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Quasiperiodicity

A quasiperiodic map is a map F : L→ L on a topological
circle or torus L such that in some choice of coordinates F
is a rigid irrational rotation. That is, for T a canonical
torus and a map c

c : T → L,F (c(θ)) = c(θ + ρ) .

This also may occur for some iterate of the map.



Invariant tori

Das, Saiki, S., Yorke created a weighted Birkhoff average
method which can efficiently compute Birkhoff averages for
quasiperiodic orbits.

Compute rotation numbers.
Distinguish chaos from quasiperiodicity.
Use rationality of rotation number to distinguish islands.

Current goal is to understand the breakup of invariant KAM
tori in volume-preserving systems using these methods.



Birkhoff averages as an integral estimator

Birkhoff ergodic theorem: Time average = space average

Chaotic or quasiperiodic trajectory

xn = F n(x0), n = 0, 1, 2, . . .

Let f be a function along the trajectory
Time averages are the same as space averages:

BN(f ) =
1

N

N−1∑
n=0

f (xn)→
∫

f (x)dµ(x)

E.g. For rotation number, f (xn) = ∆n = xn+1 − xn
Under mild assumptions including smoothness of f and F ,
ergodic F , and Lebesgue measure µ.
Quasiperiodic convergence: O(1/N), lack of smoothness
at termination of orbit.
Chaotic convergence: O(1/

√
N), central limit theorem.



Weighted Birkhoff averages

Slow convergence of the Birkhoff sum is caused by edge
effects.

BN(f , x0) =
N−1∑
n=0

f (xn)/N

Weighted Birkhoff Average: like windowing methods in signal
processing:

wp(t) := exp(−[t(1− t)]−p),

ŵn,N = wp(n/N)/

N−1∑
j=0

wp(j/N)


WBp,N(f , x) =

N−1∑
n=0

ŵn,N f (xn)



Convergence and smoothness

Convergence determined by smoothness of the weighting
function.

Unweighted = 1, convergence: O(1/N)

Quadratic = x(1− x), convergence: O(1/N2)

sin2(πx) (Laskar) convergence: O(1/N3)

Exponential = w superconvergence: O(1/Nm), ∀m



Distinguishing chaos from quasiperiodicity

Chaotic: O(1/
√
N).

Quasiperiodic:
O(1/Nm) ∀m.

For some function
measure WBN for
x1 and xN+1.

Matching digits:
zerosN(f ) =
− log10 |diff|. Small
zeros is chaos, large
zeros is
quasiperiodicity.

Based on Levnajić &
Mezić

Ongoing with Jonathan Jaquette:
Chaos in Rulkov map



Persistent invariant tori

Integrable Hamiltonian or volume-preserving systems have
invariant quasiperiodic tori.

KAM theory guarantees persistence of tori with
Diophantine rotation numbers

When are the tori destroyed?



Greene’s residue criterion, golden and noble numbers

For volume preserving, symplectic, reversible maps,
Greene’s residue method: Stable periodic orbits limit to
persistent invariant torus.
Standard map strong conjectures (MacKay, Koch, others)

Last rotational circle : λ = 0.971635, golden mean
rotation number, continued fraction of 1’s
Local max noble rotation number, continued fraction
eventually 1’s

Only works well for symmetric reversible case

In higher dimensions, no
canonical continued
fractions

Our goal: non-symmetric
and higher-dimensional
volume-preserving maps



Chirikov’s standard map

f

(
x1
x2

)
=

(
mod (x1 + x2 − λ

2π sin(2πx1), 1)

mod (x2 − λ
2π sin(2πx1), 1)

)

Rotational circles, librational circles (islands), chaos movie



Distinguishing rational numbers in floating point arithmetic

A floating point rational number: within ε of p/q where q is
unexpectedly small.



Distinguishing rational numbers in floating point arithmetic

Bottom left: Farey sequences, Euler totient function
Mystery 1: What is the distribution? Why symmetric?
Mystery 2: Lower right: Fixed standard deviation?



Denominator spike

Near rationals, unexpectedly small denominators are
accompanied by denominator spikes



Distinguishing islands using weighted Birkhoff averages

A proof of concept for Chirikov’s standard map

Starting with the movie data

Remove chaotic orbits

Islands rational rotation (yellow, tongues)

Computed final rotational circle parameter: 0.972351
(overshoot of 0.0007)
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Distinguishing islands with gap size

Gaps between islands – large max gaps
Compression of non-embedding – small minimum gaps
Preliminary results: more accurate
Relates to Slater’s method



Typical gap size

For rigid rotation, the minimum gap size has a supremum of
1/N where N is the number of iterates.
Lines: Golden mean,

√
2, and dashed: rationals.
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Action-angle map in three dimensions

Similarly in three dimensions, we get rotational tori, circles,
islands, and chaos in a system previously studied by Fox and
Meiss.



Action-angle map in three dimensions

Chaos still be distinguished with weighted Birkhoff method.



Action-angle map in three dimensions

Kim-Ostlund coordinates
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