NCSEA Structural Engineering Exam Review Course Vertical Forces Review

Steel Design - Spring 2017

Presented by Rafael Sabelli, S.E.

SE EXAM REVIEW COURSE — March 2017

Outline

- General steel design
 - AISC 360: Specification for Structural Steel Buildings
- Design problems
 - From Alan Williams, PhD, SE
 Structural Engineering
 PE License Review Problems & Solutions 8th Ed.
- Systems covered under "Lateral Forces Review"

General Steel Design

- Tension members
- Compression members
- Base plates
- Beams
- Trusses
- Beam-columns

- Connections—welded
- Connections—bolted
- Moment connections
- Weld design
- (Composite steel design)

SE EXAM REVIEW COURSE — March 2017

Design Problems

- Members
 - Tension
 - Compression
 - Flexure
 - Combined compression and flexure
- Connections
 - (Bolts)
 - Welds
 - Connecting elements
 - Concentrated forces on members

AISC 360 Specification for Structural Steel Buildings

SE EXAM REVIEW COURSE — March 2017

AISC 360

- A. General Provisions
- B. Design Requirements
- C. Design for Stability
- D. Design of Members for Tension
- E. Design of Members for Compression
- F. Design of Members for Flexure
- G. Design of Members for Shear

- H. Design of Members for Combined Forces
- I. Design of Composite Members
- J. Design of Connections
- K. Design of HSS and Box Member Connections
- L. Design for Serviceability
- M. Fabrication and Erection
- N. Quality Control and Quality Assurance

AISC 360 (Appendices)

- 1. Design by Inelastic Analysis
- 2. Design for Ponding
- 3. Design for Fatigue
- 4. Structural Design for Fire Conditions
- 5. Evaluation of Existing Structures
- 6. Stability Bracing for Columns and Beams
- 7. Alternative Methods of Design for Stability
- 8. Approximate Second-Order Analysis

SE EXAM REVIEW COURSE — March 2017

A. General Provisions

- A1. Scope
 - 1. Seismic Applications
 - 2. Nuclear Applications
- A2. Referenced Specifications, Codes, and Standards
- A3. Material
 - 1. Structural Steel Materials
 - 1a. ASTM Designations
 - 1b. Unidentified Steel
 - 1c. Rolled Heavy Shapes

 1d. Built-Up Heavy Shapes
 - 2. Steel Castings and Forgings
 - 3. Bolts, Washers, and Nuts
 - Anchor Rods and Threaded Rods
 - Consumables for Welding
 - . Consumables for Weldin
- 6. Headed Stud Anchors
- A4. Structural Design Drawings and Specifications

B. Design Requirements

- **B1.** General Provisions
- B2. Loads and Load Combinations
- B3. Design Basis
 - 1. Required Strength
 - 2. Limit States
 - 3. Design for Strength Using LRFD
 - 4. Design for Strength Using ASD
 - 5. Design for Stability
 - 6. Design of Connections
 - 6a. Simple Connections
 - 6b. Moment Connections
 - 7. Moment Redistribution in Beams .
 - 8. Diaphragms and Collectors
 - 9. Design for Serviceability
 - 10. Design for Ponding

- 11. Design for Fatigue
- 12. Design for Fire Conditions
- 13. Design for Corrosion Effects
- 14. Anchorage to Concrete

B4. Member Properties

- 1. Classification of Sections for Local Buckling
- 2. Design Wall Thickness for HSS
- 3. Gross and Net Area
- B5. Fabrication, Erection, and Quality Control
- **B6.** Evaluation of Existing Structures

SE EXAM REVIEW COURSE — March 2017

Design Basis

For LRFD:

$$R_{ij} \leq \phi R_{ij}$$

where

 R_u = required strength (LRFD)

 R_n = nominal strength specified in Chapters C through K

φ = resistance factor specified in Chapters C through K

 ϕR_n = design strength

Design Basis

For ASD:

 $R_a \leq R_n/\Omega$

where

 R_a = required strength (ASD) R_n = nominal strength specified in Chapters C through K Ω = resistance factor specified in Chapters C through K

 R_n/Ω = allowable strength

SE EXAM REVIEW COURSE — March 2017

Design Basis

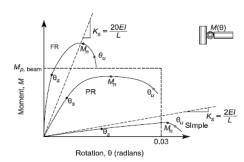
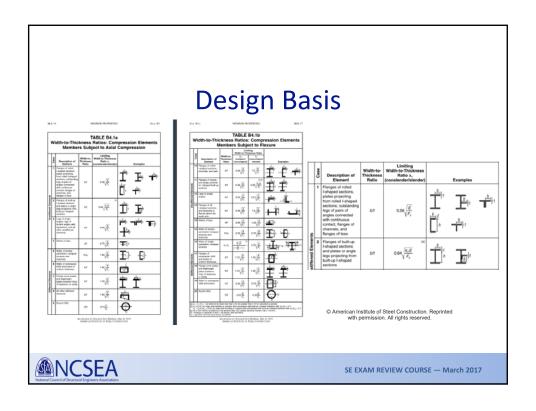
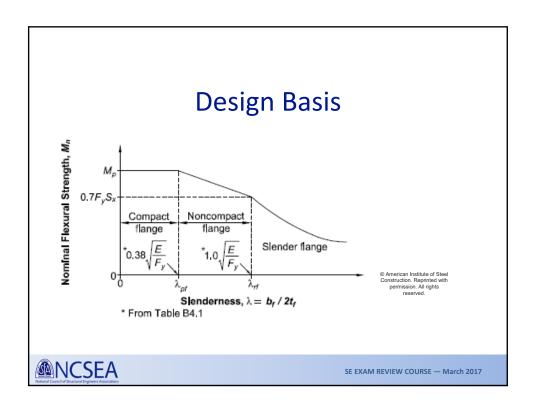
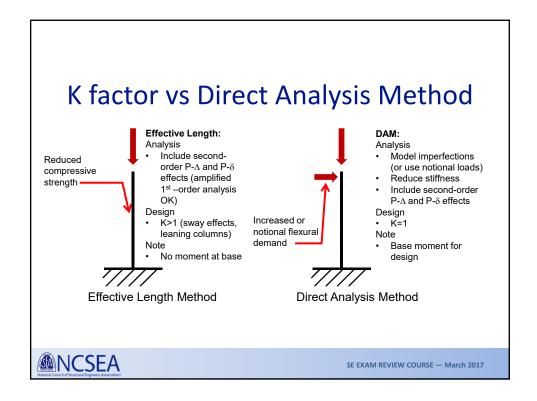
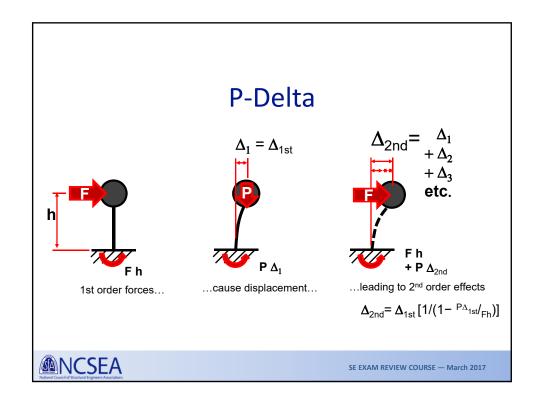




