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TOWARD THE RESILIENT POWER SYSTEM

Why this work is needed?

= Contingencies in power systems:
— Combinations of weather and manmade threats
— Rare, unpredictable — no probability distribution
— Astronomical scenarios: Nearly one billion scenarios for
N-3 contingency events of 1,000 electric grid assets

» Importance of resilient power system planning and 10"
operations:

— Valuable information to government agencies to make

targeted investment decisions for resilient infrastructures " |

— Developing suitable mitigation and restoration strategies o+ |

— But, no techniques and tools for identifying and

prioritizing critical contingency events ! 2 °

Possible failure scenarios with an N-3 contingency for 1,000
electric power assets
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BILEVEL OPTIMIZATION APPROACH

Representing an Attacker-Defender Framework

= We developed bilevel optimization models to  ypper Level =~ #dverse consequence
identify and prioritize a set of critical __ (e.g. load shedding,

) max f(y) operating cost)
contingency events. i rex®
. . . o ’ Attacker’s constraints
= Binary variable x; represents the contingency y € S(x) le.q. budget)
at component /. Lower Level
= Continuous variables y represent power S(x) :=argmin  f(y) Optimal power flow
system operation. st glz,y) <0 Joragivendisruption x

Assumptions:

= An attacker’s attack consists of the cutting/impairment of transmission
lines/transformers within the restriction of an attack budget.

» The defender takes corrective action in response to an attack, adjusting voltage and
power injection states to recover system stability.
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BILEVEL OPTIMIZATION APPROACH

Existing Approaches Similar to Our Model

= Existing work is limited and need strong assumptions.

» Pinar et al. “Optimization Strategies for the Vulnerability Analysis of the Electric

Power Grid” SIAM Journal on Optimization, 2010
— Our model generalizes the model used in Pinar et al, where the power system is

formulated as a lossless power system, as compared with ACOPF.

= Bienstock and Verma. “The n-k Problem in Power Grids: New Models, Formulations,
and Numerical Experiments” SIAM Journal on Optimization, 2010

— Different ways of modeling attacker problem
— Their model is based on DC power system.

Argonne &




EXISTING SOLUTION APPROACH

KKT Reformulations to a Single-Level Problem

| — Primal constraints l
I'— Dual constraints : KKT Conditions
— Complementarity slackness equations |

» The KKT reformulation leads to a single-level problem.

= Challenges:
— Nonconvex problem, even if the lower level were convex.
— Complementarity constraints
— Constraint qualification is violated at every feasible solution.
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BILEVEL MODEL FORMULATION

max ¢(z)  Attacker maximizes the minimum infeasibility of the system.

.',Ul S K, 7
; Attacker’s budget Difficult (if possible) to
v €{0,1}, I € L obtain subgradients

Nonconvex Lower-Level Problem: System operator minimizes the system infeasibility.

)=, min S0 ()
eftelwpd,qf u; ieN Power flow and balance equations
st wlt = eReR + e{ef, w! = efeg efe§ V(i,j)=1¢€ L,

I —ub S pi (w,p”,z) <uf VieN, | Line status
| after attack

szn < pz Pma,ac7 szn < q/L < Qmam VZ e N
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LAGRANGIAN DUAL APPROACH

Lagrangian Relaxation of the Nonconvex Lower-Level Problem

QSD(Qﬁ,O./,/B,")/) = mlg f(pG)

R I G
€€ W,P 4 Uy

£ = B0) Y weaC e (p— B — B7) ]
JEN === == mm—————

+ 3 [ (wi = (V7)) =3 (wia = ("))
iEN

s.t. Nonconvex constraints

The u terms vanish for the boundedness with

¢p(r,0,8,7):=  min_ _ f(p®) a; €[0,1], B;€[0,1] VieN
e;t e ,w,pyT g5
+ > Jep (w,p%, ) + Big) (w, ¢, )]
1EN
+ 3 [ (wi = (V")) =7 (wi — (V)?)]
€N

s.t. Nonconvex constraints
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LAGRANGIAN DUAL APPROACH

