A Dynamical Systems Approach to the Pleistocene Climate - Part II of II

Hans G. Kaper and Hans Engler Georgetown University
Tasso Kaper and Theodore Vo Boston University

SIAM Conference on
Applications of Dynamical Systems

May 24, 2017

Outline

- Background
- Slow-fast approximation
- Center manifold approximation
- Slow passage(s)

The 1990 Maasch-Saltzman Model

- ODE system for $\mathbf{x}=$ anomalies of ice mass, $\mathbf{y}=$ atmospheric CO_{2} and $\mathbf{z}=$ North Atlantic (NA) deep water
- Dimensionless; parameters $p, q, r, s>0$ are $\mathcal{O}(1)$

$$
\begin{aligned}
& \dot{x}=-x-y \\
& \dot{y}=\left(r-z^{2}\right) y-(p-s z) z \\
& \dot{z}=-q x-q z
\end{aligned}
$$

Reductions in this Talk

Full MS

$$
\begin{aligned}
& \dot{x}=-x-y \\
& \dot{y}=\left(r-z^{2}\right) y-(p-s z) z \\
& \dot{z}=-q x-q z
\end{aligned}
$$

$$
\downarrow q \gg 1
$$

Asymmetric 2-D

$$
\begin{aligned}
& \dot{x}=-x-y \\
& \dot{y}=\left(r-x^{2}\right) y+(p+s x) x
\end{aligned}
$$

$s=0$
Symmetric MS
$\dot{x}=-x-y$
$\dot{y}=\left(r-z^{2}\right) y-p z$
$\dot{z}=-q x-q z$
$\downarrow q \gg 1$
$s=0$
Symmetric 2-D

$$
\begin{aligned}
& \dot{x}=-x-y \\
& \dot{y}=\left(r-x^{2}\right) y+p x
\end{aligned}
$$

Slow-Fast System

- $q>1$ is a ratio of time scales.
- Consider the case $q \gg 1$ or $\varepsilon=\frac{1}{q} \ll 1$.
- Then x and y are slow, and z is fast.

$$
\begin{aligned}
\dot{x} & =-x-y \\
\dot{y} & =r y-p z+(s-y) z^{2} \\
\varepsilon \dot{z} & =-x-z
\end{aligned}
$$

- Invariant, normally attracting $\operatorname{mfd} \mathcal{M}_{0}=\{z=-x\}$ for $\varepsilon=0$
- For small ε, invariant, normally attracting manifolds $\mathcal{M}_{\varepsilon}=\left\{z=h_{\varepsilon}(x, y)\right\}$ persist (Fenichel Theory).

Slow Manifold and Invariance Equation

Describe $\mathcal{M}_{\varepsilon}$ with invariance equation

$$
\varepsilon \frac{d}{d t} h_{\varepsilon}(x, y)=-x-h_{\varepsilon}(x, y)
$$

Expand $h_{\varepsilon}(x, y)=h_{0}(x, y)+\varepsilon h_{1}(x, y)+\varepsilon^{2} h_{2}(x, y)+\ldots$ and find the h_{i}.

$$
\begin{aligned}
& h_{0}(x, y)=-x \\
& h_{1}(x, y)=-(x+y) \\
& h_{2}(x, y)=-(x+y)+\left(r y+p x+(s-y) x^{2}\right)
\end{aligned}
$$

Slow-Fast Decomposition of Typical Solutions

- A solution $X(t)$ starts on the fast stable fiber $\mathcal{F}_{\varepsilon}(b(0))$.
- It decomposes into a fast component decaying along $\mathcal{F}_{\varepsilon}(b(t))$
- and a slow component that moves with the base point $b(t)$.
- Thus $b(t) \in \mathcal{M}_{\varepsilon}$

The Slow-Fast System

The system on $\mathcal{M}_{\varepsilon}$ becomes

$$
\begin{aligned}
& \dot{x}=-x-y \\
& \dot{y}=r y-p h_{\varepsilon}(x, y)+(s-y)\left(h_{\varepsilon}(x, y)\right)^{2}
\end{aligned}
$$

- Consider the symmetric case $s=0$ and use first order approximation $h_{\varepsilon}(x, y)=-x-\varepsilon(x+y)+\mathcal{O}\left(\varepsilon^{2}\right)$.
- The result is very similar to the case $\varepsilon=0$.
- Equilibria at $P_{0}=(0,0)$ for all (p, r) and at $P_{1,2}=(\pm \sqrt{r-p}, \mp \sqrt{r-p})$ if $r>p$
- At $(p, r)=\left(\frac{1}{1+\varepsilon}, \frac{1}{1+\varepsilon}\right), P_{0}$ undergoes a \mathbb{Z}_{2}-symmetric BT bifurcation (organizing center).
- All bifurcation curves emanate from this point.

Bifurcation of the Symmetric Slow-Fast System

$$
q=\infty
$$

$q=10$

- Linear stability analysis is similar (Hopf bifurcations)
- Bogdanov-Takens unfolding is similar (homoclinic bifurcation, saddle-node bifurcation)

Slow-Fast System: Limit Cycles

- Integrate the full system for $q=10$ $(\varepsilon=0.1)$ with random initial data and plot $\bar{x}(p, r)=\lim \sup _{t} x(t)$.
- Also shown are the bifurcation curves of the reduced system, using an $\mathcal{O}\left(\varepsilon^{3}\right)$ approximation of h_{ε}.