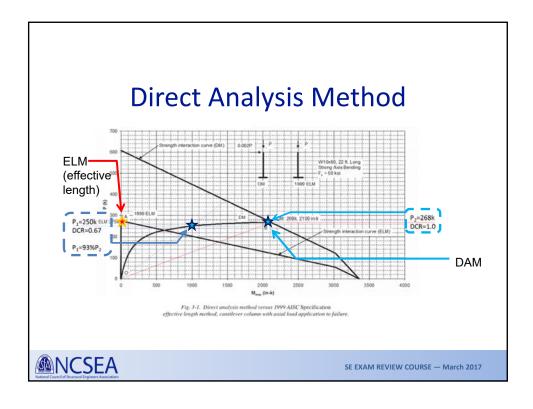
Fig. C-B3.3. Classification of moment-rotation response of fully restrained (FR), partially restrained (PR) and simple connections.

C. Design for Stability

- C1. General Stability Requirements
 - 1. Direct Analysis Method of Design
 - 2. Alternative Methods of Design
- C2. Calculation of Required Strengths
 - 1. General Analysis Requirements
 - 2. Consideration of Initial Imperfections
 - 2a. Direct Modeling of Imperfections
 - 2b. Use of Notional Loads to Represent Imperfections
 - 3. Adjustments to Stiffness
- C3. Calculation of Available Strengths




SE EXAM REVIEW COURSE — March 2017


C. Design for Stability

- Three options for analysis of stability and second-order effects
 - Second-order drift/first-order drift ≤ 1.5
 - Direct analysis method (Chapter C)
 - Amplified first-order method (Appendix 8: B1-B2)
 - Other second-order analysis
 - When second-order drift/first-order drift > 1.5
 - · Direct analysis method

System Stability (C2)

Analysis Requirements

Axial, Flexure, Shear deformations

Second-order effects

Include gravity (for correct P- Δ)

Analyze at LRFD level

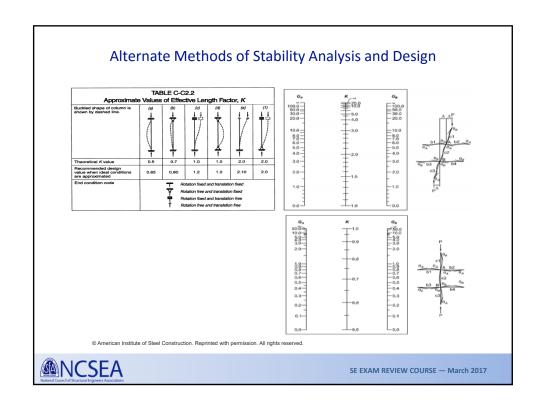
Initial imperfections

Stiffness for analysis:

 $K' = \tau_a \tau_b K$ (axial, flexural, shear)

 τ_{a} = 0.8 stiffness of lateral-load-resisting members

 $\tau_b = F(P_r/P_v)$ flexural stiffness of lateral-load-resisting members



C. Stability Analysis and Design

Member Strength and Stability (C3)

Chapters E, F, G, H, and I Appendix 6 (stability bracing)

Alternate Methods of Stability Analysis and Design

$$\begin{aligned} M_r &= B_1 M_{nt} + B_2 M_{lt} \\ P_r &= P_{nt} + B_2 P_{lt} \\ V_r &= V_{nt} + B_2 V_{lt} \\ R_r &= R_{nt} + B_2 R_{lt} \\ B_1 &= \frac{C_m}{1 - \alpha P_r / P_{e1}} \ge 1 \end{aligned} \qquad B_2 = \frac{1}{1 - \frac{\alpha \sum P_{nt}}{\sum P_{e2}}} \ge 1$$

$$P_{e1} &= \frac{\pi^2 E I}{(K_1 L)^2} \qquad \sum P_{e2} = R_M \frac{\sum H L}{\Delta_H}$$

$$\frac{P \Delta}{N} = \text{Effect of loads acting on the displaced location of joints or nodes in a structure.}$$

$$P = \frac{\pi^2 E I}{(K_1 L)^2} \qquad \sum P_{e2} = R_M \frac{\sum H L}{\Delta_H}$$

$$\frac{P \Delta}{N} = \text{Effect of loads acting on the deflected shape of a member between joints or nodes.}$$

$$P = \frac{P \Delta}{N} = \text{Effect of loads acting on the deflected shape of a member between joints or nodes.}$$

$$P = \frac{P \Delta}{N} = \text{Effect of loads acting on the deflected shape of a member between joints or nodes.}$$

$$P = \frac{P \Delta}{N} = \text{Effect of loads acting on the deflected shape of a member between joints or nodes.}$$

$$P = \frac{P \Delta}{N} = \text{Effect of loads acting on the deflected shape of a member between joints or nodes.}$$

$$P = \frac{P \Delta}{N} = \text{Effect of loads acting on the deflected shape of a member between joints or nodes.}$$

$$P = \frac{P \Delta}{N} = \text{Effect of loads acting on the deflected shape of a member between joints or nodes.}$$

$$P = \frac{P \Delta}{N} = \text{Effect of loads acting on the deflected shape of a member between joints or nodes.}$$

$$P = \frac{P \Delta}{N} = \text{Effect of loads acting on the deflected shape of a member between joints or nodes.}$$

