Neuropathic Pain Rapid Fire: Diagnostic, Testing, and Treatment Pearls

James C. Watson, MD

Mayo Clinic, Rochester, MN Division of Pain Medicine - Chair Professor of Anesthesiology Professor of Neurology AAPM Board of Directors

Disclosures

- I have no conflicts of interest.
- This presentation contains off-label or investigational use of drugs or products

Learning Objectives

- Understand the natural history of erythromelalgia and recent updates on treatments options.
- Understand critical elements to diagnosing central neuropathic pain.
- Understand how to differentiate trigeminal neuralgia from trigeminal neuropathy and persistent idiopathic facial pain and the treatment implications.
- Understand the risk profile and durability of interventions for trigeminal neuralgia.
- References listed in presentation

Case

- 44 year-old, smoker
- Symmetric burning pain in her feet x several months
- Intermittent several times weekly and lasting several hours
 - Severe '14/10' pain incapacitating
 - Feet become hot to touch and turn bright red
 - Relief placing her feet in ice water
- Between episodes her feet feel normal.
- No sensory loss, weakness, or orthostatism

Erythromelalgia

Arch Derm 2006: 142: 283-

Questions

- Which of the following is most correct regarding erythromelalgia?
 - A. Survival estimates show a decreased life expectancy.
 - B. This is an autosomal recessive inherited pain disorder.
 - C. Cooling therapy is an effective, benign treatment.
 - D. Progression of symptom distribution (i.e. to higher in the legs or to arms) is common.
- New evidence for treatments of erythromelalgia?

Erythromelalgia

- Rare \rightarrow Incidence: 1.3 per 100,000^{*}
- Otherwise unexplained triad of <u>symptoms</u>:
 - Redness
 - Increased temperature
 - Pain
- Disorder intermittent (97%)→ signs may not be present at evaluation
- Usually in extremities
 - 88% feet, 25% hands, 14% legs, ears and face described
- Avg age 55 +/- 19 yrs (but range 5-91)⁺
 - F:M 3:1
 - Mayo series ^3 of 168 pts < 11 y.o.
 - Pediatric series similar characteristics #
 - # J AM ACAD DERMATOL 2011 (66): 416-
 - * J Eur Acad Dermatol Venereol. 2009

+ Arch Dermatol. 2000; 136: 330 Clin Exper Rheum 2017; 35: 80-84 ^Mayo Clin Proc. 2004; 79(3):298

- Exacerbate symptoms
 - Heat 50%
 - Exercise 25%
 - 50% limited in gait from (but low need for gait aide)
- Relieve symptoms
 - Cooling extremity (H20, ice) 70%
 - 22% complications from
- Exam abnormal 2/3
 - 50% erythematous
 - 10% acrocyanosis
 - 6% ulcers
 - 5% reticular cutaneous pattern

Primary vs. Secondary EM

- Primary EM* SCN9A gene mutation
 - AD
 - Voltage gated sodium channel
 - DRG (neuropathic pain)
 - Sympathetic ganglion (vasomotor sx)

- Secondary EM
 - Smoking 50%
 - Myeloproliferative disorders 9% (other studies 25%)
 - Polycythemia rubra vera
 - Essential thrombocytopenia
 - Chronic granulocytic leukemia

*Brain 2016: 139; 1052–1065 *Arch Dermatol 2008; 144: 1578-

Erythromelalgia Mechanistically

Vasculopathy

- Temp increase
- Laser flow increase
- Paradoxically decreased transcutaneous oximetry measurement (TcP02)

• Neuropathy

- EMG abnl 20%
- Epidermal nerve fiber density
 - Usually nl (90%)
 - Fxn isn't nl
- Sudomotor fxn impaired
 - TST 88% abnl
 - QSART 69% abnl

Natural History

- Many remain static or improve (58%)
 - Resolution uncommon (10%)
- Avg. 1.4 attacks per week
- Symptoms usually stay where start
 - LE only at onset 14% spread to hands
 - UE only at onset none to legs
 - 1 limb only (rare) at onset rare to other limb
- Review 168 pts Ulcers 13%, infection 16%, no limb loss
- Kaplan Meier survival curves decrease in expected survival
 - Several suicides

