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Motivation-Disease extinction

Control and eradication of infectious diseases are main and important
public health goals.

Extinction is observed in networked populations.
I Disease extinction occurs when infective population goes to zero.
I Local extinction in connected patches but reintroduced
I Global extinction is difficult and a rare event.

Dengue Incidence for
Chiang Mai province (1/72), Thailand.
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**Data provided by Derek Cummings (JHU).
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Outline

Analyzing fluctuations to extinction
I All-to-all networked populations
I Finding out how extinction occurs
I Predicting extinction times

Extending fluctuation analysis to networks
I Homogeneous networks - average degree
I General theory applied to heterogeneous networks
I Optimal control on heterogeneous networks

Conclusion and future work
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Analyzing Fluctuations
to Extinction

All-to-All Connected Networks
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Basic SIS model-All-to-All Coupled Population
Network
No network structure: all-to-all coupling

Two state variables:
Susceptibles, S
Infectives, I Total population size, N

S + I = N
Assume N is large.

Parameters:
birth and death rates, µ
contact rate, β
recovery rate, κ

Reproductive infection rate
R0 = β/(µ+ κ)
Distance to the bifurcation point- R0 − 1

Anderson and May (1991)
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Stochastic modeling
There exists random fluctuations, or noise, in the finite N model∗

Markov process
Internal noise:
Randomness of the
interactions in the system

Extinction - Analogous to
arbitrarily small noise
inducing escape of a
particle from
a potential well.

∗Schwartz et al J R Soc Interface
8: 1699-1707 (2011)
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Characterizing the “almost constant” density
The extinct state (X2 = I = 0) is an absorbing boundary and the system
approaches it as t →∞.

However, if the population size is sufficiently large, the probability density will
be Quasi-stationary- ∂ρ/∂t ≈ 0.
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If ∂ρ/∂t ≈ 0, then the value of ρ(0, t) is exponentially small and we define
extinction as a rare event.
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Master Equation Approach-Modeling the Density

Consider a well-mixed finite population of size N

Discrete state vector X = (S, I,R, ...) .
Probability ρ(X, t) of finding the system in state X at time t :
Random state transition rates of increment r: W (X, r).

The master equation definition

∂ρ(X, t)
∂t

=
∑

r

[W (X− r; r)ρ(X− r, t)︸ ︷︷ ︸
the gain to state X

from state X-r

−W (X; r)ρ(X, t)︸ ︷︷ ︸
the loss of state X

to other states

].

It is the gain-loss equation for the probabilities of the separate states X.

Van Kampen, N.G., Stochastic processes in physics and chemistry, Elsevier (1992).
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Approximating quasi-stationary solutions

To analyze the master equation, make the ansatz:

ρ(X, t) ≈ exp(−NS(q)), for q = X/N.

Large N assumption: Action S satisfies Hamilton-Jacobi equation:

∂S
∂t

+ H
(

q,
∂S
∂q

)
= 0,

with Hamiltonian

H(q;p) =
∑

r

w(q; r)[exp(p · r)− 1]
where w(q;r)= W(q;r)/N

Conjugate momenta
p = ∂S/∂q.

Since we assume the distribution is quasi-stationary,
∂S
∂t

= 0.

Kubo, et al., J. Stat. Phys. 9 (1973); Gang, PRA, 36 (1987); Dykman, et al., J. Chem Phys,
100 (1994); Elgart, et al., PRE, 70 (2004); and many others.
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The Stochastic SIS model - Topology∗

Constrain the population, N: X1 + X2 = N

Hamiltonian equations of motion- scaled infectives x2 and momenta p2:
The Hamiltonian system has three steady states: R0 = β/(µ+ κ) > 1

The disease free equilibrium, (x2,p2) = (0,0).
The endemic state, (x2,p2) = (1− 1

R0
,0).

The stochastic extinction state, (x2,p2) = (0,− ln(R0)).