Lagrangian Relaxation of the Nonconvex Lower-Level Problem
¢p(x,a,8,7):= _ min f(pG)

R I G G
€; 1€ W,P; 4,

2EN
s.t. Nonconvex constraints

e - T~ 7T = -~ 7 = ~~~>~>==7="=7=—+% 1

aipl (w,p% ) = o [PP = p + pi(wii)] 4 Y (1 = a)pf (w) + > ai(1 - !I?z)Pf(w)l
:ZELf leL; I
| |
Bigl (w,p% ) == B [QF — ¢F + ¢;"(wii)] H Y Bl —x)gf (w) + > Bi(1 — z)qf (w),
'leL_{: leLt -:

The bilinear coefficients are the upper-level problem variables
and can be linearized by McCormick relaxation.
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SINGLE-LEVEL FORMULATION

Single-Level Mixed-Binary Convex Programming Relaxation

b Y ) )\7 Y . . . o . .
v Mgty ¢l B2 p7) Well, this is a relaxation of the original bilevel problem, but

Z 7 <K works as a good approximation of the value function.

x; €{0,1} VleL

Phan’s ellipsoidal branching can
(x,a, B, A, p,y) € II (Polyhedron)

guarantee the global optimum.

b «, 7)‘7 ; = min G
¢p(a, B, A, p1,7) g (™)
Piecewise linear concave function, + i [BP = pf + it (wi)] + Y Al (w) + D Api(w
but eN ler! leLt
Cha”enge.' + Z 51 QD - qz + th wzz + Z Ml ql + Z ,ulpl

. . ieN ler! leL?
We need a global optimal solution . o s S
for this nonconvex problem! + GZN [ (s = (VI2)°) =" (s = (V"))
s.t. Nonconvex constraints
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SOLUTION APPROACHES

Decomposition of the Lagrangian Dual Function

Sp(c, B, A 11,7) = molas, B A i, y) + D08 (o, B) + > [=vd (V™) 4 47 (V™ ™)?]

1EN 1EN

A nonconvex quadratic program
mo(e 8,0, p17) = _min p Y [ipi™(w) + Bigi" (w) + (v — 7 Jwii]

iEN
f f t t
iti +p [/\P P(w)-i—,MQ(w)—F,uq(w)}
The decomposition can lead ; 1Pi ( L 14 14
to paraliel computing. st w=elfell +elel, wl =efe] —elfe] V(i,j)=1€L

Many linear programs

\'g
ﬂ 1 \ i (a, B) = nin Fi0F) + p [ei(PP = pf) + Bi(QF — 4]

’l g ij \y g ’ﬁ S't' szln S p’L S Pimax7 Q;nzn S qz S Q?Z.’nam \V/Z - N
S S| S .
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SOCP RELAXATION OF THE LOWER LEVEL

A SOCP Relaxation of the Nonconvex Lower-Level Problem:

= min FE) +p ) (uf +uf)

socp
$5OP ()=
effel wpfaf u; N

s.t. (oYt twh) =y NG = el The quadratic equallty
I constraints are relaxed to the

: (wlR>2 + (wlI)Q <wiwj; Y(i,j) =1€ L, : inequalities.
S 2wt e N, T
ul <q (w,¢%,x) <ul Vie N
(V’min)Q < wii < (V_max)Q Vie N
szn < pz Pmaa:, Q;nzn S qu S Q;nax Vie N

= The Lagrangian relaxation of the SOCP variant does not need to relax the voltage bound
constraints, unlike that of the AC variant.
= So, the resulting Lagrangian dual is not necessarily a relaxation of the AC counterpart.
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STRUCTURED DUAL DIMENSION REDUCTION

= The exact method may suffer from the large dimension in the dual solution space.
= Challenging to scale in the size of power system network

= \We develop the two approaches to reducing the dual dimensions based on the structure of
power flow functions.

