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Examples of Parametrized PDEs

Heat Transfer (Conduction):

�r(ru ) = q in ⌦, s ⌘ ū
root

.

Linear Elasticity:

� @

@x
j

E
ij`m

@u
`

@x
m

= f
i

in ⌦, s ⌘ SCF .

Helmholtz Acoustics:

�(1 + i✏k)r2u � k2u = f in ⌦
�

, s ⌘ Z inlet .

INPUT PARAMETER µ ⌘ (k,�) 2 RP

! FIELD u
µ

(x) and OUTPUT (QoI) s
µ

7



Abstraction Linear Elliptic PDEs

Given µ 2 P (compact) ⇢ RP , find

field u
µ

2 X(⌦
µ

) (say) scalar, real

A
µ

u
µ

= F
µ

in ⌦
µ

, or
hA

µ

u
µ

, vi = hF
µ

, vi, 8v 2 X , or
a
µ

(u
µ

, v) = f
µ

(v), 8v 2 X ,

output(s) s
µ

2 R
s
µ

= hL
µ

, u
µ

i, or s
µ

= `
µ

(u
µ

) ,

where ⌦
µ

⇢ R3, X = H1

(0)

(⌦
µ

), and F, L 2 X 0.

Note boundary conditions are included in a
µ

and f
µ

.
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Model and Family

A Model is a particular problem definition:

parametrization: µ 2 P ⇢ RP ;
spatial domain: x 2 ⌦

µ

⇢ R3;
physical discipline: a

µ

, f
µ

;
engineering outputs (QoI): `

µ

.

A Model maps parameter µ 2 P to
field u

µ

(x) and output(s) s
µ

.

A Family is a set of Models which share
a physical discipline and engineering context.

Acoustic Ducts, Elastic Shafts, Historic Structures,. . .
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PDE App: Definition

A PDE App is

software associated to a Model

which maps any µ 2 P to an

approximate
⇢

field ũ
µ

(x) ⇡ u
µ

(x)
output s̃

µ

= `
µ

(ũ
µ

) ⇡ s
µ

subject to performance requirements:
response time and accuracy.

11



PDE App: Performance Requirements

A deployed PDE App should satisfy:

/ 5-second problem set-up time; "app-ification"

/ 5-second problem solution time, field and outputs;

/ 5% solution error, specified metrics;

/ 5-second field visualization time.

The choice of 5 seconds is informed by
the human attention span: interaction.
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PDE App: Model Reduction Paradigm PR-SCRBE-FE

Offline I: Very Slow — Days
Given Family, form associated Online Dataset D.

Offline II: Slow — Hours
Given Model 2 Family, script PDE App.

Online: Fast — Seconds
Given PDE App, evaluate µ 2 P D�! ũ

µ

(x), s̃
µ

.

The PDE App Offline-Online approach

is computationally competitive in

the many-query context — Offline amortized, and

the interactive context — Offline "irrelevant."
13
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Genetic Lines (Extensive References at Conclusion)

Component Mode Synthesis, 1960s PR
Hurty, Craig-Bampton, Bourquin, Hetmaniuk,. . .

Static Condensation 1970s SC
Reduced Basis Methods, 1980s RB

Almroth, Noor, Porsching, Gunzburger,. . .
Post-Modern Reduced Basis Methods, 2000s

MoRePaS I-III: a priori/posteriori error estimation,
Weak Greedy sampling,
(approximate) affine expansions,
strict Offline-Online decomposition,. . .

Reduced Basis Element Method, 2000s E
Maday-Rønquist
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Parametrized Archetype Component

Bend
Bend.spatial_domain, Bend.ref_FE_mesh

Bend.port.ref_FE_submesh,.type
Bend.parameter.angle,.rad_ratio,.k ⌫

Bend.parameter_domain.angle,.rad_ratio,.k V
Bend.mapping.functions,.coefficients

Bend.PDE.forms.a =
R
(1 + i✏k)rw ·rv � k2wv

Bend.PDE.forms.f = 0

18



Library of Parametrized Archetype Components $ Family

Acoustic Ducts
(selected archetype components)

Admissible connections:
ports of common color $ common port type.
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Synthesis: A Model

Model_Exponential_Horn (Flanged)
µ ⌘ (L/a

0

,mhorn, a
mouth

/a
0

, ka
0

)

2 P ⌘ [2, 20]⇥ [0.0334, 0.1666]⇥ [4, 12]⇥ [0, 1]
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Synthesis: Instantiation and Connection

Instantiation Connection
µ

model

2 P ! local port pairs !
{⌫

local

2 V}
instantiated components

global ports � 2 G
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Family: All Component Combinations | Port Constraints

Model_Nguyenophone
µ ⌘ (Hole_Location, Hole_Open, k)

2 P ⌘ Wedge ⇢ R8 ⇥ {0, 1}8 ⇥ [0, 2]
22
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Geometry Mappings

An archetype component is characterized by

spatial domain D
⌫

=
T
⌫

(reference spatial domain D
⌫̄

)
and

two disjoint local ports �
1

, �
2

⇢ @D
⌫̄

such that

�
i

= ⌧
i

�
0

, i = 1, 2 ,

for �
0

a fiducial port (type).