Find the action along the path

Sopt =
∫ 0

1− 1
R0

− ln(R0(1− x2)) dx2

= ln(R0)− 1 + 1
R0

x2

(
1 − 1

R0
,0

)
p2

(0,− ln(R0))

p2(x2) = ln(R0(1 − x2))

∗Forgoston et al Bull Math Bio 73: 495-514 (2011).
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The Stochastic SIS model - Mean Time to extinction
To approximate the mean time to extinction τext ∝ 1/ρext :

τext = BeNSopt =
R0

(R0 − 1)2

√
2π
N

eN(ln(R0)−1+ 1
R0

)
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Doering, et al., Multiscale Model. Simul. (2005); Dykman et al, PRL 101 (2008);
Schwartz et al, J Stat Mech, P01005 (2009).
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Full SIS treatment model (Unconstrained population)

Remove fixed population constraint - N fluctuates

µN S

µS

βSI/N

I

µI

+ ν bgIcκI

We have two states: susceptible (X1) or infected (X2). Use a Poisson based
treatment:

Treat a percentage, g, of infectives
At a rate of average frequency ν

W
(
(X1,X2); (bgX2c ,−bgX2c)

)
= ν, treatment.
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Finite resources of SIS treatment - Optimal schedule

Decrease in mean time to extinction as the g increases and ν decreases.
Larger fraction treated fewer times per year is most effective.

0 0.05 0.1 0.15 0.2 0.25 0.3
100

200

300

400

500

600

700

800

g

τ ex
t

 

 

(a) gν=0.1
gν=0.2
gν=0.3

0 2 4 6 8 10
100

200

300

400

500

600

700

800

ν
τ ex

t

 

 

(b)

gν=0.1
gν=0.2
gν=0.3

Results: average of 10,000 simulations
Master equation theory (solid)
MC simulation (symbols)

Parameters: gν = constant
β = 105 year−1

N = 8000 people

Billings et al PLOS ONE 8 (8), e70211 (2013)
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Fluctuation Analysis on Networks

Extend fluctuation analysis and
control to stochastic networks

Rewiring for adaptation, IB Schwartz and
LB Shaw Physics 3 (17) (2010)
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SIS on Networks1

Structure of the network consists of numbers of nodes AND links:
X = [NS,NI ,NSS,NSI ,NII ]
N nodes, K links, 2K/N mean degree

Three state transitions (assume no
births/deaths):

S → I along the network (local)
S → I Global transmission
I → S Recovery

Changing a node means links change;
e.g.,
S → I means SS → SI

Link numbers may be large when they
change

1Brandon Lindley, Leah Shaw, Ira B. Schwartz EPL 108 58008(2014)
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Continuation for Networks

Optimal path is known numerically for SIS with all to all coupling (lower
dimensional mean field)

In a globally coupled network, links scale quadratically with nodes
I For an all-to-all connected graph, NAB ∝ NANB

Constructive approach - Perturb from population with global coupling to
population on a network and track the optimal path

I ε is a homotopy parameter
I ε = 0 corresponds to all to all coupling No structure
I ε = 1 corresponds to local network coupling Network structure
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Modeling the Transitions for a Homogeneous Network

ε = 0 corresponds to all to all
coupling
ε = 1 corresponds to local
network coupling

p is infection rate
r is a recovery rate
X = [NS,NI ,NSS,NSI ,NII ]

Transition rates2

2Tim Rogers et al J. Stat. Mech. Theory and Experiment, PO8018 2012
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Optimal paths for a Stochastic Network

Computed paths from theory
Lindley et al, Physica D 255, 22-30 (2013)
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Extinction Times for a Stochastic Network

As a function of population size

log(τ)/N ≈ S + log(B)/N

Pre-factor at ε = 0: B =

√
2π

Reff
0
N

r(Reff
0 −1)2

:

As a function of infection probability

No fitting parameters

Ira Schwartz (US Naval Research Laboratory) Extinction in Networks SIAM Annual Meeting 2016 21 / 58



Extinction in heterogeneous networks-General Theory
Consider SIS transitions on network having degree distribution gk

Assume adjacency matrix follows : Aij ≈ kikj/(N 〈k〉).
Bin infected nodes of degree k , Ik
Transition rates

Infection rate w inf
k (I) = βk(Nk − Ik )

∑
k′ k
′Ik′/(N 〈k〉) with Ik → Ik + 1

Recovery rate w rec
k (I) = αIk with Ik → Ik − 1.

NK ≡ gk N

Master Equation

∂ρ

∂t
(I, t) =

∑

k

w inf
k (I− 1k )ρ(I− 1k , t)− w inf

k (I)ρ(I, t)

+
∑

k

w rec
k (I + 1k )ρ(I + 1k , t)− w rec

k (I)ρ(I, t),

Hamiltonian from WKB ansatz (x = I/N):

H(x,p)=
∑

k

[
βk
(
gk−xk

)(
epk−1

)∑

k ′

k ′xk ′

〈k〉 + αxk
(
e−pk−1

)
]
.
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Extinction paths in hetergeneous networks
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Extinction in a Power Law Network
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Action and extinction times in a bi-modal network
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Conclusions
A general formulation of extinction for a disease in a finite population is
developed.
We can quantify the effect of treatment programs on extinction rates.
For limited resources, larger treatment pulses less often are most
effective.
Used optimal paths to predict extinction times in terms of bifurcation
parameters.
Can choose topology of the network to optimally control extinction times.