SE EXAM REVIEW COURSE — March 2017

Simplified Stability Analysis and Design

- 1. Perform 1st order analysis

 Minimum notional lateral loads
- 2. Find lateral load corresponding to drift limit OK to use less than code
- Compute Total Gravity/Lateral Shear At LRFD level; ASD gravity amplified by 1.6
- 4. Amplify analysis forces by factor from Table 2-1 Factors vary by story and direction
- 5. Determine K factors K=1 if factor ≤1.1
- 6. Check drift limit in step 2 with amplification

Simplified Stability Analysis and Design

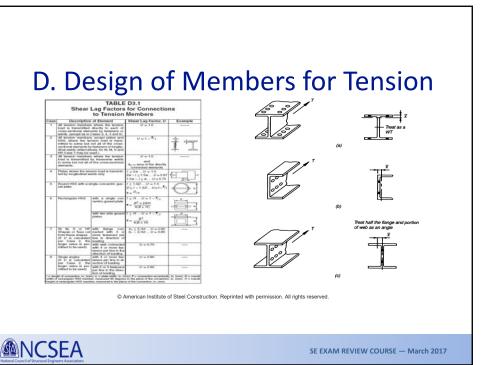
TABLE 2-1 Multipliers for Use With the Simplified Method

3. Gravity/Lateral Shear

Design Story	Load Ratio from Step 3 (times 1.6 for ASD, 1.0 for LRFD)										
Drift Limit	0	5	10	20	30	40	50	60	80	100	120
H/100	1	1.1	1.1	1.3	1.5 /1.4	V	/hen rati	o exceed		nplified ı	
H/200	1	1	1.1	1.1	1.2	1.3	1.4 /1.3	1.5 /1.4	r	equires a	
H/300	1	1	_1	1.1	1.1	1.2	1.2	1.3	1.5 /1.4	Str	ucture.
H/400	1	1	. 1	1.1	1.1	1.1	1.2	1.2	1.3	1.4 /1.3	1.5
H/500	1	1	1	1	1.1	1.1	1.1	1.2	1.2	1.3	1.4
(

Note: Where two values are provided, the value in bold is the value associated with $R_{\it m}=0.85$.

© American Institute of Steel Construction. Reprinted with permission. All rights reserve



SE EXAM REVIEW COURSE — March 2017

D. Design of Members for Tension

- D1. Slenderness Limitations
- D2. Tensile Strength
- D3. Effective Net Area
- D4. Built-Up Members
- D5. Pin-Connected Members
 - 1. Tensile Strength
 - 2. Dimensional Requirements
- D6. Eyebars
 - 1. Tensile Strength
 - 2. Dimensional Requirements

E. Design of Members for Compression

- E1. General Provisions
- E2. Effective Length
- E3. Flexural Buckling of Members without Slender Elements
- E4. Torsional and Flexural-Torsional Buckling of Members without Slender Elements
- E5. Single Angle Compression Members
- E6. Built-Up Members
 - 1. Compressive Strength
 - 2. Dimensional Requirements
- E7. Members with Slender Elements
 - 1. Slender Unstiffened Elements, Q_s
 - 2. Slender Stiffened Elements, Q_a

© American Institute of Steel Construction. Reprinted with permission. All rights reserv

E. Design of Members for Compression

$$Kl/r \le 4.71 \sqrt{\frac{E}{Q F_y}}$$
 $Kl/r > 4.71 \sqrt{\frac{E}{Q F_y}}$

or
$$F_e \ge 0.44F_v$$

or
$$F_e \ge 0.44F_y$$
: or $F_e < 0.44F_y$:

$$F_{cr} = \left[0.658^{QF_y/F_e'}\right] F_y$$
 $F_{cr} = 0.877 F_e'$

$$F_{cr} = 0.877 F_{e}'$$

$$\phi_c$$
 = 0.90 (LRFD) Ω_c = 1.67 (ASD)

SE EXAM REVIEW COURSE — March 2017

E. Design of Members for Compression

TABLE C-E4.1 Selection of Equations for Torsional and Flexural-Torsional Buckling					
Type of Cross Section	Applicable Equations in Section E4				
Double angle and T-shaped members— Case (a) in Section E4. X	E4-2 and E4-3				
All doubly symmetric shapes and Z-shapes— Case (b)(i)	E4-4				
Singly symmetric members except double angles and T-shaped members—Case (b)(ii)	E4-5				
Unsymmetrical shapes—Case (b)(iii)	E4-6				

F. Design of Members for Flexure

- F1. General Provisions
- F2. Doubly-Symmetric Compact I-Shaped Members and Channels Bent About Their Major Axis
 - Yielding
 - 2. Lateral-Torsional Buckling
- F3. Doubly-Symmetric I-Shaped Members With Compact Webs and Noncompact or Slender Flanges Bent About Their Major Axis
 - 1. Lateral-Torsional Buckling
 - 2. Compression Flange Local Buckling
- F4. Other I-Shaped Members With Compact or
 - Noncompact Webs Bent About Their Major Axis
 - 1. Compression Flange Yielding
 - 2. Lateral-Torsional Buckling
 - 3. Compression Flange Local Buckling
 - 4. Tension Flange Yielding

- F5. Doubly-Symmetric and Singly-Symmetric I-Shaped

 Members With Slender Webs Bent About Their Major

 Axis
 - 1. Compression Flange Yielding
 - 2. Lateral-Torsional Buckling
 - 3. Compression Flange Local Buckling
 - 4. Tension Flange Yielding
- F6. I-Shaped Members and Channels Bent About Their Minor Axis
 - 1. Yielding
 - 2. Flange Local Buckling
- F7. Square and Rectangular HSS and Box-Shaped Members
 - 1. Yielding
 - 2. Flange Local Buckling
 - 3. Web Local Buckling

SE EXAM REVIEW COURSE — March 2017

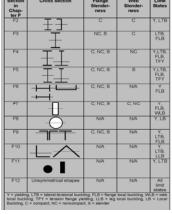
F. Design of Members for Flexure

- F8. Round HSS
 - 1. Yielding
 - 2. Local Buckling
- F9. Tees and Double Angles Loaded in the Plane of Symmetry
 - 1. Yielding
 - 2. Lateral-Torsional Buckling
 - 3. Flange Local Buckling of Tees
 - 4. Local Buckling of Stems
- F10. Single Angles
 - 1. Yielding
 - 2. Lateral-Torsional Buckling
 - 3. Leg Local Buckling

