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DISEASES IN THE NEWS...

Novel Coronavirus Continues To Spread

by George Ochoa May 2013
A novel coronavirus (nCoV) outbreak that began in Saudi Arabia has infected
41 people and caused 20 deaths since 2012, according to the World Health
Organization (WHQ). The outbreak has primarily affected Saudi Arabia, but
cases have been reported in Jordan and Qatar as well as in France, Germany
and the United Kingdom.

Bird flu: US safe from two new viruses - so far
By Maggie Fox, Senior Writer, NBC News Sun May 12, 2013 9:33 AM EDT

More than 50 travelers just back in the United States from Chinawho had flu-
like symptoms have been tested for the HTNQ bird flu virus, federal health
officials say. So fa

Now a warni
By Claire Duffin, 7:0

Public health offic|
Wiales in the wake]
were diagnosed

The number of people infected with measles in South Wales reached 1,039 -
85 of whom have needed hospital treatment.

By Kai Kupferschmidt

While every country in the Americas, including j
in 2002, Europe has been unable to do so. Cag
reemergence has become a threat to other c% "
222 cases, the highest number since 1996, and most |rnpurtatmns cumefrum Europe.
Luckily, high vaccination rates in the Americas prevent most imported infections from
spreading. Measles' stubborn persistence in Europe would also be a stumbling block in
any plan to eradicate the disease globally.
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Health Dept: Measles
outbreak hits Brooklyn

May 15, 2013

A measles outbreak has hit one Brooklyn community and may
be spreading, health officials say.

There have been 21 cases of measles reported in Borough Park
and one case in Williamsburg this year, according to the city's
Department of Health and Mental Hygiene. Those infected are
between 10 months and 32 years old, DNAinfo.com reports.

The first case was imported from London, according to the
health department. Measles is a highly contagious disease and
can be deadly. Symptoms include rash, fever, cough, runny nose
and sore throat.

The disease can be prevented with a vaccine. The new outbreak
|/ have spread betweel ies who refused vaccinations,
prding to DNAinfo.co
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Motivation-Disease extinction

@ Control and eradication of infectious diseases are main and important
public health goals.
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Motivation-Disease extinction

@ Control and eradication of infectious diseases are main and important
public health goals.

@ Extinction is observed in networked populations.
» Disease extinction occurs when infective population goes to zero.
» Local extinction in connected patches but reintroduced
» Global extinction is difficult and a rare event.

Dengue Incidence for Measles Incidence by
Chiang Mai province (1/72), Thailand. Thailand province (1980-2001).
1.4
1.2 § 5
1 & 8+
= o - o
‘% 0.8 % o o
Lose e -
= g s
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s o4
0 e
1985 1990 1995 E o o
time (yearS) = 2e+05 5e+05 2e+06 59106
**Data provided by Derek Cummings (JHU). Population
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Outline

@ Analyzing fluctuations to extinction

» All-to-all networked populations
» Finding out how extinction occurs
» Predicting extinction times

@ Extending fluctuation analysis to networks

» Homogeneous networks - average degree
» General theory applied to heterogeneous networks
» Optimal control on heterogeneous networks

@ Conclusion and future work
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Analyzing Fluctuations
to Extinction
All-to-All Connected Networks




Basic SIS model-All-to-All Coupled Population

Network
No network structure: all-to-all coupling

Two state variables:

Susceptibles, S BSI/N

Infectives, / Total population size, N S > T
PN Kl

S+I1=N A

Assume N is large.

Parameters:
birth and death rates,
contact rate, 3
recovery rate,

Rq <1 - \ Ry >1 Bo
Reproductive infection rate Ro—1
Ro = ﬁ/(u =+ H) - transcritical

bifurcation

Distance to the bifurcation point- Ry — 1

Anderson and May (1991)
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Stochastic modeling

There exists random fluctuations, or noise, in the finite N model*

120
@ Markov process Ry=14
Internal noise: 100
Randomness of the L 80
interactions in the system g 60 i ” Lkl ] I MR -
. T 40 ‘
@ Extinction - Analogous to
arbitrarily small noise 2
inducing escape of a % 20 40 60 80 100
particle from time
a potential well. 0.5
—_ Disease
;g Free
]
&
*Schwartz et al J R Soc Interface Endemic
8: 1699-1707 (201 1) _0'50 20 40 60 80 100

Infected
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Characterizing the “almost constant” density

The extinct state (X = I = 0) is an absorbing boundary and the system
approaches it as t — oo.

