Redundancy:

Flexibility in expansions x =
∑

λ cλψλ.

Robustness against loss of coefficients 〈x , ψλ〉.
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Notion of Optimality

Two Viewpoints of Optimality of (ψλ)λ: Let C ⊆ H.

Decay of Coefficients. β > 0 is largest (for all systems) with

|〈x , ψλn〉| . n−β as n→∞, for all x ∈ C.

Approximation Properties. γ > 0 is largest (for all systems) with

inf
#ΛN=N,(cλ)λ

∥∥∥x − ∑
λ∈ΛN

cλψλ

∥∥∥ . N−γ as N →∞, for all x ∈ C.

Situation of an ONB: For the best N-term approximation xN of x , we have

‖x − xN‖2 =
∑
λ6∈ΛN

|cλ|2 =
∑
n>N

|〈x , ψλn〉|
2

Situation of a Frame: For the N-term approximation xN=
∑

λ∈ΛN
〈x , ψλ〉 ψ̃λ

of x consisting of the N largest coefficients |〈x , ψλ〉|, we only have

‖x − xN‖2 ≤ 1

A

∑
n>N

|〈x , ψλn〉|
2 .
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Applied Harmonic Analysis

Desiderata:

Multiscale representation system.

Convenient structure: Operators applied to one generating function.

Partition of Fourier domain.

Space/frequency localization.

Fast algorithms: x 7→ (〈x , ψλ〉)λ  x .

Optimality for the considered class.
 In this Talk: Modeling natural images!
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Continuous versus Discrete

Continuous World:

Continuous index sets.

Resolution of Singularities/Wavefront sets.

More flexibility in scale → 0.

Allows strong theoretical results.

Discrete World:

Discrete index sets.

(Sparse) approximation properties.

More efficient numerical realization.
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Outline

1 Continuous World
Resolution of Singularities
Continuous Wavelet Transform
Continuous Shearlet Transform
Applications: Edge Detection, ...

2 Discrete World
Sparse Approximations
Discrete Wavelets
Directional Representation Systems: Curvelets, Shearlets,...
Applications: Inpainting, Magnetic Resonance Imaging, ...
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