Basin of Attraction \mathcal{B}_{1} of P_{1}

- (p, r) is between the Hopf curve and the homoclinic bifurcation curve.
- P_{1} is stable and is surrounded by an unstable limit cycle $\gamma_{1 \varepsilon}$ in $\mathcal{M}_{\varepsilon}$.
- Also shown: a large stable limit cycle $\gamma_{3 \varepsilon}$
- The fast stable fibres with base points on $\gamma_{1 \varepsilon}$ form the boundary of \mathcal{B}_{1}.

Back to the Full System

$$
\begin{aligned}
& \dot{x}=-x-y \\
& \dot{y}=\left(r-z^{2}\right) y-(p-s z) z \\
& \dot{z}=-q x-q z
\end{aligned}
$$

- Trivial equilibrium $P_{0}=(0,0,0)$
- Two additional equilibria if $\rho=s^{2}+4(r-p)>0$:

$$
P_{1}=x_{1}^{*} \cdot(1,-1,-1), \quad P_{2}=x_{2}^{*} \cdot(1,-1,-1)
$$

with $x_{1,2}^{*}=\frac{1}{2}(-s \pm \sqrt{\rho})$

- P_{2} is a "warm" state, P_{1} is a "cold" state.

Linear Stability

- P_{1}, P_{2} exist above $\mathbf{d} 2 / \mathbf{s d}$ ($\rho=0$)
- P_{0} is stable below $\mathbf{d 0} / \mathbf{d 1}$ ($r=p$) and e0
- Hopf bifurcations off $P_{0,1,2}$ on e0, e1, e2
- Supercritical on e0, subcritical on e1, sub- to supercritical on e2
- Two organizing centers at Q_{0} (where e0/e1 and d0/d1 meet) and at $Q=Q_{1}$

$$
q=1.2, s=.8
$$

Symmetry Breaking Near the Organizing Centers

- Fix $q=1.2$ and reduce $s \rightarrow 0.5 \rightarrow 0.2 \rightarrow 0.1 \rightarrow 0.05$. The two organizing centers coalesce and the curves e1, e2 collapse into one curve.
- Homoclinic and fold bifurcation curves also collapse.

Center Manifolds

- Center manifolds associated with P_{i} exist near both organizing centers.
- Main steps near $Q_{0}=\left(\frac{q}{1+q}, \frac{q}{1+q}\right)$, for $P_{0}\left(\right.$ or $\left.P_{1}\right)$:
- Shift Q_{0} to $(0,0)$. Then p becomes \tilde{p}, r becomes \tilde{r}. The system is

$$
\left(\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right)=A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{l}
0 \\
n \\
0
\end{array}\right), \quad A=\left(\begin{array}{ccc}
-1 & -1 & 0 \\
0 & \frac{q}{1+q} & -\frac{q}{1+q} \\
-q & 0 & -q
\end{array}\right)
$$

where $n=n(x, y, z, \tilde{p}, \tilde{r}, s, q)$.

Center Manifolds II

- Jordan normal form for A is

$$
J=F^{-1} A F=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

- Transform to Jordan normal form with new variables (u, v, w). The nonlinear term is now complicated but still has rank 1 .
- The center manifold is $\mathcal{W}^{c}=\{w=h(u, v, \ldots)\}$.
- There is an invariance equation for h that can be exploited.

Center Manifold III

- Write $h=h_{2}+h_{3}+\ldots$ as sum of homogeneous polynomials in $u, v, \tilde{p}, \tilde{r}$, with coefficients depending on q, s.
- Consistency check: Transform the expansion for \mathcal{W}^{c} back to (x, y, z) coordinates and compare to the slow manifold expansion. There is agreement as expected (to suitable powers of $\varepsilon=q^{-1}$ and of the state variables).

Dynamics on Center Manifold

- The blue surface is \mathcal{W}^{c}, the blue streamlines indicate the flow on \mathcal{W}^{c}, the thick blue line is the stable limit cycle there.
- The black curve is a solution of the full system.

Region of Validity

- For $q<q_{c}=q_{c}(p, r, s)$, expect both Lyapunov type numbers to become <1, and \mathcal{W}^{c} loses smoothness.
- Our approach to approximate q_{c} numerically:
- Compute the eigenvalues at all three equilibrium points, for the system on \mathcal{W}^{c} (three pairs).
- Compare their real parts to λ_{3}, the transverse eigenvalue at Q_{0} (six ratios).
- $q \approx q_{c}$ when one of these ratios becomes 1
- For $0<p<2,0<r<\frac{3}{2}$, this suggests $q_{c}<1$.
- The reduced systems provide reliable qualitative information about the full dynamics, over the entire parameter range.

Outlook: Slow Passage

Maasch and Saltzman changed (p, r) slowly from $(0.8,0.7)$ to $(1.0,0.8)$ over 2 Myr (red path), crossing several bifurcation loci. Limit cycles with the right periods were then observed.

Slow Passage

A less complicated path. The fold where P_{1} and P_{2} disappear is not crossed. The Hopf line is crossed in a subcritical place.

Slow Passage

Another alternative. The fold where P_{1} and P_{2} disappear is not crossed. The Hopf line is crossed in a supercritical place.

Thank You!