We may easily consider more than two local ports.
24



FE Approximation Spaces

Associate to

each archetype component

a reference FE mesh,

Xh(D
⌫̄

) ⌘ {v|
T

h 2 P
p

(T h), 8T h 2 Th}

of dimension N FE.

For any v in Xh(D
⌫̄

), local port i = 1, 2,

v|
�i 2 { �h

j| {z }
fiduical port modes

� ⌧�1

i

, 1  j  JFE};

implicit conforming condition on ports of common type.
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Finite Element (FE) Approximation of Model

For given µ 2 P , define ⌫ = ⌫(µ)

Xh(⌦
µ

) ⌘
�

instantiated components

{v|
D⌫̄ � T �1

⌫

| v 2 Xh(D
⌫̄

)} \X

associated with a "stitched-together" mesh.

Galerkin projection: given µ 2 P , find

field uh
µ

2 Xh(⌦
µ

): a
µ

(uh
µ

, v) = f
µ

(v), 8v 2 Xh(⌦
µ

),

and subsequently

output sh
µ

= `
µ

(uh
µ

).
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Static Condensation (SC): Component Level . . .

In given instantiated component, ⌫ = ⌫(µ)

for local port i = 1, 2

for port mode j = 1, . . . , JFE:

 h

i,j

= L
i

(�h

j

� ⌧�1

i

) is lifting to
reference domain of port mode j on port i, and

'h

i,j;⌫

=  h

i,j

+ ⌘h
i,j;⌫

2 Xh

[�1,�2:0]
(D

⌫̄

) satisfies

aD⌫̄
⌫

('h

i,j;⌫

, v) = 0, 8v 2 Xh

[�1,�2:0]
(D

⌫̄

), subject to

'h

i,j;⌫

|
�i0 = �h

j

�
ii

0, N FE ⇥N FE

where for simplicity all sources reside on ports.
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. . . SC: Component Level

In given instantiated component, LINEARITY

uh
µ

|
D⌫(µ)

=
2X

i=1

JX

j=1

uh
i,j;⌫

('h

i,j;⌫

� T �1

⌫

)

for appropriate coefficients uh
i,j;⌫

, 1  j  J, i = 1, 2.

Form 2JFE ⇥ 2JFE stiffness matrix Ah Galerkin

[i,j],[k,`];⌫

:

normal velocity moment on local port i flux
with respect to test port mode j

expressed in terms of
pressure coefficient on local port k
associated with trial port mode `.

29



SC: System Level

Require on global ports � 2 G

continuity of pressure, and

weak continuity of normal velocity

implemented as direct stiffness assembly:

{Ah

⌫(µ)

}
instantiated components

! Ah

µ

; Fh

µ

here Ah

µ

is |G|JFE⇥|G|JFEblock-sparse Schur complement.

Issues: JFE will be large, and

N FE will be large,

such that Ah

µ

costly to form and to "invert."
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PR-SCRBE-FE . . .

In given instantiated component, ⌫ = ⌫(µ)

for local port i = 1, 2

for port mode j = 1, . . . ,M :

 h

i,j

= L
i

(�h

j

� ⌧�1

i

) is lifting to
reference domain of port mode j on port i, and

'h,N

i,j;⌫

=  h

i,j

+ ⌘h,N
i,j;⌫

2 Zh,N

i,j [�1,�2:0]
(D

⌫̄

) satisfies

aD⌫̄
⌫

('h

i,j;⌫

, v) = 0, 8v 2 Zh,N

i,j [�1,�2:0]
(D

⌫̄

), subject to

'h

i,j;⌫

|
�i0 = �h

j

�
ii

0; N ⇥N

where for simplicity all sources reside on ports.
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. . . PR-SCRBE-FE . . .

In given instantiated component,

uh,M,N

µ

|
D⌫(µ)

=
2X

i=1

MX

j=1

uh,M,N

i,j;⌫

('h,N

i,j;⌫

� T �1

⌫

)

for appropriate coefficients uh,M,N

i,j;⌫

, 1  j  M, i = 1, 2.