Periodic and random vaccination schedules
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Future Directions and Things Not Discussed
How does complex network structure affect route to extinction?

I Topolgy, deterministic time dependent contacts, etc..
I Beyond pairwise approximation
I Non-Markovian assumptions

Extend theory to other networks
I Switching and adaptive networks
I Networks with delays
I Noise...

Dynamics Ising-J. Hindes, in prep Noise-delay interaction in swarms
K. Szwaykowska,Phys. Rev. E 93, 032307 2016.
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EXTRA SLIDES
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Spatial View of Epidemic Outbreaks
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Temporal Increase of Epidemic Outbreaks

Smith KF, 2014 J. R. Soc. Interface 11: 20140950. http://dx.doi.org/10.1098/rsif.2014.0950
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The drift of probability distributions in time

The system always decays to X2 = 0 as t →∞ (absorbing boundary).

The drift to X2 = 0 is slow for quasi-stationary systems
∂ρ

∂t
≈ 0,

and fast for systems that are not quasi-stationary.

R0 = 2, quasi-stationary
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Full SIS treatment model - Optimal path

The Hamiltonian in normalized coordinates (x1 = X1/N, x2 = X2/N) is

H(x,p) = µ(ep1 − 1) + βx1x2(e−p1+p2 − 1) + κx2(ep1−p2 − 1)
+µx1(e−p1 − 1) + µx2(e−p2 − 1) + ν

N (egx2Np1−gx2Np2 − 1).

Form the auxiliary Hamiltonian system and identify the extinction path.
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Full SIS treatment model - Extinction realizations
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Parameters:
β = 105 year−1

R0 = 1.0479
g = 0.1
ν = 8 year−1

N = 12, 000 people

Probability density of extinction prehistory. Spatial frequency for the last five
years of data from 200,000 Monte Carlo extinction realizations.

The optimal path (white curve) connects the endemic state to the extinct state.
Notice that it lies on the peak of the probability density of extinction prehistory.
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The SIR Model
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SIR model (Deterministic)
Captures dynamics of most common childhood diseases that confer
long-lasting immunity: chickenpox, measles, mumps, rubella, etc.

Population of individuals: susceptible (S), infected (I ) or recovered (R).
Total population: N = S + I + R.

Mean field equations:
dS
dt

= µN − β

N
SI − µS

dI
dt

=
β

N
SI − κI − µI

dR
dt

= κI − µR

S I RµN
β/N κ

µµµ

Since R = N − S − I,
consider the (S, I ) system

Basic reproduction number: R0 = β
µ+κ

Steady states:
disease free, (S, I) = (N,0)
endemic, (S, I) = ( N

R0
, µN

β (R0 − 1))
R0 > 1→ endemic stable
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The Stochastic SIR model

Master equation approach: Optimal path lies along PDF local maxima

Probability density of
extinction prehistory
over 40,000 simulations.

Parameters:
β = 1500 year−1

R0 = 14.97
N = 100,000 people

[Schwartz, et al., J R Soc Interface, 2011]
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The Stochastic SIS treatment model
Consider the SIS treatment model (X2 = I ) with transitions:

µN S

µS

βSI/N

I

µI

+ ν bgIcκI

W
(
X2;−1

)
= κX2, recovery

W
(
X2;−1

)
= µX2, death

W
(
X2;1

)
= βX2(N − X2)/N, infection

W
(
X2;−bgX2c

)
= ν, treatment

Infectives receive treatment, which removes them from the infective group.
We remove a fraction of infectives (g) at a mean frequency (ν) per year:
Poisson treatment
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The Stochastic SIS treatment model - Topology
The equations of motion are

ẋ2 = βx2 (1− x2)ep2 − (µ+ κ)x2e−p2−νgx2e−gNx2p2 ,
ṗ2 = −β (1− 2 x2) (ep2 − 1)− (µ+ κ) (e−p2 − 1)+νgp2e−gNx2p2 .

x2

(
1 − 1

R0
− νg

β
, 0

)
p2

(0, p∗)

p2(x2)

The Hamiltonian system has three steady states:

The disease free equilibrium,
(x2,p2) = (0,0).