However, if the population size is sufficiently large, the probability density will
be Quasi-stationary- dp/dt ~ 0.

Probability S(Xz)
2 52 02 o 8 o
B8B83 82 3 g

Xo=100 |===Ro=11

e || 150

Infected

miA N

0 50 100
Xp

150 200 0

If 9p/0t ~ 0, then the value of p(0, t) is exponentially small and we define
extinction as a rare event.
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Master Equation Approach-Modeling the Density

Consider a well-mixed finite population of size N

@ Discrete state vector X = (S, R, ...) .
@ Probability p(X, t) of finding the system in state X at time ¢:
@ Random state transition rates of increment r: W(X,r).
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Master Equation Approach-Modeling the Density

Consider a well-mixed finite population of size N
@ Discrete state vector X = (S,/, R, ...) .

@ Probability p(X, t) of finding the system in state X at time :
@ Random state transition rates of increment r: W(X,r).

The master equation definition

8le‘

Z[W —-L r - ra t)_ W(X, r)p(x7 t)]
the gain to state X the loss of state X
from state X-r to other states

It is the gain-loss equation for the probabilities of the separate states X.

Van Kampen, N.G., Stochastic processes in physics and chemistry, Elsevier (1992).
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Approximating quasi-stationary solutions

To analyze the master equation, make the ansatz:

(X, t) =~ exp(—=NS(q)), forq = X/N.
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Approximating quasi-stationary solutions
To analyze the master equation, make the ansatz:

(X, t) =~ exp(—=NS(q)), forq = X/N.

Large N assumption: Action S satisfies Hamilton-Jacobi equation:
oS oS

where w(q;r)= W(q;r)/N
H(g:p) =S w(q;r)[exp(p - r) — 1] Conjugate momenta
Zr: p=05/0q.

with Hamiltonian
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Approximating quasi-stationary solutions
To analyze the master equation, make the ansatz:
p(X, 1) ~ exp(—NS(q)), forq = X/N.
Large N assumption: Action S satisfies Hamilton-Jacobi equation:

oS oS

with Hamiltonian
where w(q;r)= W(q;r)/N
H(g:p) =S w(q;r)[exp(p - r) — 1] Conjugate momenta
Zr: p =09S/0q.

. e . . oS
Since we assume the distribution is quasi-stationary, Tl 0.

Kubo, et al., J. Stat. Phys. 9 (1973); Gang, PRA, 36 (1987); Dykman, et al., J. Chem Phys,
100 (1994); Elgart, et al., PRE, 70 (2004); and many others.
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The Stochastic SIS model - Topology*
Constrain the population, N: X; + Xo = N

Hamiltonian equations of motion- scaled infectives xo and momenta p»:
The Hamiltonian system has three steady states: ‘ Ro = /(1 + k) > 1 ‘

@ The disease free equilibrium, (x2, p2) = (0,0).
@ The endemic state, (X2, p2) = (1 — 7, 0).

@ The stochastic extinction state, (x2, p2) = (0, —In(Ro)).

p (),
Find the action along the path / T3
Sopt = ff’fﬁl —In(Ro(1 — x2)) dxz
0
=In(Ro) — 1+ 7 %) = In(Ro(1 — 2))
(0, —1In(Ro))

*Forgoston et al Bull Math Bio 73: 495-514 (2011).
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The Stochastic SIS model - Mean Time to extinction

To approximate the mean time to extinction 7ex o 1/pex:

R 2T N(n(Ro)—1+7)
= B NSOpt = —O —_— ( 0 R
Tent = 5€ (Ro 12V N ’

6
10 -
0% P —theory
R ! )
oo X,=100 |===Ro=11 O simulation
004 4
Xo=18 10
— 0035 27
o ~“
@ 008F 1 v
= R ,
Z oosl 10 - |
E 002! \ 310
s v =
£ oosf! \
v
001] 0
10 ]
0.005| N o5
N 0°
0 50 100 150 200
X
107 w \ ‘ ‘ ‘
1 1.1 1.2 1.3 14 1.5