Clin Exper Rheum 2017; 35: 80-84

N G

MEET

Neuromodulation

- Case report of successful Rx with DRG stimulation for EM most severely affecting plantar aspect bilateral feet
- Postulate mechanistically advantageous given sodium channel effects at DRG
- Literature review of neuromodulation for EM

Table 1. Literature Review of Neuromodulation for Chronic Pain from Erythromelalgia

Author, year	Study design	Demographics	Pain site	Programming information	Lead information	Results
Graziotti, 1993 ⁴	Case report	69-year-old woman with secondary erythromelalgia related to history of multiple deep venous thromboses	Bilateral feet	Paresthesia-based Amplitude: 8 V Frequency: 80 Hz Pulse width: 400 µs Set to cycling mode (1 minute on, 1 minute off)	Single T9 to T10 4- contact lead	Immediate 75% decrease in pain with sustained relief out to 18 months
Patel, 2015 ⁵	Case report	15-year-old girl with primary erythromelalgia	Bilateral feet	Paresthesia-based Amplitude: 2 V Frequency: 10 Hz Pulse width: 300 µs	Two T12 to L1 eight- contact leads	Satisfactory pain relief at 24 months with combination of SCS and oral mexiletine
Matzke, 2016 ⁶	Case report	80-year-old woman with secondary erythromelalgia related to diabetes mellitus type II	Bilateral distal lower extremities	Paresthesia-based Amplitude: 4.7 V Frequency: 50 Hz Pulse width: 330 μs	Two T11 eight- contact leads	At 4 months, NRS scores were 0 to 1/10 and opioid use was decreased At 18 months post-implant, NRS scores were 2 to 4/10 and pain medication use was less than 2 times per month
Eckman, 2017 ⁷	Case report	20-year-old man with primary erythromelalgia	Bilateral distal upper and lower extremities	Paresthesia-based No other details were provided	Implantation: Four total leads and two generators; two 8- contact cervical leads (trial—top of C3) and two 8-contact thoracic leads (trial— top of T8)	At 6 months, he had 100% pain relief in his upper and lower extremities, and discontinued all pain medications

Pain Practice 2021; 21(6): 698–702

IV Corticosteroids

Erythromelalgia: Identification of a corticosteroid-responsive subset

Gabriel L. Pagani-Estévez, MD,^a Paola Sandroni, MD, PhD,^a Mark D. Davis, MD,^b and James C. Watson, MD^{a,c}

J AM ACAD DERMATOL 2017; 76 (3): 506-

55% respond to corticosteroids – predictors:

- Subacute onset of EM
 - 87% respond to steroids
- Identifiable stressor trigger to EM development
 - 67% of those w/ a complete resolution of sx with steroid administration
- Shorter duration of symptoms til steroid trial

Higher dose steroids more effective (76% of those Rx w/ high dose responded)

- 1000mg IV Methylprednisolone daily or > 40 mg po prednisone daily
- At least 5 consecutive days

Pediatrics. 2013;131:e1091-e1100.

Chemical Lumbar Sympathectomy

- n=13
 - 5 w/ SCN9A gene mutation (i.e. primary EM)
- Mean follow-up 6.2 +/- 3.8 years

• Complete (90-100%) response at 1 week post CLS

- 9/13(69%)
- 3/5(60%) with SCN9A mutation
- Relapse
 - 1/6 secondary EM (i.e. no SCN9A mutation) relapsed
 - 3/3 primary ÉM
 - 2 partial return of symptoms
 - still 60-89% improved from baseline
 - 1 full relapse 2 years later
 - 3 repeated CLS 1/3 successful but duration of benefit only 2 months

Erythromelalgia Take Home Points

- Episodic, bilateral red, painful limbs & cooling efforts characteristic
- Exclude myelodysplastic syndrome (2^{ndary} EM)
- Consider SCN9A mutation
- Consider corticosteroid trial if
 - Subacute onset
 - Identified trigger stressor
 - Shorter duration of symptoms (regardless of onset acuity)
- Chemical Lumbar Sympathectomy?
- Neuromodulation DRG stim preferentially?

