SIAM CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING FEBRUARY 26, 2019

BILEVEL MIXED-BINARY PROGRAMMING FOR IDENTIFYING CRITICAL CONTINGENCY EVENTS IN AC POWER SYSTEMS

KIBAEK KIM, BRIAN DANDURAND, SVEN LEYFFER Mathematics and Computer Science Division kimk@anl.gov

Argonne National Laboratory is a U.S. Department of Energy aboratory managed by UChicago Argonne, LLC.

TOWARD THE RESILIENT POWER SYSTEM

Why this work is needed?

Contingencies in power systems:

- Combinations of weather and manmade threats
- Rare, unpredictable no probability distribution
- Astronomical scenarios: Nearly one billion scenarios for N-3 contingency events of 1,000 electric grid assets

Importance of resilient power system planning and operations:

- Valuable information to government agencies to make targeted investment decisions for resilient infrastructures
- Developing suitable mitigation and restoration strategies
- But, no techniques and tools for identifying and prioritizing critical contingency events

Billion USD damage events in 2016

BILEVEL OPTIMIZATION APPROACH

Representing an Attacker-Defender Framework

- We developed bilevel optimization models to identify and prioritize a set of critical contingency events.
- Binary variable x_i represents the contingency at component i.
- Continuous variables y represent power system operation.

Assumptions:

- An attacker's attack consists of the cutting/impairment of transmission lines/transformers within the restriction of an attack budget.
- The defender takes corrective action in response to an attack, adjusting voltage and power injection states to recover system stability.

BILEVEL OPTIMIZATION APPROACH

Existing Approaches Similar to Our Model

- Existing work is limited and need strong assumptions.
- Pinar et al. "Optimization Strategies for the Vulnerability Analysis of the Electric Power Grid" SIAM Journal on Optimization, 2010
 - Our model *generalizes* the model used in Pinar et al, where the power system is formulated as a lossless power system, as compared with ACOPF.
- Bienstock and Verma. "The *n-k* Problem in Power Grids: New Models, Formulations, and Numerical Experiments" SIAM Journal on Optimization, 2010
 - Different ways of modeling attacker problem
 - Their model is based on DC power system.

EXISTING SOLUTION APPROACH

KKT Reformulations to a Single-Level Problem

The lower level problem can be replaced with a system of equations, including:
 Primal constraints

KKT Conditions

– Dual constraints

Complementarity slackness equations

The KKT reformulation leads to a single-level problem.

Challenges:

- Nonconvex problem, even if the lower level were convex.
- Complementarity constraints
- Constraint qualification is violated at every feasible solution.

BILEVEL MODEL FORMULATION

 $\max_{x} \phi(x)$ Attacker maximizes the minimum infeasibility of the system.

s.t. $\sum_{l \in L} x_l \leq K$, Attacker's budget $x_l \in \{0, 1\}, \ l \in L$

Difficult (if possible) to obtain subgradients

Nonconvex Lower-Level Problem: System operator minimizes the system infeasibility.

$$\begin{split} \phi(x) &:= \min_{\substack{e_i^R, e_i^I, w, p_i^G, q_i^G, u_i}} & f(p^G) + \rho \sum_{i \in N} (u_i^p + u_i^q) \\ \text{s.t.} & w_l^R = e_i^R e_j^R + e_i^I e_j^I, \quad w_i^I = e_j^R e_j^I - e_i^R e_j^I \quad \forall (i, j) = l \in L, \\ & -u_i^p \leq p_i^N(w, p^G, x) \leq u_i^p \quad \forall i \in N, \\ & -u_i^q \leq q_i^N(w, q^G, x) \leq u_i^q \quad \forall i \in N \\ & (V_i^{min})^2 \leq w_{ii} \leq (V_i^{max})^2 \quad \forall i \in N \\ & P_i^{min} \leq p_i^G \leq P_i^{max}, \quad Q_i^{min} \leq q_i^G \leq Q_i^{max} \quad \forall i \in N \end{split}$$

S

LAGRANGIAN DUAL APPROACH

Lagrangian Relaxation of the Nonconvex Lower-Level Problem

$$\begin{split} \phi_D(x,\alpha,\beta,\gamma) &:= \min_{\substack{e_i^R,e_i^L,w,p_i^G,q_i^G,u_i}} f(p^G) \\ &+ \sum_{i\in N} \left[\left(\alpha_i^+ - \alpha_i^-\right) p_i^N(w,p^G,x) \right] + \left(\rho - \alpha_i^+ - \alpha_i^-\right) u_i^p \right] \\ &+ \sum_{i\in N} \left[\left(\beta_i^+ - \beta_i^-\right) q_i^N(w,q^G,x) \right] + \left(\rho - \beta_i^+ - \beta_i^-\right) u_i^q \right] \\ &+ \sum_{i\in N} \left[\gamma_i^+ \left(w_{ii} - \left(V_i^{max}\right)^2\right) - \gamma_i^+ \left(w_{ii} - \left(V_i^{min}\right)^2\right) \right] \\ \text{s.t. Nonconvex constraints} \end{split}$$

$$\begin{split} \phi_D(x,\alpha,\beta,\gamma) &:= \min_{\substack{e_i^R,e_i^L,w,p_i^G,q_i^G \\ e_i^R,e_i^L,w,p_i^G,q_i^G }} f(p^G) \\ &+ \sum_{i\in N} \left[\alpha_i p_i^N(w,p^G,x) + \beta_i q_i^N(w,q^G,x) \right] \\ &+ \sum_{i\in N} \left[\gamma_i^+ \left(w_{ii} - \left(V_i^{max}\right)^2\right) - \gamma_i^+ \left(w_{ii} - \left(V_i^{min}\right)^2\right) \right] \\ \text{s.t. Nonconvex constraints} \end{split}$$