16

Ry

Doering, et al., Multiscale Model. Simul. (2005); Dykman et al, PRL 101 (2008);
Schwartz et al, J Stat Mech, P01005 (2009).
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Full SIS treatment model (Unconstrained population)

Remove fixed population constraint - N fluctuates

BSI/N
UN—> S kI+ v|gl| I
’ ’
wS ul

We have two states: susceptible (X;) or infected (Xz). Use a Poisson based
treatment:

@ Treat a percentage, g, of infectives
@ At a rate of average frequency v

W((X1,X2); (lgXe] . — [9X2])) = v, treatment.
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Finite resources of SIS treatment - Optimal schedule

Decrease in mean time to extinction as the g increases and v decreases.
Larger fraction treated fewer times per year is most effective.

T T T T T 800
() ——gv=01 (b)
7007 — gv=0.2|] 700f o

oo
600f o —v=03)l oot o o ]
500 2 i 500 hooooo0o—
** 400l 1+ 400l /Mﬁ 7
Q L H
300} 0 g 4 300 M
200} L 200} ——gv=0.2]

800

ext
ext

—gv=0.3
00005 01 o015 o0z o0z o % 2 4 6 8 10
9 v
Results: average of 10,000 simulations Parameters: gv = constant
Master equation theory (solid) B8 =105 year—!
MC simulation (symbols) N = 8000 people

Billings et al PLOS ONE 8 (8), 70211 (2013)
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Fluctuation Analysis on Networks

Homogeneous Mixing Social Structure

Db d
iy

(a)

@ Extend fluctuation analysis and
control to stochastic networks

Rewiring for adaptation, IB Schwartz and
LB Shaw Physics 3 (17) (2010)

(e)

Ira Schwartz (US Naval Research Laboratory) Extinction in Networks




SIS on Networks'

Structure of the network consists of numbers of nodes AND links:

X = [Ns, N, Nss, Ns;, Nyj]
N nodes, K links, 2K /N mean degree
S/ \I

Three state transitions (assume no ~T
births/deaths): S\I A
@ S — | along the network (local) local /N

S =1 S I

@ S — | Global transmission
@ /| — S Recovery

Changing a node means links change;

e.g.,
S — Imeans SS — S/

"Brandon Lindley, Leah Shaw, Ira B. Schwartz EPL 108 58008(2014)



SIS on Networks'

Structure of the network consists of numbers of nodes AND links:

X = [Ns, N, Nss, Ns;, Nyj]
N nodes, K links, 2K /N mean degree
S/ \I

Three state transitions (assume no ~T
births/deaths): S\I A
@ S — | along the network (local) local /N

@ S — [ Global transmission

® /= S Recovery Changing a node means links change;

e.g.,

S — I'means SS — S/

Link numbers may be large when they
change

"Brandon Lindley, Leah Shaw, Ira B. Schwartz EPL 108 58008(2014)



Continuation for Networks

@ Optimal path is known numerically for SIS with all to all coupling (lower
dimensional mean field)

@ In a globally coupled network, links scale quadratically with nodes
» For an all-to-all connected graph, Nag < NaNg

@ Constructive approach - Perturb from population with global coupling to
population on a network and track the optimal path
» ¢is a homotopy parameter
» ¢ = 0 corresponds to all to all coupling No structure
» ¢ =1 corresponds to local network coupling Network structure

Ira Schwartz (US Naval Research Laboratory) Extinction in Networks SIAM Annual Meeting 2016 18/58



Modeling the Transitions for a Homogeneous Network

@ ¢ = 0 corresponds to all to all @ pis infection rate
coupling @ ris a recovery rate
@ ¢ =1 corresponds to local ® X = [Ns, N;, Nss, Ns;, Nyj]

network coupling

2Tim Rogers et al J. Stat. Mech. Theory and Experiment, PO8018 2012



Modeling the Transitions for a Homogeneous Network

@ ¢ = 0 corresponds to all to all @ pis infection rate
coupling @ ris a recovery rate
@ ¢ =1 corresponds to local ® X = [Ns, N;, Nss, Ns;, Nyj]

network coupling

Transition rates?

