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Quasiperiodicity

@ A quasiperiodic map is a map F : L — L on a topological
circle or torus L such that in some choice of coordinates F
is a rigid irrational rotation. That is, for T a canonical
torus and a map ¢

c: T — L F(c(0))=c(0+p).

This also may occur for some iterate of the map.




Invariant tori

Das, Saiki, S., Yorke created a weighted Birkhoff average
method which can efficiently compute

@ Compute rotation numbers.
@ Distinguish chaos from quasiperiodicity.
@ Use rationality of rotation number to distinguish islands.

Current goal is to understand the breakup of invariant KAM

tori in volume-preserving systems using these methods.




Birkhoff averages as an integral estimator

Birkhoff ergodic theorem: Time average = space average

@ Chaotic or quasiperiodic trajectory

xp = F"(x0),n=0,1,2,...

Let f be a function along the trajectory
@ Time averages are the same as space averages:

N—-1
Bu() = 1 O Flxn) = / F(x)dp(x)
n=0

E.g. For rotation number, f(x,) = Ay = Xp+1 — Xn

Under mild assumptions including smoothness of f and F,
ergodic F, and Lebesgue measure 1.

Quasiperiodic convergence: O(1/N), lack of smoothness
at termination of orbit.

Chaotic convergence: O(1/v/N), central limit theorem.



Weighted Birkhoff averages

Slow convergence of the Birkhoff sum is caused by edge
effects.
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Weighted Birkhoff Average: like windowing methods in signal
processing:
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Convergence and smoothness

Convergence determined by smoothness of the weighting
function.

e Unweighted = 1, convergence: O(1/N)
e Quadratic = x(1 — x), convergence: O(1/N?)
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Distinguishing chaos from quasiperiodicity

Ongoing with Jonathan Jaquette:
Chaotic: O(l/\/N) Chaos in Rulkov map
Quasiperiodic:
O(1/N™) ¥m.
@ For some function
measure WB) for

X1 and XN+1- Zoom x 1,000
@ Matching digits:

zerosy(f) =

— log |diff|. Small

zeros is chaos, large g

zeros is

quasiperiodicity.
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Persistent invariant tori

@ Integrable Hamiltonian or volume-preserving systems have
invariant quasiperiodic tori.

o KAM theory guarantees persistence of tori with
Diophantine rotation numbers

@ When are the tori destroyed?




Greene's residue criterion, golden and noble numbers

@ For volume preserving, symplectic, reversible maps,
Greene's residue method: Stable periodic orbits limit to
persistent invariant torus.

e Standard map strong conjectures (MacKay, Koch, others)

e Last rotational circle : A = 0.971635, golden mean
rotation number,
e Local max noble rotation number,

@ Only works well for symmetric reversible case

@ In higher dimensions, no
canonical continued
fractions

@ Our goal: non-symmetric
and higher-dimensional
volume-preserving maps




Chirikov's standard map

f< X1 > N ( mod (x1 + X2 — 5= sin(27x1), 1) >

X2 mod (xp — % sin(2mx1), 1)

Rotational circles, librational circles (islands), chaos movie

=N

P -

e g




Distinguishing rational numbers in floating point arithmetic

A floating point rational number: within ¢ of p/q where g is
unexpectedly small.

random numerical values

0.8

0.6

0.4

0.2

0

2 3 4 5 6 7 8
log10(Denominator) when tolerance is 10710

2 E
g 7 '\E 0.3376
°

2s -

8 5 0.3374
S g

S5 =

= el

5 g 0.3372
=4 €

5 §

] 2 0.337

- s

g S

c '©0.3368

&2 b4

T =3

5 €

=] S

o1 = 0.3366 —*
L 2 4 6 8 10 12 14 5 0 2 4 6 8 10 12
§ log10(Tolerance) allowed to find denominator = log10(Tolerance) allowed to find denominator



Distinguishing rational numbers in floating point arithmetic

@ Bottom left: Farey sequences, Euler totient function
@ Mystery 1: What is the distribution? Why symmetric?
@ Mystery 2: Lower right: Fixed standard deviation?

random numerical values
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Denominator spike

Near rationals, unexpectedly small denominators are
accompanied by denominator spikes

random numerical values %108 i spike
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Distinguishing islands using weighted Birkhoff averages

A proof of concept for Chirikov's standard map

@ Starting with the movie data
@ Remove chaotic orbits
e Islands rational rotation (yellow, tongues)

@ Computed final rotational circle parameter: 0.972351
(overshoot of 0.0007)
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Distinguishing islands using weighted Birkhoff averages

A proof of concept for Chirikov's standard map

@ Starting with the movie data

@ Remove chaotic orbits

@ Islands rational rotation (yellow, tongues)

@ Computed final rotational circle parameter: 0.972351
(overshoot of 0.0007)




Distinguishing islands with gap size

Gaps between islands — large max gaps

Compression of non-embedding — small minimum gaps
Preliminary results: more accurate

Relates to Slater's method

log(Gaps)(K) for x0=0.000000, yo=0.240000
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Typical gap size

For rigid rotation, the minimum gap size has a supremum of
1/N where N is the number of iterates.
Lines: Golden mean, v/2, and dashed: rationals.
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Action-angle map in three dimensions

Similarly in three dimensions, we get rotational tori, circles,
islands, and chaos in a system previously studied by Fox and
Meiss.
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Action-angle map in three dimensions

Chaos still be distinguished with weighted Birkhoff method.
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Action-angle map in three dimensions

Kim-Ostlund coordinates
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