LAGRANGIAN DUAL APPROACH

Lagrangian Relaxation of the Nonconvex Lower-Level Problem

$$\begin{split} \phi_D(x,\alpha,\beta,\gamma) &:= \min_{e_i^R, e_i^I, w, p_i^G, q_i^G} \quad f(p^G) \\ &+ \sum_{i \in N} \left[\alpha_i p_i^N(w, p^G, x) + \beta_i q_i^N(w, q^G, x) \right] \\ &+ \sum_{i \in N} \left[\gamma_i^+ \left(w_{ii} - (V_i^{max})^2 \right) - \gamma_i^+ \left(w_{ii} - (V_i^{min})^2 \right) \right] \end{split}$$

s.t. Nonconvex constraints

$$\begin{aligned} \alpha_i p_i^N(w, p^G, x) &:= \alpha_i \left[P_i^D - p_i^G + p_i^{sh}(w_{ii}) \right] + \sum_{l \in L_i^f} \alpha_i (1 - x_l) p_l^f(w) + \sum_{l \in L_i^t} \alpha_i (1 - x_l) p_l^t(w) \\ \beta_i q_i^N(w, p^G, x) &:= \beta_i \left[Q_i^D - q_i^G + q_i^{sh}(w_{ii}) \right] + \sum_{l \in L_i^f} \beta_i (1 - x_l) q_l^f(w) + \sum_{l \in L_i^t} \beta_i (1 - x_l) q_l^t(w) \end{aligned}$$

The bilinear coefficients are the upper-level problem variables and can be linearized by McCormick relaxation.

SINGLE-LEVEL FORMULATION

Single-Level Mixed-Binary Convex Programming Relaxation

$$\begin{split} \max_{x,\alpha,\beta,\lambda,\mu,\gamma} & \hat{\phi}_D(\alpha,\beta,\lambda,\mu,\gamma) \\ \text{s.t.} & \sum_{l \in L} x_l \leq K \\ \text{works as a good approximation of the original bilevel problem, but works as a good approximation of the value function.} \\ & x_l \in \{0,1\} \quad \forall l \in L \\ & (x,\alpha,\beta,\lambda,\mu,\gamma) \in \Pi \text{ (Polyhedron)} \\ & \hat{\phi}_D(\alpha,\beta,\lambda,\mu,\gamma) \in \Pi \text{ (Polyhedron)} \\ & \hat{\phi}_D(\alpha,\beta,\lambda,\mu,\gamma) \coloneqq \prod_{e_l^R,e_l^I,w,p_l^G,q_l^G} & f(p^G) \\ \hline \text{Piecewise linear concave function,} \\ & but... \\ \hline \text{Challenge:} \\ We need a global optimal solution} \\ for this nonconvex problem! \\ \hline \text{s.t.} Nonconvex constraints} \\ \hline \text{Nonconvex constraints} \\ \hline \text{Nonconvex constraints} \\ \hline \text{Metric}(\alpha,\beta,\lambda,\mu,\gamma) & \in \Pi \text{ (Polyhedron)} \\ \hline \text{Metric}(\alpha,\beta,\lambda,\mu,\gamma) & = \lim_{e_l^R,e$$

SOLUTION APPROACHES

Decomposition of the Lagrangian Dual Function

$$\hat{\phi}_D(\alpha,\beta,\lambda,\mu,\gamma) = \eta_0(\alpha,\beta,\lambda,\mu,\gamma) + \sum_{i\in N} \eta_i^G(\alpha,\beta) + \sum_{i\in N} \left[-\gamma_o^+(V_i^{max})^2 + \gamma_i^-(V_i^{min})^2\right]$$

A nonconvex quadratic program

$$\begin{split} \eta_{0}(\alpha,\beta,\lambda,\mu,\gamma) &= \min_{e^{R},e^{I},w} \quad \rho \sum_{i \in N} \begin{bmatrix} \alpha_{i}p_{i}^{sh}(w) + \beta_{i}q_{i}^{sh}(w) + (\gamma_{i}^{+} - \gamma_{i}^{-})w_{ii} \end{bmatrix} \\ &+ \rho \sum_{l \in L} \begin{bmatrix} \lambda_{l}^{f}p_{l}^{f}(w) + \lambda_{l}^{t}p_{l}^{t}(w) + \mu_{l}^{f}q_{l}^{f}(w) + \mu_{l}^{t}q_{l}^{t}(w) \end{bmatrix} \\ &\text{s.t.} \quad w_{l}^{R} = e_{i}^{R}e_{j}^{R} + e_{i}^{I}e_{j}^{I}, \quad w_{l}^{I} = e_{j}^{R}e_{i}^{I} - e_{i}^{R}e_{j}^{I} \quad \forall (i,j) = l \in I \end{split}$$