W(X.,v1) =€epNgs S — 1 Local
2K NgN 4

W(X.vo) = (1-p—3— S =1  Gloval

W(X, v3) =rNp, I — S  Recovery

2Tim Rogers et al J. Stat. Mech. Theory and Experiment, PO8018 2012



Optimal paths for a Stochastic Network

Computed paths from theory
Lindley et al, Physica D 255, 22-30 (2013)

0.01
@
0.008 P
0.006
o004
0.002f / —e=0
; --g=.
P et
% 2 | 4 6
I x107™

Infective fraction vs Il links
p=1.03x10"%, r = 0.002,N = 10*,K = 10°

@ ¢ =0 - all to all coupling
@ ¢ =1 -local network coupling
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Optimal paths for a Stochastic Network

Computed paths from theory Compared to Monte Carlo PDF (¢ = 1)
Lindley et al, Physica D 255, 22-30 (2013) Ty

0.01

@
0.008 ’

IIN

0.006

/N

" 0.004

0.002

5000
L x107™

Infective fraction vs Il links
p=1.03x10"%, r = 0.002,N = 104K = 10°

4000

13000

I/N

2000
@ ¢ =0 - all to all coupling

1000

@ ¢ =1 -local network coupling

0

0.005 0.01 0015 0.02 0.025 0.03
Si

Sl Links
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Extinction Times for a Stochastic Network

As a function of population size As a function of infection probability

-3

x 10 x10™°
(@)
10
8
£
=
S 6
o
4
2
0 5000 10000 15000 1.015 1.02 1.025 1.03 1.035 1.04
Population Infection probability 454
log(7)/N ~ S + log(B)/N -
9()/ + g(\/)/—ﬁe” No fitting parameters
_0-B— Ver R .
Pre-factorate = 0: B= R
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Extinction in heterogeneous networks-General Theory
Consider SIS transitions on network having degree distribution g
@ Assume adjacency matrix follows : Aj ~ kik;/(N (k)).
@ Bin infected nodes of degree k, Ik
@ Transition rates
Infection rate w" (1) = Bk(Nk — Ie) -4 K'lr /(N (K)) with fx — lc + 1

Recovery rate w;*°(l) = al, with I — I, — 1.
NK = gkN

Ira Schwartz (US Naval Research Laboratory) Extinction in Networks SIAM Annual Meeting 2016 22/58



Extinction in heterogeneous networks-General Theory
Consider SIS transitions on network having degree distribution g

@ Assume adjacency matrix follows : Aj ~ kik;/(N (k)).
@ Bin infected nodes of degree k, Ik
@ Transition rates
Infection rate w" (1) = Bk(Nk — Ie) -4 K'lr /(N (K)) with fx — lc + 1

Recovery rate w;*°(l) = al, with I — I, — 1.
NK = gkN

Master Equation
Z Wi (1= 1) p(1 = 1. 1) = W (1)p(1, 1)

+Z ’ecl+1k (1 1k, 1) — wi()p(l, 1),
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Extinction in heterogeneous networks-General Theory
Consider SIS transitions on network having degree distribution g

@ Assume adjacency matrix follows : Aj ~ kik;/(N (k)).
@ Bin infected nodes of degree k, Ik
@ Transition rates
Infection rate w" (1) = Bk(Nk — Ie) -4 K'lr /(N (K)) with fx — lc + 1

Recovery rate w;*°(l) = al, with I — I, — 1.
NK = gkN

Master Equation
Z Wi (1= 1)p(1 = 15, 1) — w (Dp(1, 1)
+Z FO -+ 10)p(1+ 1k, 1) — wi(1)p(l, 1),

Hamiltonian from WKB ansatz (x = I/N):

Hix. )= 3|k (g )(0% ~ 3+ e 1)
k o
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Extinction paths in hetergeneous networks

Optimal Path

Endemic State * " BlldmOdaI K Poisson
Extinction o (Annealed) N=300; k £ [5,50] N=350; <k>=16

1800

3000
0.1

1200
2000

1000 600

0.5

Heat maps from
~1000 Gillespie

simulations 12000
1800
1400
8000
1000
600 4000
200
04 06 0.4 0.6
Fraction of infected: IH/NH k =10
lowest and highest — Power-Law
degrees (Quenched) N=600 (truncated)  399< k,,<300
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Extinction in a Power Law Network

Power-Law

o o0 - -
é,\ Epidemic ——
N (Ry = 5.1)