Form 2M ⇥ 2M stiffness matrix Ah,M,N Petrov-Galerkin

[i,j],[k,`];⌫

:

normal velocity moment on local port i flux
with respect to test port mode j

expressed in terms of
pressure coefficient on local port k
associated with trial port mode `.
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. . . PR-SCRBE-FE

Require on global ports � 2 G

continuity of pressure, and

weak continuity of normal velocity

implemented as direct stiffness assembly:

{Ah,M,N

⌫(µ)

}
instantiated components

! Ah,M,N

µ

Fh,M,N

µ

where Ah,M,N

µ

is |G|M ⇥ |G|M block-sparse.

Issues "resolved": M ⌧ JFE, and

N ⌧ N FE,

such that Ah,M,N

µ

is inexpensive to form and to "invert."
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Port Reduction, M ⌧ JFE: Rationale. . .

Consider a waveguide D ⇥ (0,1),

and find p(x
1

, x
2

, x
3

) such that

�r2p� k2p = 0 in D ⇥ (0,1) ,
and

p = g on (x
1

, x
2

) 2 D, x
3

= 0,
@p

@n

= 0 on (x
1

, x
2

) 2 @D, 0 < x
3

< 1,

p (say) outgoing bounded wave as x
3

! 1.
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. . . Port Reduction, M ⌧ JFE: Rationale. . .

Restrict attention to the transverse domain D,

and find (�
i

(x
1

, x
2

),�
i

)
i=1,...

solution of eigenproblem

�r2

x1,x2
� = ��, in D ,

@�

@n

= 0 on @D;

order (real) eigenvalues �
1

= 0 < �
2

 �
3

 . . .
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. . . Port Reduction, M ⌧ JFE: Rationale — Evanescence

Consider k 2 [
p
�
n

,
p
�
n+1

): then <{ · ei!t}

p =
nX

j=1

↵g

j

�
j

(x
1

, x
2

) e�i

p
k

2��j x3

+

1 (or J

FE
)X

j=n+1

↵g

j

�
j

(x
1

, x
2

) e�
p

�j�k

2
x3

for coefficients ↵g

j

chosen to realize p(·, ·, x
3

= 0) = g.

For any global port � 2 G, higher modes introduced
in neighboring components, and
at neighboring global ports,

will be filtered prior to "arrival" at �.
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Port Reduction, M ⌧ JFE: A Library Training Procedure

For all compatible archetype component pairs in Library,

form test subsystem

and find z 2 Xh(L, R) such that

a
(L,R)
⌫L,⌫R(z, v) = 0, 8v 2 Xh(L, R) ,

for a rich set of Dirichlet conditions on �L, �R, and
admissible parameters ⌫L and ⌫R.

Collect z|
�

� T
⌫

� ⌧· from all test subsystems in a set S.

Apply POD to S: fiducial port modes {�
j

}
j=1,...,M

.
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Bubble Reduction, N ⌧ N FE: Rationale

For any archetype component in Library,

for local port i = 1, 2,

for port mode j = 1, . . . ,M ,

⌘h
i,j;⌫

2 {⌘h
i,j;⌫

| ⌫ 2 V}
| {z }

low-dimensional smooth manifold

⇢ Xh

[�1,�2;0]
(D

⌫̄

)
| {z }

high-dimensional space

;

note that

⌫
local

2 V ⇢ RV , µ
model

2 P ⇢ RP

for (typically) V ⌧ P — components divide and conquer.
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Bubble Reduction, N ⌧ N FE: A Library Training Procedure

For each archetype component in Library,

for local port i = 1, 2,

for port mode j = 1, . . . ,M ,

form Zh,N

i,j[�1,�2:0]
as RB Lagrangian snapshot space ?-ized

Zh,N

i,j[�1,�2:0]
⌘ span{⌘h

i,j;⌫

n
i,j
, 1  n  N

i,j

}

for quasi-optimal parameter values

{⌫1
i,j

2 V , . . . , ⌫N
i,j

2 V}

selected by the RB Weak-Greedy procedure.
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Optimality

Under certain hypotheses, the best fits associated with

the port reduced spaces, span{�
j

, 1  j  M},
and

the bubble reduced spaces, Zh,N

i,j

,

converge at rates similar to the corresponding

Kolmogorov M (respectively, N) width.

The Petrov-Galerkin projections are optimal

to within a (Model,µ)-dependent stability constant.
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Verification (and Validation)

A posteriori error indicators play a role in
optimal choice of snapshots ! Zh,N

i,j

and
optimal choice of M and N .

Each Model is verified over ⌅
verification

2 P :
refinement in h #,M ", and N ";
reference to appropriate closed-form approximations;
comparison to 3rd-party computations and experiments.

Verification of each Model improves
archetype components: convergence of Library.
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Offline I: Library ! Online Dataset D Expensive

Prepare Online Dataset D for Library:

archetype affine component mappings T
⌫

; EIM

archetype component reference FE meshes;

port modes �
j

, 1  j  M (for each port type);

RB spaces Zh,N

i,j

for each archetype component,
local port i, and port mode j;

Petrov-Galerkin parameter-independent inner products.