Case

- 68 M
- Right cerebral infarct 9 months prior
 - Affecting left face and upper limb
- Presents with left upper limb pain

Question

Which of the following clinical features should be demonstrable in the symptomatic limb affected by central pain?

- A. Reduced pinprick sensation
- B. Weakness
- C. Hyperreflexia
- D. Spasticity

Definitions

- IASP neuropathic pain
 - pain originating from a lesion or disease of the somatosensory nervous system
- Most is peripheral
- Central neuropathic pain
 - Pain directly from dysfunction of CNS somatosensory pathways
 - Where pain generator is this dysfunction
 - Results from any type of lesion of CNS post-stroke, MS, SCI most common

What central pain is not

- Central Sensitization
 - Chronic nociceptive afferent input
 - \rightarrow reversible ('plastic') changes of central nociceptive pathways
 - 'upregulation' or 'wind-up'
 - Result:
 - Allodynia
 - Non-painful peripheral stimuli interpreted as painful
 - Hyperalgesia
 - Painful peripheral stimuli (e.g. pinprick) interpreted as overly painful

• Can occur with, but does not define, central neuropathic pain

What central pain is not

- Spasticity
 - Increased tone in the neurologically affected limb
 - Velocity dependent
 - Complaints tightness, stiffness, or discomfort
 - Poorly controlled spasticity must be excluded
 - Exam can define severity of spasticity

Obligate sensory dysfunction

- To classify as central pain syndrome
 - Pain must occur in body region clinically affected by CNS insult
- Pain need NOT involve entirety of affected region

 Spinothalamic tract dysfunction obligate to development central neuropathic pain

- Examine pinprick, temperature in affected segment
 - If normal, unlikely central neuropathic pain
- Best predictor of developing CNP after ${\rm SCI}^*$
 - Decreased pain adaption at level of injury

J Pain 2020; 21(3–4): 262–280 Mayo Clin Proc 2016; 91(3):372-385 *Pain 2020; 161: 545–556

Pain in Neurologically Impaired Patients

• Pain common

- Usually NOT central neuropathic pain
- Musculoskeletal pain 2° immobility
 - CVA w/ arm paresis \rightarrow 30-40% MS shoulder pain
 - Gait disorders \rightarrow knee, hip, LBP
 - SCI pts wheelchair bound \rightarrow LBP, UE overuse syndromes (75%)
- Central pain cohorts
 - Usually have comorbid musculoskeletal and visceral pain

International Spinal Cord Injury Pain (ISCIP) Classification

Nociceptive Pain

- Musculoskeletal pain
 - Joint pain, axial spine pain, overuse syndromes; muscle spasms

• Visceral pain

• From complications of neurogenic bowel and bladder

• Other nociceptive pain

• e.g. headache or skin ulcer

• Neuropathic Pain

- At-level neuropathic pain
 - Neuropathic pain within the dermatomes at the level of the SCI
 - e.g. from nerve root or dorsal horn injury from the SCI
- Below-level neuropathic pain
 - A central pain type
- Other neuropathic pain
 - Neuropathic pain unrelated to the SCI
 - Compressive mononeuropathies
 - Painful diabetic neuropathy

Other or Unknown Pain Type

- Fibromyalgia
- Interstitial cystitis

Pain in Neurologically Impaired Patients

- Distinguishing musculoskeletal from neuropathic pain may NOT be straightforward
 - Impaired sensory discrimination
 - Pain descriptors vague
 - Localization / pain triggers poorly defined
 - Paraplegia / quadriparesis
 - Office examination / positioning challenging
 - Unique considerations
 - Referred visceral pain

Temporal Onset

• Highly variable – at onset to years later

	At Time of Stroke	Within 1 Month	1-3 Months	4-6 Months	6-12 Months	>1 year
CPSP - all stroke types		62%	1	9%	19%	
CPSP – thalamic strokes	18%	38%	15%	12%	6%	11%
CPSP – lateral medullary infarcts	14%	29%	43%	7%	7%	

MS

- Presenting feature in 5.5-10%
- When pain part of original MS presentation, chronic / central pain more likely future