Large R, => multi-step path

0.2
pT K i
0.4
é\o
0.2 0.4 0.6 0.8 (2
Q>
Yaas<k<z00 <& j 02 04 0.6 03 f
y = fraction of nodes yk
infected with
degree k k =12, k=15, ... 236 < k < 300
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Action and extinction times in a bi-modal network

Bimodal distribution: %90
with k=5 and 10% with k=50

Treatment for nodes with degree

k: (recovery) + w, v; Zw=1

Quenched Network: N=200

R,=6
0.28 .
10
® minimize endemic state R
m minimize extinction time s, B
1077 % H
-, 5 s
e YR25 . ;
<T> 10° k. et ;
Ry K
. -
10° Te.. ¥73.0
ISR
0-10 0 10 —53 0.2 0.6 0.8 1.0
0.2 0.4 0.6 0.8 1.0
W, Exponential reduction W,
in extinction times

(fraction of
high-degree)

Naval Research Laboratory)

Ira Schwartz (

Extinction in Networks
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Conclusions
@ A general formulation of extinction for a disease in a finite population is
developed.
@ We can quantify the effect of treatment programs on extinction rates.

@ For limited resources, larger treatment pulses less often are most
effective.

@ Used optimal paths to predict extinction times in terms of bifurcation
parameters.

@ Can choose topology of the network to optimally control extinction times.

Periodic and random vaccination schedules

700f 7 @
oo
600
o o
‘ Lo
500 C e
= o ©
|\400 B . O °
N o
300 L . ° 5 R
o o
= . o
200 < . o, K ° o
100 - 9 o N
oo 4o R
o 0.6 b6 58
0 0.05 0.1 0.15 0.2 0.25
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Future Directions and Things Not Discussed

@ How does complex network structure affect route to extinction?
» Topolgy, deterministic time dependent contacts, etc..
» Beyond pairwise approximation
» Non-Markovian assumptions

@ Extend theory to other networks

» Switching and adaptive networks
» Networks with delays
> Noise...

Dynamics Ising-J. Hindes, in prep
Bimodal Network "Switching"
N=300; k & [5,50]

2000
Low
Degree
1000
st 0 1

High Degree
M, /N,

Noise-delay interaction in swarms
K. Szwaykowska,Phys. Rev. E 93, 032307 2016.

M, /N,
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Spatial View of Epidemic Outbreaks
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Temporal Increase of Epidemic Outbreaks

g

3000 -

2000 -

1000 -

no. outbreaks

0 -
' ' ' '
1980 1990 2000 2010

3000 —

2000 —

1000 —

no. outbreaks

| 1 | i
1980 1990 2000 2010
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Smith KF, 2014 J. R. Soc. Interface 11: 20140950. http://dx.doi.org/10.1098/rsif.2014.0950
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The drift of probability distributions in time

The system always decays to Xo = 0 as t — oo (absorbing boundary).

The drift to Xo = 0 is slow for quasi-stationary systems 9 o 0,

ot
and fast for systems that are not quasi-stationary.

Ry = 2, quasi-stationary Ry = 1.1, not quasi-stationary

0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01

0.005

Solution for p(Xa, t) from the master equation.
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Full SIS treatment model - Optimal path

The Hamiltonian in normalized coordinates (x; = Xi/N, xo = Xo/N) is

H(x,p) = (€ — 1) + Bxixo(e PP — 1) 4 kxo(€P P2 — 1)
+MX1(e_p1 — 1) + uxz(e—Pz _ 1) + %(egszm —gxoNpa _ 1)

Form the auxiliary Hamiltonian system and identify the extinction path.

—_=0 —_g=0
—g =015 —yg=015
0.05 : : —_—g=03 0 —_—g=03
7o K
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Full SIS treatment model - Extinction realizations

Parameters:

B =105 year—!

Ry = 1.0479
g=20.1

v =8year!

N = 12,000 people

Infected

o E
11,100 11,400 11,700 12,000
Susceptible

Probability density of extinction prehistory. Spatial frequency for the last five
years of data from 200,000 Monte Carlo extinction realizations.

The optimal path (white curve) connects the endemic state to the extinct state.
Notice that it lies on the peak of the probability density of extinction prehistory.
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The SIR Model
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SIR model (Deterministic)

Captures dynamics of most common childhood diseases that confer
long-lasting immunity: chickenpox, measles, mumps, rubella, etc.

Population of individuals: susceptible (S), infected (/) or recovered (R).
Total population: N= S+ I+ R.