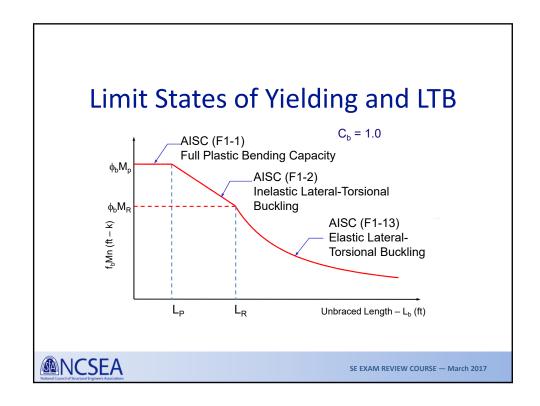
- F11. Rectangular Bars and Rounds
 - 1. Yielding
 - 2. Lateral-Torsional Buckling
- F12. Unsymmetrical Shapes
 - 1. Yielding
 - 2. Lateral-Torsional Buckling .
 - 3. Local Buckling

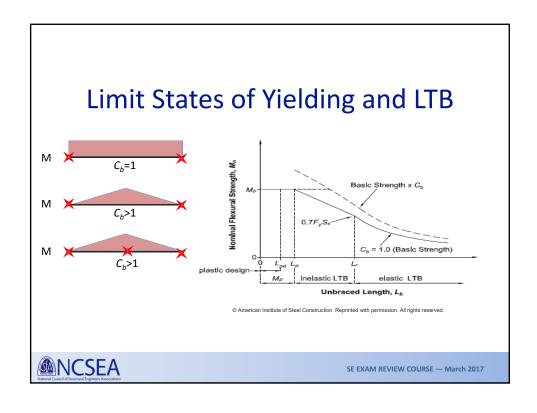
F13. Proportions of Beams and Girders

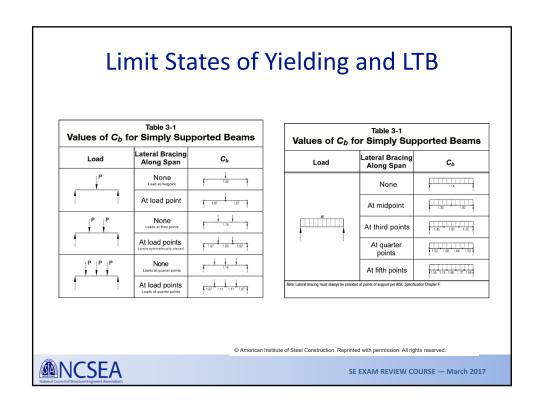
Strength Reductions for Members With Holes in the


Tension Flange

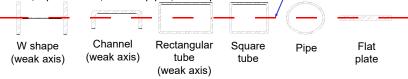
- 2. Proportioning Limits for I-Shaped
- 3. Cover Plates
- 4. Built-Up Beams
- 5. Unbraced Length for Moment Redistribution


F. Design of Members for Flexure


- Limit states
 - Yielding (Y)
 - Lateral-torsional buckling (LTB)
 - Flange local buckling (FLB) and web local buckling (WLB)
 - Compact
 - Noncompact
 - Slender



© American Institute of Steel Construction. Reprinted with permission. All rights reserve



Limit States of Yielding and LTB

- Lateral-torsional buckling (LTB) cannot occur if the moment of inertia about the bending axis is equal to or less than the moment of inertia out of plane.
- LTB is not applicable to W, C, and rectangular tube sections bent about the weak axis, square tubes, circular pipes, or flat plates.

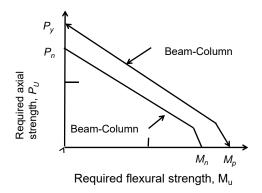
 Bending axis

Lateral-torsional buckling cannot occur in these cases.

SE EXAM REVIEW COURSE — March 2017

G. Design of Members for Shear

- G1. General Provisions
- G2. Members With Unstiffened or Stiffened Webs
 - 1. Shear Strength
 - 2. Transverse Stiffeners
- G3. Tension Field Action
 - 1. Limits on the Use of Tension Field Action $% \left(1\right) =\left(1\right) \left(1\right) \left$
 - 2. Nominal Shear Strength With Tension Field Action
 - 3. Transverse Stiffeners
- G4. Single Angles
- G5. Rectangular HSS and Box Members
- G6. Round HSS
- G7. Weak Axis Shear in Singly and Doubly Symmetric Shapes
- G8. Beams and Girders With Web Openings


H. Design of Members for Combined Forces and Torsion

- H1. Doubly and Singly Symmetric Members Subject To Flexure and Axial Force
 - 1. Doubly and Singly Symmetric Members in Flexure and Compression
 - 2. Doubly and Singly Symmetric Members in Flexure and Tension
 - 3. Doubly Symmetric Members in Single Axis Flexure and Compression
- H2. Unsymmetric and Other Members Subject to Flexure and Axial Force
- H3. Members Subject to Torsion and Combined Torsion, Flexure, Shear and/or Axial Force
 - 1. Round and Rectangular HSS Subject to Torsion
 - 2. HSS Subject to Combined Torsion, Shear, Flexure, and Axial Force
 - 3. Non-HSS Members Under Torsion and Combined Stress
- H4. Rupture of Flanges With Holes Subject to Tension

SE EXAM REVIEW COURSE — March 2017

H. Design of Members for Combined Forces and Torsion

I. Design of Composite Members

- **I1.** General Provisions
 - 1. Concrete and Steel Reinforcement
 - 2. Nominal Strength of Composite Sections
 - 2a. Plastic Stress Distribution Method
 - 2b. Strain-Compatibility Method
 - 3. Material Limitations
 - 4. Classification of Filled Composite Sections for Local Buckling

12. Axial Force

- 1. Encased Composite Columns
 - 1a. Limitations
 - 1b. Compressive Strength
 - 1c. Tensile Strength
 - 1d. Shear Strength
 - 1e. Load Transfer
 - 1f. Detailing Requirements
- 2. Filled Composite Columns
 - 2a. Limitations
 - 2b. Compressive Strength
 - 2c. Tensile Strength
 - 2d. Shear Strength
 - 2e. Load Transfer