Role of components:
no Models formed or evaluated in Offline I stage;
all Models in Online stage amortize Offline I effort.

45



Online: D; Model; µ 2 P ! uh,M,N

µ

, sh,M,N

µ

Fast

Web-User-Interface (WUI) Cloud Implementation

Query the PDE App:
input µ 2 P , User
synthesize Model from (say) script, Model Server
invoke Online Dataset D Compute Server
form and solve Schur complement, Compute Server
calculate field and output, Compute Server
download and display solution. User, Servers

(Offline II — prepare Model Server for each Model:
parametrization, instantiation, connections, and outputs.)

46



Acoustics Ducts: PDE App Examples

A Flanged Exponential Horn
An Expansion Chamber
An Extended-Tube Expansion Chamber (ETEC)
A Circular Duct with Toroidal Bend
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Acoustics Ducts: PDE App Examples

A Flanged Exponential Horn
An Expansion Chamber
An Extended-Tube Expansion Chamber (ETEC)
A Circular Duct with Toroidal Bend
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Model: Parametrization and Spatial Domain

µ ⌘ (L/a
0

,mhorn, a
mouth

/a
0

, ka
0

)

2 P ⌘ [2, 20]⇥ [0.0334, 0.1666]⇥ [4, 12]⇥ [0, 1]
49



Throat Impedance

Parameters: mhorn = 0.1076, a
mouth

/a
0

= 10.67.

PH: Post & Hixson, PhD Thesis, 1974.
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Visualization: Radiation Directivity ka
mouth

= 10

Nearfield Farfield
Modulus of Pressure

51



Acoustics Ducts: PDE App Examples

A Flanged Exponential Horn
An Expansion Chamber
An Extended-Tube Expansion Chamber (ETEC)
A Circular Duct with Toroidal Bend
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Model: Parametrization and Spatial Domain

µ ⌘ (L
pre

/a
0

, L
post

/a
0

, L
ec

/a
0

, a
ec

/a
0

, ka
0

)

2 P ⌘ [4, 12]2 ⇥ [1.5, 25]⇥ [1.5, 6.5]⇥ [0, 1.5]
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Transmission Loss

Parameters: L
ec

/a
0

= 22.26, a
ec

/a
0

= 3.152;

a
0

= 0.0243 cm.

SR: Selamet and Radavich, J Sound Vibration, 1997.
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Visualization: Excitation of (Axisymmetric) Higher Modes

Parameters: L
ec

/a
0

= 22.26, a
ec

/a
0

= 3.1525;

f = 2.8 kHz, a
0

= 0.0243 cm.

Modulus of Pressure
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Acoustics Ducts: PDE App Examples

A Flanged Exponential Horn
An Expansion Chamber
An Extended-Tube Expansion Chamber (ETEC)
A Circular Duct with Toroidal Bend
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Model: Parametrization and Spatial Domain

µ ⌘ (L
pre

/a
0

, L
post

/a
0

, L
1

/a
0

, L
2

/a
0

, L
3

/a
0

, a
ec

/a
0

, ka
0

)

2 P ⌘ [2, 6]2 ⇥ [2, 16]3 ⇥ [1.5, 4.0]⇥ [0, 1.5]
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Transmission Loss

Parameters: L
1

/a
0

= 5.391, L
2

/a
0

= 3.716,

L
3

/a
0

= 2.510, a
ec

/a
0

= 3.152; a
0

= 0.0243 cm.

SJ: Selamet and Ji, J Sound Vibration, 1999.
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Acoustics Ducts: PDE App Examples

A Flanged Exponential Horn
An Expansion Chamber
An Extended-Tube Expansion Chamber (ETEC)
A Circular Duct with Toroidal Bend
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Model: Parametrization and Spatial Domain

µ ⌘ (L
pre

/a
0

, L
post

/a
0

, a
bend

/a
0

, ✓
bend

, ka
0

)

2 P ⌘ [1.5, 15]2 ⇥ [1.2, 3]⇥ [30�, 180�]⇥ [0, 1.8412]
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WUI: Model Selection
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WUI: Parameter Specification
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WUI: Output

Response Time (all-inclusive) 8.4 seconds:
4-core GCE instance and commodity Internet.
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Inlet Impedance (Reactive)

Parameters: L
pre

/a
0

= 2.8571, L
post

/a
0

= 1.7143,
a
bend

/a
0

= 1.2857, ✓
bend

= 180�.
Boundary Conditions: velocity-velocity.

FDN: Félix, Dalmont, and Nederveen, JASA, 2012.
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WUI: Visualization — Azimuthal Excitation ka
0

= 1.82

Response Time (all-inclusive) 8.4 seconds:
4-core GCE instance and commodity Internet.
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