Many linear programs

$$\begin{split} \eta_i^G(\alpha,\beta) &= \min_{p^G,q^G} \quad f_i(p_i^G) + \rho \left[\alpha_i(P_i^D - p_i^G) + \beta_i(Q_i^D - q_i^G) \right] \\ \text{s.t.} \quad P_i^{min} \leq p_i^G \leq P_i^{max}, \quad Q_i^{min} \leq q_i^G \leq Q_i^{max} \quad \forall i \in N \end{split}$$

SOCP RELAXATION OF THE LOWER LEVEL

A SOCP Relaxation of the Nonconvex Lower-Level Problem:

$$\begin{split} \phi^{SOCP}(x) &:= \min_{\substack{e_i^R, e_i^I, w, p_i^G, q_i^G, u_i}} f(p^G) + \rho \sum_{i \in N} (u_i^p + u_i^q) \\ \text{s.t.} \quad (w_l^R)^2 + (w_l^I)^2 = w_{ii}w_{jj} \quad \forall (i, j) = l \in L, \\ (w_l^R)^2 + (w_l^I)^2 \leq w_{ii}w_{jj} \quad \forall (i, j) = l \in L, \\ -u_i^p \leq p_i^N(w, p^G, x) \leq u_i^p \quad \forall i \in N, \\ -u_i^q \leq q_i^N(w, q^G, x) \leq u_i^q \quad \forall i \in N \\ (V_i^{min})^2 \leq w_{ii} \leq (V_i^{max})^2 \quad \forall i \in N \\ P_i^{min} \leq p_i^G \leq P_i^{max}, \quad Q_i^{min} \leq q_i^G \leq Q_i^{max} \quad \forall i \in N \end{split}$$

- The Lagrangian relaxation of the SOCP variant does not need to relax the voltage bound constraints, unlike that of the AC variant.
- So, the resulting Lagrangian dual is *not necessarily a relaxation* of the AC counterpart.

STRUCTURED DUAL DIMENSION REDUCTION

- The exact method may suffer from the large dimension in the dual solution space.
- Challenging to scale in the size of power system network
- We develop the two approaches to reducing the dual dimensions based on the structure of power flow functions.
 - H1: Relaxing any restrictions on the imaginary component of the conjugate multiplication of two complex voltage
 - H2: Relaxing the directional restrictions on Kirchoff's current law

Power flow functions:

$$\begin{split} p_{l}^{f}(w) &:= \left[Y_{l}^{ffR} w_{ii} + Y_{l}^{ftR} w_{l}^{R} + Y_{l}^{ftI} w_{l}^{I} \right] \\ p_{l}^{t}(w) &:= \left[Y_{l}^{ttR} w_{jj} + Y_{l}^{tfR} w_{l}^{R} - Y_{l}^{tfI} w_{l}^{I} \right] \\ q_{l}^{f}(w) &:= - \left[Y_{l}^{ffI} w_{ii} + Y_{l}^{ftR} w_{l}^{R} - Y_{l}^{ftR} w_{l}^{I} \right] \\ q_{l}^{t}(w) &:= - \left[Y_{l}^{ttR} w_{jj} + Y_{l}^{tfR} w_{l}^{R} + Y_{l}^{tfR} w_{l}^{I} \right] \end{split}$$

Experimental Setup

We implemented the Benders-type method in Julia with CPLEX and Ipopt.

- Branch-and-cut method with outer approximation
- Computations were run on a single core.
- Test cases with budgets K = 1, 2, 3, 4:

System	Lines	k = 4
IEEE 30	41	1×10^5
IEEE 118	186	5×10^7
IEEE 300	411	1×10^9
PEGASE 1354	1991	6×10^{11}
PEGASE 2869	4582	2×10^{13}

Small System: IEEE 57-Bus System

Large System: PEGASE 1354-Bus System

LARGER System: PEGASE 2869-Bus System

Extremely Dense Linear Programs

- Cutting plane methods in large dimension result in extremely dense linear programs.
- More than 97% of the solution time were spent on solving LPs.

Key Bottlenecks:

- Generating dense cuts
- Solving dense linear programs
- Serial tree search

CONCLUDING REMARKS

- Developed the bilevel model to identify critical line contingency
- Single-level mixed-binary convex programming relaxation
 - Base on the AC nonconvex system
 - Base on the SOCP relaxation (Note: the resulting single-level is not a relaxation of the AC counterpart.)
 - Based on the structure-based dimension reductions
- The AC-based single-level MBCP can find a global optimum (not really practical).
- The SOCP variant did not alleviate the computational cost.
- The structure-based dimension reductions outperforms the DC counterpart.

Argonne

This material is based upon work supported by the U.S. Department of Energy, Office of Science (ASCR) and Office of Electricity (AGM), under contract number DE-AC02-06CH11357