SE EXAM REVIEW COURSE — March 2017

I. Design of Composite Members

I3. Flexure

- 1. General
 - 1a. Effective Width
 - 1b. Strength During Construction
- 2. Composite Beams With Steel Headed Stud or Steel Channel Anchors
 - 2a. Positive Flexural Strength
 - 2b. Negative Flexural Strength
 - 2c. Strength of Composite Beams With Formed Steel Deck
 - 2d. Load Transfer Between Steel Beam and Concrete Slab
- 3. Strength of Concrete-Encased and Filled Members
- 4. Filled Composite Members
 - 4a. Limitations
 - 4b. Flexural Strength
- I4. Shear
- 15. Combined Axial Force and Flexure

I. Design of Composite Members

- 16. Load Transfer
 - 1. General Requirements
 - 2. Force Allocation
 - 3. Force Transfer Mechanisms
 - 4. Detailing Requirements
- 17. Composite Diaphragms and Collector Beams
- 18. Steel Anchors
 - 1. General
 - 2. Steel Anchors in Composite Beams
 - 3. Steel Anchors in Composite Components

SE EXAM REVIEW COURSE — March 2017

J. Design of Connections

- J1. General Provisions
 - 1. Design Basis
 - 2. Simple Connections
 - 3. Moment Connections
 - 4. Compression Members With Bearing Joints
 - 5. Splices in Heavy Sections
 - 6. Weld Access Holes
 - 7. Placement of Welds and Bolts
 - 8. Bolts in Combination With Welds
 - 9. High-Strength Bolts in Combination With Rivets
 - 10. Limitations on Bolted and Welded Connections

- J2. Welds
 - 1. Groove Welds
 - 1a. Effective Area
 - 1b. Limitations
 - 2. Fillet Welds
 - 2a. Effective Area
 - 2b. Limitations
 - 3. Plug and Slot Welds
 - 3a. Effective Area
 - 3b. Limitations
 - 4. Strength
 - 5. Combination of Welds
 - 6. Filler Metal Requirements
 - 7. Mixed Weld Metal

J. Design of Connections

TABLE J2.5 Available Strength of Welded Joints, kips (N)							
Load Type and Direction Relative to Weld Axis	Pertinent Metal	φ and Ω		in.2 (mm2)	Required Filler Metal Strength Level ^{(a)(b)}		
			PENETRATION				
Tension Normal to weld axia		ength of the	Matching filler metal shall be used. For T and corner joints with backing left in place, notch tough filler metal is required. See Section J2.6.				
Compression Normal to weld axia		ength of the	Filler metal with a strength level equal to or one strength level less than matching filler metal is permitted.				
Tension or Compression Parallel to weld axia	to a weld	r compress need not b welds joir	n design of	Filler metal with a strength level equal to or less than matching filler metal is permitted.			
Shear		ength of the		Matching filler metal shall be used.[6]			
PARTIAL-JOIN			DOVE WELDS		FLARE VEE GROOVE		
		a = 0.90		See			
Tension	Base	$\Omega = 1.67$ $a = 0.80$	Fy	J4 See			
	Weld	$\Omega = 1.88$	0.60F _{EXX}	J2.1a			
Compression Column to Base Plate and column oplices designed per J1.4(a)	Compressive stress need not be considered in design of welds joining the parts.						
Compression Connections of	Base	$\phi = 0.90$ $\Omega = 1.67$	Fy	See J4			
members designed to bear other than columns as described in J1.4(b)	Weld	φ = 0.80 Ω = 1.88	0.60 F _{EXX}	See J2.1a	Filler metal with a strength level equal to or less than matching filler metal is permitted.		
Compression Connections not	Base	$\phi = 0.90$ $\Omega = 1.67$	Fy	See J4			
finished-to-bear	Weld	$\phi = 0.80$ $\Omega = 1.88$	0.90F _{EXX}	See J2.1a			
Tension or Compression Parallel to weld axis		r compress need not b welds joir					
	Base		Governed by				
Shear	Weld	$\phi = 0.75$	0.60F _{EXX}	See	1		

Availal			E J2.5 (d of Weld		ıts, kips (N)			
Load Type and Direction Relative to Weld Axis	Pertinent Metal	φ and Ω	Nominal Strength (F _{lorn} or F _w) kips (N)	Effective Area (A _{BM} or A _W) in. ² (mm ²)	Required Filler Metal Strength Level ^{(a)[b]}			
FILLET WELD:		IG FILLETS			ND SKEWED T-JOINTS			
Shear	Base Weld	$\phi = 0.75$ $\Omega = 2.00$	Governed by 0.60 F _{EXX}	J4 See J2.2a	Filler metal with a strengt level equal to or less than			
Tension or Compression Parallel to weld axis		need not b	ion in parts joi e considered i ning the parts.		matching filler metal is permitted.			
		PLUG	AND SLOT W	ELDS				
Shear Parallel to faying	Base		Governed by	J4	Filler metal with a strength level equal to or less than matching filler metal is permitted.			
aurface on the effective area	Weld	$\phi = 0.75$ $\Omega = 2.00$	0.60 F _{EXX}	J2.3a				
flanges of built-up these applications material as the effe	strength level of a strength level sections trans the weld joint active throat, o	one strength I less than π ferring shea shall be det = 0.80, Ω =	level greater that natching may be r loads, or in ap ailed and the we 1.88 and 0.60 F	used for groov plications when d shall be desi	e welds between the webs an e high restraint is a concern. I gned using the thickness of th			

American Institute of Steel Construction. Reprinted with permission. All rights reserved

SE EXAM REVIEW COURSE — March 2017

J. Design of Connections

J3. Bolts and Threaded Parts

- 1. High-Strength Bolts
- 2. Size and Use of Holes
- 3. Minimum Spacing
- 4. Minimum Edge Distance
- 5. Maximum Spacing and Edge Distance
- 6. Tension and Shear Strength of Bolts and Threaded Parts
- 7. Combined Tension and Shear in Bearing-Type Connections
- 8. High-Strength Bolts in Slip-Critical Connections
- 9. Combined Tension and Shear in Slip-Critical Connections
- 10. Bearing Strength at Bolt Holes
- 11. Special Fasteners
- 12. Tension Fasteners

J. Design of Connections

TABLE J3.2 Nominal Stress of Fasteners and Threaded Parts, ksi (MPa)

Description of Fasteners	Nominal Tensile Stress, F _{rit} , ksi (MPa)	Nominal Shear Stress in Bearing-Type Connections, F _{nn} , ksi (MPa)
A307 bolts	45 (310) [a][b]	24 (165) 메데
A325 or A325M bolts, when threads are not excluded from shear planes	90 (620) [0]	48 (330) M
A325 or A325M bolts, when threads are excluded from shear planes	90 (620) ^[e]	60 (414) ^{III}
A490 or A490M bolts, when threads are not excluded from shear planes	113 (780) ^[e]	60 (414) ^{III}
A490 or A490M bolts, when threads are excluded from shear planes	113 (780) ^[6]	75 (520) M
Threaded parts meeting the requirements of Section A3.4, when threads are not excluded from shear planes	0.75 F _U [a][d]	0.40F _u
Threaded parts meeting the requirements of Section A3.4, when threads are calculated from shear planes	0.75 F _u ^{[a][d]}	0.50 <i>F</i> _⊎

[[]a] Subject to the requirements of Appendix 3

© American Institute of Steel Construction. Reprinted with permission. All rights reserved.