SCI

- Longest average latency
- <u>At-level pain</u>
 - Mean time 1.2 years post-SCI
 - 50% w/in 3 months of SCI
 - Up to 5 years
- <u>Below–level pain</u>
 - > 50% develop 2+ years post-SCI

Mayo Clin Proc 2016; 91(3):372-385

Central Pain – Take Home Points

- Musculoskeletal pain and spasticity are more common than central neuropathic pain in neurologically impaired patients
 - Central neuropathic pain more severe / limiting than other pain types

- Pain descriptors are limited in sensitivity and specificity for discriminating:
 - Neuropathic from other pain types
 - Peripheral from central neuropathic pain types

Central Pain – Take Home Points

- Central neuropathic pain onset variable may occur months to years after the CNS insult
- Spinothalamic tract dysfunction obligate to development central neuropathic pain
 - If normal, unlikely central neuropathic pain

Case

- 70 M
- HTN, HLD,
- 3 months
 - Right V3 paroxysms of stabbing pain (seconds) 15 x / day
 - Shaving, touching face, chewing precipitates
- Decreased oral intake losing weight
- No illness, exposure, trauma prior to onset
- No other neurologic complaints no ocular symptoms
- No constitutional symptoms, jaw claudication, myalgias
- No prior HA history

Question

- Which Therapy Offers the Most Durable Response?
 - A. Carbamazepine
 - B. Gasserian ganglion balloon compression
 - C. Gamma knife stereotactic radiosurgery
 - D. Microvascular decompression

Trigeminal Neuralgia

- Classical TN (Tic douloureux)
 - At least three attacks of unilateral facial pain
 - Occur 1+ divisions of the trigeminal nerve- no radiation beyond
 - Pain character 3 of:
 - 1. recurring in paroxysmal attacks lasting from a fraction of a second to 2 min
 - 2. severe intensity
 - 3. electric shock-like, shooting, stabbing or sharp in quality
 - 4. precipitated by innocuous stimuli to the affected side of the face
 - No clinically evident neurological deficit
 - Not better accounted for by another ICHD-3 diagnosis

https://ichd-3.org/

Classical TN

Ophthalmic region	Bilateral	3%	
	Right	56%	CAL (E
	Left	41%	
Maxillary region	V1	4%	Maxillary region
	V2	17%	Maxinary region
	V3	19%	
	V1+2	10%	
Mandibular region	V2+3	33%	
	V/4 · 2 · 2	1 20/	Mandih

Ophthalmic region region MAYO ©2014

©2008 MAYO

Maarbjerg S. Headache 2014;54:1574-1582

Regions of face affected by branches of Trigeminal nerve

Classical Trigeminal Neuralgia

Purely Paroxysmal

- No persistent pan between attacks
- Typically responsive pharmacologic and other treatments

With concomitant persistent facial pain in affected area

- 'Atypical TN'
- 'Type 2 TN'
- Function of central sensitization

Less likely:

- Vascular compression
- Precipitated by innocuous stimuli
- Responsive to conservative or surgical intervention

Classical TN Anatomy / Pathogenesis

*Axial T2. CN V emerging from pons. Arrows – root entry zones.

Axial T2

*Meckel's cave (trigeminal fossa) arrows

MEETING

* Leclercq D. Diagnostic and Interventional Imaging (2013) 94, 993—1001
++ Harnsberger HR, et al. . Diagnostic and Surgid # Maarbjerg S. Brain 2015: 138; 311–319
@ Hughes MA. A/R 2016; 206:595–600

Coronal T2

Classical TN – Anatomy / Pathogenesis

Superior Cerebellar Artery

Sagital T2 Arrows – superior cerebellar artery

MEETING

@ Hughes MA. AJR 2016; 206:595-600 # Maarbjerg S. Brain 2015: 138; 311-319

Classical TN

- Key --- NO neurologic deficit
- If trigeminal sensory impairment or trigeminal motor impairment (mastication) = trigeminal neuropathy

TN in MS - 2% develop

Figure 12. Multiple sclerosis lesion responsible for left CN V neuralgia of the essential type in T2 axial (A) and T1 after injection (B). Interestingly, enhancement of the first millimetres of the root of CN V is observed (central myelin zone ahead of REZ).