Mean field equations:

as o Bg o N S |PEIT R
a — TN ¥ y y
dl 3 I 1 I
— = Z8l—kl—ul

dth N> TR Since R=N -S|,

an _ consider the (S, /) system
dt wl—uh .

Basic reproduction number: Ry = #%

P 3
Steady states: Infected 2
o disease free, (S,/) = (N, 0)
@ endemic, (S, /) = (&, “N(R, — 1))

Ry’ B : : ‘ ‘
Ry, > 1 — endemic stable 6000 O sceprivie 700

1
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The Stochastic SIR model

Master equation approach: Optimal path lies along PDF local maxima
Path to Dieout, g=0

700

600 Probability density of
extinction prehistory
500 over 40,000 simulations.
8 400
8 Parameters:
£ 300 £ = 1500 year™!
Ry =14.97

200

N =100, 000 people

[Schwartz, et al., J R Soc Interface, 2011]

. i
5000 5500 6000 6500 7000 7500 8000 8500 0
Susceptible
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The Stochastic SIS treatment model

Consider the SIS treatment model (X, = /) with transitions:

BSI/N
N —> S wl+v|gl]
wS
W(XQ; 71) = HXQ,

w XZ; _1) = ,LLXQ,

w XQ; 1) = ﬁ)(g(N—)(g)/N7
= lgXe]) = v,

W(Xz

Infectives receive treatment, which removes them from the infective group.

I

’

ul

recovery
death
infection
treatment

We remove a fraction of infectives (g) at a mean frequency (v) per year:

Poisson treatment
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The Stochastic SIS treatment model - Topology
The equations of motion are

Xo = X2 (1 — x2) €P2 — (11 + k)Xo P2~ gxo = INeP2
pe=—B(1-2x)(e” —1)— (u+r)(e” —1)+vgpe 9Ver.

The Hamiltonian system has three steady states:

@ The disease free equilibrium, P2y (1 R F’OL

>

(X2, p2) = (0,0). 2
@ The endemic state,
(xe,p2) = (1 = 77, 0).
@ The stochastic extinction state, (0,
(X2, p2) = (0, p"), ”
vgp* = pB(e” — 1)+ (u+r)(e? —1).

Pz(mz)

Find the action along the path of an extinction event (Sop).
For g > 0, Spp: Will have to be approximated.
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The Stochastic SIS treatment model -
Mean Time to Extinction

To approximate the mean time to extinction: 7oy = BeNS»t (years)

Compare the result to Monte Carlo (Gillespie) simulations.

800
‘ Results:

Theory (solid)
MC simulation (symbols)
- avg 2000 simulations

700} |
6001 |
500}

S 4a00f
Parameters:

B =105 year—!
Ry = 1.0479

N = 8000 people

3001

200

100

(o)

o

Notice the decrease in mean time to extinction as g and v increases.
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The Stochastic SIR with Vaccinations

In(Time to Extinction)

MC Simulations Prehistory, 30% vaccinated

Infected

-2 0 —
0 5 10 15 20 25 30 5000 6000 7000 8000
Vaccination Rate (p) Susceptible

Laboratory) Extinction in Networks SIAM Annual Meeting 2016

700

600

500

400

300

200

100

42/58



Other types of noise induced behavior-Bifurcations

Escape from a Switching in a
single well potential double well potential
01 — =02 1
—r=0.15
0.05 :;gés 0.5
-0.05f -0.5
0Ly -05 0 05 1 -
. 0 .
U(q) = -°/3+rq U(q) = q*/4 - rq?/2

Saddle node bifurcationat r =0 Pitchfork bifurcation at r = 0

[Billings, et al., PRL (2010) 140601; Billings,et al., PRE 78 (2008) 051122.]
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Other Optimal Path Experiments
@ Microscopic and mesoscopic systems:
Josephson junctions, mechanical nanoresonators, nanomagnets.
Fluctuations usually due to thermal or externally applied Gaussian noise.

Trajectories form a
narrow tube centered
at the most probable
switching path.

excited micromechanical oscillator *

100 (2008) 130602;
Chan, et al. PRE
78 (2008) 051109]

Switching trajectories in a parametrically ‘ [Chan, etal. PRL

Result: Efficient control
of switching rates.