SE EXAM REVIEW COURSE — March 2017

J. Design of Connections

- J4. Affected Elements of Members and Connecting Elements
 - 1. Strength of Elements in Tension
 - 2. Strength of Elements in Shear
 - 3. Block Shear Strength
 - 4. Strength of Elements in Compression
 - 5. Strength of Elements in Flexure $\,$
- J5. Fillers
 - 1. Fillers in Welded Connections
 - 2. Fillers in Bolted Connections
- J6. Splices
- J7. Bearing Strength
- J8. Column Bases and Bearing on Concrete
- J9. Anchor Rods and Embedments

- J10. Flanges and Webs With Concentrated Forces
 - 1. Flange Local Bending
 - 2. Web Local Yielding
 - 3. Web Crippling
 - 4. Web Sidesway Buckling
 - 5. Web Compression Buckling
 - 6. Web Panel Zone Shear
 - 7. Unframed Ends of Beams and Girders
 - 8. Additional Stiffener Requirements for Concentrated Forces
 - 9. Additional Doubler Plate Requirements for Concentrated Forces

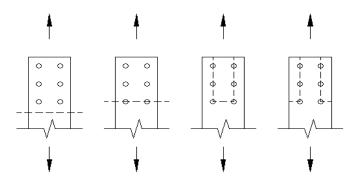
^[9] For A307 bolts the tabulated values shall be reduced by 1 percent for each ¹/1s in. (2 mm) over 5 diameters of length in the grip.

^[9] The nominal tensile strength of the threaded portion of an upset rod, based upon the cross-sectional area at its major thread diameter, A_D, which shall be larger than the nominal body area of the rod before upsetting

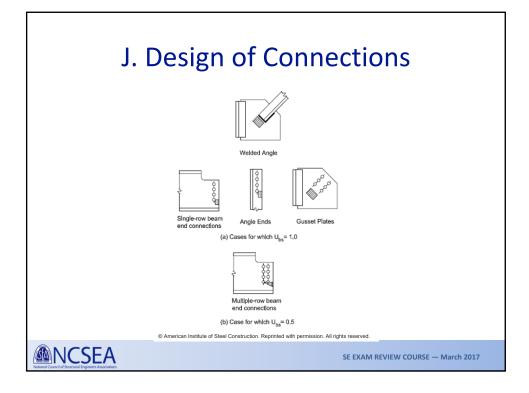
¹⁹ For A325 or A325M and A490 or A490M botts subject to tensile fatigue loading, see Appendix 3.
19 When bearing-type connections used to splice tension members have a fastener pattern whose length measured parallel to the line of brore, exceeds 50 in. (1270 mm), tabulated values shall be reduced by

J. Design of Connections

TABLE J3.3 Nominal Hole Dimensions, in.


	Hole Dimensions					
Bolt Diameter	Standard (Dia.)	Oversize (Dia.)	Short-Slot (Width × Length)	Long-slot (Width × Length)		
1/2	9/16	5/8	9/16 × ¹¹ /16	9/16 × 1 ¹ /4		
5/ ₈	11/16	13/16	11/ _{16 × 7/9}	11/16 × 19/16		
3/4	13/16	15/16	¹³ /16 × 1	$^{13}/_{16} \times 1^{7}/_{8}$		
7/e	¹⁵ /16	1 ¹ / ₁₆	¹⁵ / ₁₆ × 1 ¹ / ₉	15/16 × 23/16		
1	1 ¹ / ₁₆	11/4	$1^{1}/_{16} \times 1^{5}/_{16}$	$1^{1}/_{16} \times 2^{1}/_{2}$		
≥11/8	$d + \frac{1}{16}$	$d + \frac{5}{16}$	$(d + \frac{1}{16}) \times (d + \frac{3}{8})$	$(d + 1/16) \times (2.5 \times d)$		

© American Institute of Steel Construction, Reprinted with permission, All rights reserve


SE EXAM REVIEW COURSE — March 2017

J. Design of Connections

© American Institute of Steel Construction. Reprinted with permission. All rights reserved.

Moment Connections

- Members receiving concentrated loads from moment connection are checked for applicable limit states
 - Flange local bending
 - Web local yielding
 - Web crippling
 - Web sidesway buckling
 - Web compression buckling
 - Cantilever case; compression transfer through web
 - Web panel-zone shear

Moment Connections

- A commonly missed item is the web panel-zone shear in columns (lateral loads; moment transfer to column).
 - If column $P_u \le 0.4A_aF_v$:

$$R_v = 0.60 \times F_y \times d_c \times t_w$$

- If column $P_u > 0.4A_q F_{y:}$

$$R_v = 0.60 \times F_y \times d_c \times t_w \times \left(1.4 - \frac{P_u}{A_g F_y}\right)$$

- $\quad \varphi$ = 0.9 and equations are assuming panel-zone deformations are not considered in analysis
- $-d_c = \text{column depth}$

SE EXAM REVIEW COURSE — March 2017

K. Design of HSS and Box Member Connections

- K1. Concentrated Forces On HSS
 - 1. Definitions of Parameters
 - 2. Round HSS
 - 3. Rectangular HSS
- K2. HSS-To-HSS Truss Connections
 - 1. Definitions of Parameters
 - 2. Round HSS
 - 3. Rectangular HSS
- K3. HSS-To-HSS Moment Connections
 - 1. Definitions of Parameters
 - 2. Round HSS
 - 3. Rectangular HSS
- K4. Welds of Plates and Branches to Rectangular HSS

L. Design for Serviceability

- L1. General Provisions
- L2. Camber
- L3. Deflections
- L4. Drift
- L5. Vibration
- L6. Wind-Induced Motion
- L7. Expansion and Contraction
- L8. Connection Slip