Rx: High dose IV methylprednisolone 1000mg daily x 5

* Leclercq D. Diagnostic and Interventional Imaging (2013) 94, 993—1001

Hooge JP. Neurology 1995; 45(7): 1294-6

Solaro C. Neurology 2004; 63(5): 919-21.

Painful post-traumatic trigeminal neuropathy

'Anesthesia dolorosa'

- Unilateral facial and/or oral pain
- Signs of trigeminal nerve dysfunction
- Usually pain within 3-6 months of trauma
- Most commonly from rhizotomy or thermocoagulation done to treat trigeminal neuralgia
 - After glycerol rhizotomy 0-1.6%
 - After radiofrequency rhizotomy 0.8 to 2%
 - After percutaneous controlled thermocoagulation 3%
- <u>"More difficult to treat than TN"</u>

Persistent Idiopathic Facial Pain (PIFP)

- 'Atypical Facial Pain'
- Facial / oral pain
- > 2 hours/day x > 3 months
- Pain
 - Poorly defined localization (not nerve territory)
 - Non-specific descriptors (nagging, aching, dull)
 - Not neuralgiform or neuropathic
- Normal neurologic exam
- No dental cause
- Other chronic pain and psychiatric comorbidities common

Traditional interventions for TN do not help PIFP and may cause harm

TN First Line Treatment

	Carbamazepine (FDA approved)	Oxcarbazepine
BID dosing?	Long acting formulations	Yes
Dosing increments	200mg	150-300mg
Median effective dosage	600mg/d	1200mg/d
Max dosing	1200mg/d	2400mg/d
Response Rate	98%	94%
Withdraw Rate	27%	18%
Black Box Warning	Yes – monitor CBC, LFTs	Νο
Risk of hyponatremia	Yes	Yes
May affect oral contraceptive	Yes	Yes

Asian descent – screen for HLA-B*1502 allele – presence = risk SJS or TEN

Stefano GD. Journal of Headache and Pain 2014, 15:34

2nd Line Agents

- Lamotrigine
 - 6 week titration, risk of Steven's Johnson Syndrome
 - Goal dosing 200-400mg/d (split BID)
- Baclofen
 - As monotherapy, more commonly as adjuvant to first line agents
 - 5mg TID, max 20mg TID
- Topiramate
 - 100mg/d
 - Studied in classical TN, TN w/ MS, post-injury pain

- GBP
 - Mean effective dosage 900mg/d
- PGB
 - Mean effective dosage 270mg/d
- No good data comparing 2nd line agents
 - Consider comorbidities and rational polypharmacy

Reddy GD. Neurol Clin 32 (2014) 539–552

Interventional Treatments

Microvascular decompression⁺

- 91% cure (med-free) at 1 year
- 74% at 15 years most durable intervention for TN
- Internal neurolysis when no vascular compression identified intraoperatively@
 - Pain free 85% immediately, 58% at 1 year, 47% at 5 years
 - Pain improved 96% immediately, 77% 1 year, 72% 5 years
 - 96% hypoesthesia
 - 4% anesthesia dolorosa

+ Gamma knife stereotactic radiosurgery *

- 88% initial response (mean by 4 weeks, but may take up to 6 mos to note)
- Less effective the longer the TN diagnosis has been
 - Median pain free interval 68 mos if done w/in 1 mo of diagnosis, 10 mos benefit if done > 3 years after diagnosis
- 12% sensory loss (No anesthesia dolorosa)

+J Neurosurg 107:1144–1153, 2007 *Neurology® 2015;85:2159–2165 @J Neurosurg 122:1048–1057, 2015

PGL -percutaneous Gasserian lesions (includes radiofrequency thermocoagulation, glycerol rhizotomy, balloon compression);

MVD – microvascular decompression

GKS – gamma knife stereotactic radiosurgery

#PainMed2018

Neurology[®] 2008;71:1183–1190

Thank you

watson.james@mayo.edu

MN North Shore