0
X (mrad)

@ Autonomous robot escape from gyre flows

f, \

‘ o Going With the Flow: Enhancing
k| I| Stochastic Switching Rates in

Multigyre Systems C Heckman,
o1 MA Hsieh, IB Schwartz J.
Dynamic Systems,

~ 7

bor  Measurement, and Control 137,

06 04 02 o 031006-1 2014
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Stochastic SIS treatment model - Quasi-stationarity

When is p Quasi-
stationary?

p(0) = Ae NS
0 < Ag= NSt 1

t

NSopt >> 1
Numerical approximation of the optimal path: u=0.2year"!
@ lterative action minimizing method. x =100 year~!
v =4year!
[Lindley and Schwartz, Physica D (2013).] N = 8000 people

@ Other methods: Shooting, String method, Minimum action method
[Keller(1976); E, Ren, and Vanden-Eijnden (2002) and (2004).]
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Fluctuations and Lifetimes of Endemic State

» Lifetime is defined as the time to extinction
of | nodes
« Fluctuations increase near the Saddle-Node
point p, (Bistable state)
— Scaling of fluctuations explained by noise-
induced dynamics near a saddle-node point
= Mean lifetime T of the endemic state
becomes shorter near the bifurcation point
= Lifetime scaling is consistent with a saddle-
node bifurcation

—~ oz Py SN point

Ira Schwartz (US Naval Research Laboratory) Extinction in Networks

(b)

e Saddle-Node Fluctuations
—_ -15 °
S L
= 25 ® .,
2 ®e
= -3 °
= L
-35 °s
-4
-0 -9 -8 -7 -6
In(p-p,)
log7 ~(p—py }*
12 0.7
//

~ il /
j=d .
S e

10 /'/

“
0 a4 €
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Quasi-stationary solutions in a dynamical systems

framework

A physically meaningful distribution must satisfy correct boundary conditions.

Recall p(q, t) ~ e N5@), so

op(@,t) N nsOS
oq Ne oq

Since p = 95/9q, then
p = 0 at the endemic state
p # 0 at the extinction state.

The stationary states:

Probability (p)

@ endemic state

@ stochastic extinction state

0.05
s _,
0.04 “ 0q
0.03
0.02
0.01F NS
0 50 100 150
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Human Behavior Modifies Disease Fade Out

@ Strong evidence hospital and person-to-person transmission declined over the
course of the outbreak.

@ Epidemiological reports the community stopped coming to the outpatient
department as they associated the epidemic with the hospital, which eventually
was closed on 30th September.

@ The population became very suspicious and did not touch the corpses anymore,
not even to bury them.

A. Camacho et al. / Epidemics xxx (2014 ) xxx—xxx

route of transmission .pesnn-to-persan . swfngs.holh .olher. unknown

daily incidence

wl s

T T . T T
Sep 01 Sep 15 Qct 01 Qct 15
disease onset

EPIDEMICS, v. 9, pp. 70-78, 2014, Zaire, 1976 Ebola




Dynamics of Stochastic Adaptive Networks

state

S i

v "ok | 0w de

@ In real networks nodes and links
change in time-Dynamic networks

@ Node dynamics affects network e il
geometry _
Network geometry affects node L Yy 4.9/
dynamics topology

° FeedbaCk Ioop interaCtion Rules for Adaptive Network Dynamics

@ Adaptive networks have many Spieric Oy )
applications 0 gy . ey

» Human social networks "' ‘ ;
» Fads, terrorist networks . piooed R sucapste
» Self healing networks Network Dynamics - Rewring:
» Swarming of autonomous agents o
» Immune system networks m} R
. . Infox —- infocied .
» Biological networks (e.g., food B § &
webs) a1
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Epidemics on Adaptive Social Networks

§: susceptible
Epidemic dynamics: I infected

. . R: recovered
Avoidance Behavior _
Nyg: AB links
P r q p: infection rate
S 1 R S r: recovery rate
q: resusceptibility rate
w. rewiring rate

Network dynamics—rewiring:

rewire
{ rate w i
/' e
[ ] e — —©
SorR SorR SorR SOFR

Run Monte Carlo simulation for N=104 nodes, K=10° links

Shaw and Schwartz PRE 77: 066101, 2008)
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Mean Field Approximation

V4 r q
S —I—R—S§
* Node dynamics—depends on node pairs (links)