— H1: Relaxing any restrictions on the imaginary 30
component of the conjugate multiplication of o Soce
P+H
two complex voltage 8 Socriiz
— H2: Relaxing the directional restrictions on —— o
Kirchoff's current law 2
[}
. E
Power flow functions: a
©
plf (w) := [Ylfwan‘ + YlftRwlR + Ylfﬂwll] a 1x10* -
pH(w) = [Ylttijj I thRwR _ thIwI]
of (w) = = [¥7Twis + Y Rl — ¥ ]| Al
R tfR R tfR I 0 1000 2000 3000 4000
‘If(w) = - [Yltt wj; +Y, d +Y, d ] Number of Lines
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NUMERICAL EXPERIMENTS

Experimental Setup

» We implemented the Benders-type method in Julia with CPLEX and lpopt.
— Branch-and-cut method with outer approximation

= Computations were run on a single core. PEGASE 2869- Bus Systern
= Test cases with budgets K =1, 2, 3, 4: "l

-
o,
N

System Lines k=4 o0
IEEE 30 41 1 x10° 8
IEEE 118 186 5 x 107 ol
IEEE 300 411 1 x 10° o

Number of Possible Combinations

PEGASE 1354 1991 6 x 101!
PEGASE 2869 4582 2 x 1013

10* |-

10 : 5 ;
Attacker's Budget (K)
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NUMERICAL EXPERIMENTS

Small System: IEEE 57-Bus System

IEEE 57- Bus System IEEE 57- Bus System
8x10' |- —k— AC 14k |—* AC
—— SOCP . —%— sOCP
—k— SOCP+H1 g} —k— SOCP+H1
—%— SOCP+H2 S 12} |—%* SOCP+H2
&  exidf —%— DC 8 —%— DC
> o 10r
g =
= o
|_ :I/ 0 8 -
é ax10* E '
2 S osf
n X
[&]
2x1¢* | £ 04t
<
02k
0 _? ini ":‘- f?' N 1 | 1
1 2 3 4 1 2 3 4
Attack Budget (K) Attack Budget (K)
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NUMERICAL EXPERIMENTS

Large System: PEGASE 1354-Bus System

PEGASE 1354- Bus System PEGASE 1354- Bus System
8x1d' - —k— AC —4— AC
—— SOCP —— SOCP
—— SOCP+H1 T S0 | —k— SOCP+H1
—%— SOCP+H2 5 —%— SOCP+H2
= eadh —%— DC 3 —%— DC
o 5
£ 2 b
= 3 20
é ax1d* - 5
=] ©
S >
S 10k
2x1¢' - 8
<
of+ * — ops * * *
1 P 3 4 1 2 3 4
Attack Budget (K) Attack Budget (K)
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NUMERICAL EXPERIMENTS

LARGER System: PEGASE 2869-Bus System

PEGASE 2869- Bus System PEGASE 2869- Bus System
8x10! - —%— AC 30 |—*— AC
—%— SOCP —%— SOCP
—k— SOCP+H1 £e) —%— SOCP+H1
—%— SOCP+H2 5 —%— SOCP+H2
= ead —— DC 3 —— DC
€ =
= 3
é ax1dt ©
= ©
S >
X 10F
2x1d* | 8
<
0 -"/“’/H/' o * * *
1 P 3 4 1 2 3 4
Attack Budget (K) Attack Budget (K)
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NUMERICAL EXPERIMENTS

Extremely Dense Linear Programs

= Cutting plane methods in large dimension result in extremely dense linear programs.

N Root
[ CutGen

1 1 1 1
1 2 3 4

Attack Budget (K)

= More than 97% of the solution time 25
were spent on solving LPs.

= Key Bottlenecks: E,i T
— Generating dense cuts E oL
— Solving dense linear programs
— Serial tree search osf

0.0
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CONCLUDING REMARKS

» Developed the bilevel model to identify critical line contingency

» Single-level mixed-binary convex programming relaxation
— Base on the AC nonconvex system
— Base on the SOCP relaxation (Note: the resulting single-level is not a relaxation of
the AC counterpart.)
— Based on the structure-based dimension reductions

» The AC-based single-level MBCP can find a global optimum (not really practical).
= The SOCP variant did not alleviate the computational cost.

= The structure-based dimension reductions outperforms the DC counterpart.
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