The endemic state,
(x2,p2) = (1− 1

R0
−νg

β ,0).

The stochastic extinction state,
(x2,p2) = (0,p∗),
νg p∗ = β(ep∗ − 1) + (µ+ κ)(e−p∗ − 1).

Find the action along the path of an extinction event (Sopt ).
For g > 0, Sopt will have to be approximated.
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The Stochastic SIS treatment model -
Mean Time to Extinction

To approximate the mean time to extinction: τext = BeNSopt (years)

Compare the result to Monte Carlo (Gillespie) simulations.
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β = 105 year−1

R0 = 1.0479
N = 8000 people

Notice the decrease in mean time to extinction as g and ν increases.

Ira Schwartz (US Naval Research Laboratory) Extinction in Networks SIAM Annual Meeting 2016 41 / 58



The Stochastic SIR with Vaccinations

MC Simulations Prehistory, 30% vaccinated
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Other types of noise induced behavior-Bifurcations

Escape from a
single well potential
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Saddle node bifurcation at r = 0

Switching in a
double well potential
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Pitchfork bifurcation at r = 0

[Billings, et al., PRL (2010) 140601; Billings,et al., PRE 78 (2008) 051122.]
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Other Optimal Path Experiments
Microscopic and mesoscopic systems:
Josephson junctions, mechanical nanoresonators, nanomagnets.
Fluctuations usually due to thermal or externally applied Gaussian noise.

Trajectories form a
narrow tube centered
at the most probable
switching path.

Result: Efficient control
of switching rates.

Switching trajectories in a parametrically
excitedmicromechanical oscillator *

[Chan, et al. PRL
100 (2008) 130602;
Chan, et al. PRE
78 (2008) 051109]

Autonomous robot escape from gyre flows

Going With the Flow: Enhancing

Stochastic Switching Rates in

Multigyre Systems C Heckman,

MA Hsieh, IB Schwartz J.

Dynamic Systems,

Measurement, and Control 137,

031006-1 2014
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Stochastic SIS treatment model - Quasi-stationarity

When is ρ Quasi-
stationary?
ρ(0) = Ae−NSopt

0 < Ae−NSopt � 1

NSopt � 1

β

g
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Numerical approximation of the optimal path:
Iterative action minimizing method.

µ = 0.2 year−1

κ = 100 year−1

ν = 4 year−1

N = 8000 people[Lindley and Schwartz, Physica D (2013).]

Other methods: Shooting, String method, Minimum action method
[Keller(1976); E, Ren, and Vanden-Eijnden (2002) and (2004).]
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Fluctuations and Lifetimes of Endemic State
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Quasi-stationary solutions in a dynamical systems
framework

A physically meaningful distribution must satisfy correct boundary conditions.

Recall ρ(q, t) ≈ e−NS(q), so

∂ρ(q, t)
∂q

≈ −Ne−NS ∂S
∂q

Since p = ∂S/∂q, then
p = 0 at the endemic state
p 6= 0 at the extinction state.

The stationary states:

endemic state
stochastic extinction state
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Human Behavior Modifies Disease Fade Out
Strong evidence hospital and person-to-person transmission declined over the
course of the outbreak.
Epidemiological reports the community stopped coming to the outpatient
department as they associated the epidemic with the hospital, which eventually
was closed on 30th September.
The population became very suspicious and did not touch the corpses anymore,
not even to bury them.

EPIDEMICS, v. 9, pp. 70-78, 2014, Zaire, 1976 Ebola
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Dynamics of Stochastic Adaptive Networks

In real networks nodes and links
change in time-Dynamic networks
Node dynamics affects network
geometry
Network geometry affects node
dynamics
Feedback loop interaction
Adaptive networks have many
applications

I Human social networks
I Fads, terrorist networks
I Self healing networks
I Swarming of autonomous agents
I Immune system networks
I Biological networks (e.g., food

webs)
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Epidemics on Adaptive Social Networks
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Mean Field Approximation
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Mean Field Approximation
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Network structure analysis-Degree distribution
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Fluctuations and Lifetimes of Endemic State
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Extinction and Control in
Adaptive Networks
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Adaptive network with vaccinations
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Effect of vaccination and rewiring on degree
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Adaptive network with vaccinations
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