SE EXAM REVIEW COURSE — March 2017

M. Fabrication and Erection

M1. Shop and Erection Drawings

M2. Fabrication

- 1. Cambering, Curving, and Straightening
- 2. Thermal Cutting
- 3. Planing of Edges
- 4. Welded Construction
- 5. Bolted Construction
- 6. Compression Joints
- 7. Dimensional Tolerances
- 8. Finish of Column Bases
- 9. Holes for Anchor Rods
- 10. Drain Holes
- 11. Galvanized Members

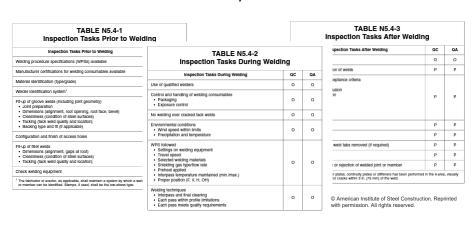
M3.Shop Painting

- 1. General Requirements
- 2. Inaccessible Surfaces
- 3. Contact Surfaces
- 4. Finished Surfaces
- 5. Surfaces Adjacent to Field Welds

M4. Erection

- 1. Alignment of Column Bases
- 2. Bracing
- 3. Alignment
- 4. Fit of Column Compression Joints and Base Plates
- 5. Field Welding
- 6. Field Painting

N. Quality Control


- N1. Scope
- N2. Fabricator and Erector Quality Control Program
- N3. Fabricator and Erector Documents
 - 1. Submittals for Steel Construction
 - 2. Available Documents for Steel Construction
- N4. Inspection and Nondestructive Testing Personnel
 - 1. Quality Control Inspector Qualifications
 - Quality Assurance Inspector
 Qualifications
 - 3. NDT Personnel Qualifications

- N5. Minimum Requirements for Inspection of Structural Steel Buildings
 - 1. Quality Control
 - 2. Quality Assurance
 - 3. Coordinated Inspection
 - 4. Inspection of Welding
 - 5. Nondestructive Testing of Welded Joints
 - 6. Inspection of High-Strength Bolting
 - 7. Other Inspection Tasks
- N6. Minimum Requirements for Inspection of Composite Construction
- N7. Approved Fabricators and Erectors
- N8. Nonconforming Material and Workmanship

SE EXAM REVIEW COURSE — March 2017

N. Quality Control

Appendix 1. Design by Inelastic Analysis

- 1.1. General Provisions
- 1.2. Ductility Requirements
 - 1. Material
 - 2. Cross Section
 - 3. Unbraced Length
 - 4. Axial Force
- 1.3. Analysis Requirements
 - 1. Material Properties and Yield Criteria
 - 2. Geometric Imperfections
 - 3. Residual Stress and Partial Yielding Effects

SE EXAM REVIEW COURSE — March 2017

Appendix 2. Design for Ponding

- 2.1. Simplified Design for Ponding
- 2.2. Improved Design for Ponding

Appendix 3. Design for Fatigue

- 3.1. General
- 3.2. Calculation of Maximum Stresses and Stress Ranges
- 3.3. Plain Material and Welded Joints
- 3.4. Bolts and Threaded Parts
- 3.5. Special Fabrication and Erection Requirements

SE EXAM REVIEW COURSE — March 2017

Appendix 4. Design for Fire Condition

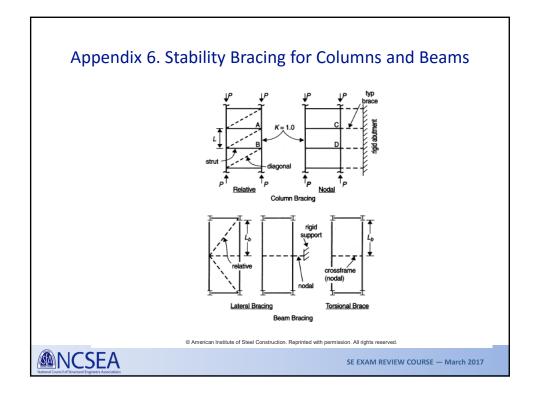
- 4.1. General Provisions
 - 4.1.1. Performance Objective
 - 4.1.2. Design by Engineering Analysis
 - 4.1.3. Design by Qualification Testing
 - 4.1.4. Load Combinations and Required Strength
- 4.2. Design for Fire Conditions by Analysis
 - 4.2.1. Design-Basis Fire
 - 4.2.1.1. Localized Fire
 - 4.2.1.2. Post-Flashover Compartment Fires
 - 4.2.1.3. Exterior Fires
 - 4.2.1.4. Fire Duration
 - 4.2.1.5. Active Fire Protection Systems
 - 4.2.2. Temperatures in Structural Systems Under Fire Conditions

- 4.2.3. Material Strengths at Elevated Temperatures
 - 4.2.3.1. Thermal Elongation
 - 4.2.3.2. Mechanical Properties at Elevated Temperatures
- 4.2.4. Structural Design Requirements
 - 4.2.4.1. General Structural Integrity
 - 4.2.4.2. Strength Requirements and Deformation Limits
 - 4.2.4.3. Methods of Analysis
 - 4.2.4.4. Design Strength
- 4.3. Design by Qualification Testing
 - 4.3.1. Qualification Standards
 - 4.3.2. Restrained Construction
 - 4.3.3. Unrestrained Construction

Appendix 5. Evaluation of Existing Structures

- 5.1. General Provisions
- 5.2. Material Properties
 - 5.2.1 Determination of Required Tests
 - 5.2.2 Tensile Properties
 - 5.2.3 Chemical Composition
 - 5.2.4 Base Metal Notch Toughness
 - 5.2.5 Weld Metal
 - 5.2.6 Bolts and Rivets

- 5.3. Evaluation by Structural Analysis
 - 5.3.1 Dimensional Data
 - 5.3.2 Strength Evaluation
 - 5.3.3 Serviceability Evaluation
- 5.4. Evaluation by Load Tests
 - 5.4.1 Determination of Load Rating by Testing
 - by Testing 5.4.2 Serviceability Evaluation
- 5.5. Evaluation Report



SE EXAM REVIEW COURSE — March 2017

Appendix 6. Stability Bracing for Columns and Beams

- 6.1. General Provisions
- 6.2. Columns
 - 1. Relative Bracing
 - 2. Nodal Bracing
- 6.3. Beams
 - 1. Lateral Bracing
 - 1a. Relative Bracing
 - 1b. Nodal Bracing
 - 2. Torsional Bracing
 - 2a. Nodal Bracing
 - 2b. Continuous Torsional Bracing
- 6.4. Beam-Column Bracing

Appendix 7. Alternative Methods of Design For Stability

- 7.1. General Requirements
- 7.2. Effective Length Method
- 7.3. First-Order Analysis Method

Appendix 8. Approximate Second-Order Analysis

- 8.1. Limitations
- 8.2 Calculation Procedure
 - 1. Multiplier B1 for P-δ Effects
 - 2. Multiplier B2 for P-Δ Effects

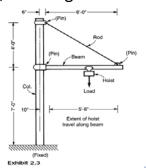
SE EXAM REVIEW COURSE — March 2017

Design Problems Members

Example 2.3

• From Alan Williams, Ph. D., SE

Structural Engineering
PE License Review Problems & Solutions 8th Ed.