; K
Pg=qPr—pyPs. Npag: AB links
. K p: infection rate
Py=py5Psi—rPy. r. recovery rate
q: resusceptibility rate
PR= rP;— qPy. w. rewiring rate
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Mean Field Approximation

r
A ﬁ’l—’Ri’S

* Node dynamics—depends on node pairs (links)

: K

Ps=qPr—pyPs.
S K
Pr=pyPsi—rPy,

PR=’"PI_‘?PR-

Nag: AB links

p: infection rate
r. recovery rate
q: resusceptibility rate
w. rewiring rate

+ Link dynamics—depends on triples

Pg=2 K
=4iLpPp—
SI IN

S

SI

+4qPr—rPgs—

'H‘Pg]

A

Pg+——

KP§,)
N Pg
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Network structure analysis-Degree distribution

g=0.0016, r=0.002 a)
0.1
Time series for degree of a single node: o8 Static Network, w=0
[ — -
ik / Z 006
£ :“ 8 0.04
I R
1 1 o
g ard I,' ! ; ; }n 0.02
© ! 1 11 i !,’ ! o
! | i § Ay i [¢} 20 40 60 80
{ 1 HE i 1 it H
al, i i i i i l'l (b)
(il 1 f"f I 0.2[Adaptive Network, w=0.04
RNV AT
L i 2' - _ 015 Infectives
i w1’ %
time (MCS) £ o1
=
Node degree cycles in time 0.05 Recovered s
. , - USC.
I loses links N ambitr —
] 20 40 60 80
degree

R and S gain links
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Fluctuations and Lifetimes of Endemic State

» Lifetime is defined as the time to extinction
of | nodes
« Fluctuations increase near the Saddle-Node
point p, (Bistable state)
— Scaling of fluctuations explained by noise-
induced dynamics near a saddle-node point
= Mean lifetime T of the endemic state
becomes shorter near the bifurcation point
= Lifetime scaling is consistent with a saddle-
node bifurcation

—~ oz Py SN point
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(b)

e Saddle-Node Fluctuations
—_ -15 °
S L
= 25 ® .,
2 ®e
= -3 °
= L
-35 °s
-4
-0 -9 -8 -7 -6
In(p-p,)
log7 ~(p—py }*
12 0.7
//

~ il /
j=d .
S e

10 /'/

“
0 a4 €
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Extinction and Control in
Adaptive Networks




Adaptive network with vaccinations

Epidemic dynamics: > suscentivle
P V: vaccinated
S 4,.7 ] p: infection rate
r: recovery rate
T](t) qu n(f): vaccination rate
q: resusceptibility rate
w: rewiring rate

4
Network dyna MICS—Tewilrl ng : Vaccination rate is Poisson

where events happen with

rewire average frequency v and a
l rate w { fraction 4 of susceptibles are
o vaccinated in each event.
/ e e« ¢
SorV SorV SorV SorV

Run Monte Carlo simulation for N=10* nodes, K=10° links
L. B. Shaw and I. B. Schwartz, Phys. Rev. E (2010).
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Effect of vaccination and rewiring on degree

* Vaccination occurs on susceptible nodes

* Inthe adaptive network, susceptible nodes have higher degree due to
rewiring

» Vaccination of high degree nodes provides better protection (e.g., Pastor-
Satorras and Vespignani PRE 65: 036104, 2002)

+ In the static network, high degree nodes tend to be infected and are not

vaccinated
1
S S —
© J—
@ 05F x
= V
)
_8 o vaccine events x
c 0 5
@ .
L i
o
D
T o 4
o j _
> ‘ A p=0.003, =0.002,
© T 5 10 15 2 ¢=0.0002, A=0.1,
time (units of 10% MCS) v=0.0005
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Adaptive network with vaccinations

+ Poisson-distributed
pulse vaccine control

+ Compute lifetime of
the infected state

* Average over 100
runs

* Rewiring in
combination with
vaccination
significantly shortens
the disease lifetime

x 10
—*—w=0
——w=0.04
—~2
)
O
=
()
E
il 1
=
Fewer resources
required
Lower vaccination rate
D 1 Il Il
4 -3 -3 -4 o
10 10 10 10 10

vaccine frequency v

p=0.003, r=0.002, g=0.0002, A=0.1
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