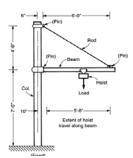

- Page 143
- Illustration of member design
- Added issues: Analysis and second-order effects

SE EXAM REVIEW COURSE — March 2017

Example 2.3

- Given
 - Job crane system as shown in Exhibit 2.3, consisting of a vertical pipe column, horizontal Ibeam monorail, and diagonal rod

MNCSEA


Example 2.3

- Criteria
 - Hoist weight = 250 lbs
 - Maximum lifted load = 3000 lbs
 - Impact factor = 1.25 (on lifted load)
- Materials
 - Rod = $\frac{3}{4}$ -inch diameter: F_{v} = 36 kips per square inch
 - Beam = S5 × 10 (I beam): $F_{y=}$ 36 kips per square inch
 - Column = 8-inch nominal diameter, standard weight pipe: $F_{y=}$ 35 kips per square inch
- Assumptions
 - Neglect the rod and beam weight
 - Neglect deflections
 - Assume all connections are adequate
 - Neglect eccentricity of all connections
 - Assume support conditions shown as "Pin" or "Fixed"

SE EXAM REVIEW COURSE — March 2017

Example 2.3

Required

- 1. Maximum design axial force in the road and its adequacy to support the design vertical loads
- 2. Maximum design axial and bending forces in the beam and its adequacy to support the design vertical loads
- 3. Maximum design axial and bending forces in the column and its adequacy to support the design vertical loads

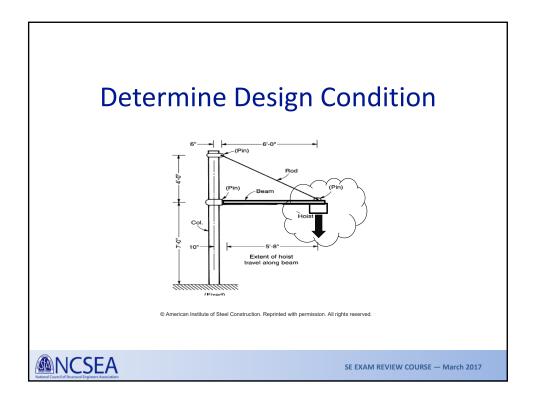
Approach to Part 1

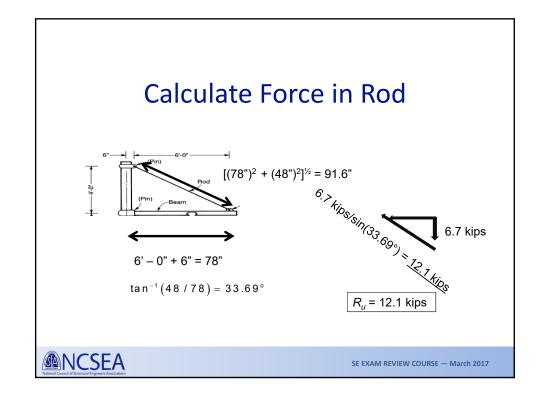
Goal: Determine force in rod and check adequacy

- Determine load
- Determine design condition
- Calculate force in rod (required strength)
- Calculate nominal strength
- Apply
 - resistance factor (LRFD), or
 - safety factor (ASD)
- · Compare available and required strength

SE EXAM REVIEW COURSE — March 2017

Determine Load


Applied load


• The maximum applied load due to the hoist weight and the lifted load is given.

```
W = (250 + 1.25 × 3000) / 1000
= 4 kips
D + L

LRFD:
1.2 D + 1.6 L = 1.2(0.25) + 1.6(1.25*3)
W = 6.7 kips
```


Calculate Nominal Strength—Apply Resistance Factor

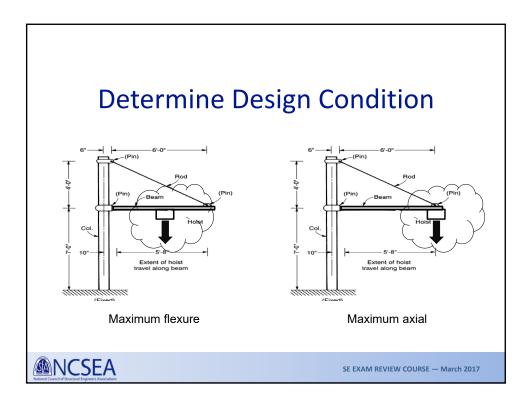
•
$$R_n = A_g F_y$$

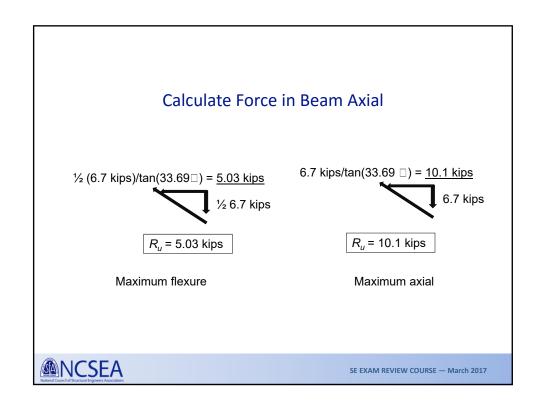
= $\pi/4(^3/_4)^2$ 36 ksi = 15.9 kips

$$\phi = 0.9$$

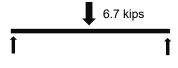
$$\phi R_n = 14.3 \text{ kips}$$

$$\phi R_n > R_u = 12.$$
kips OK


SE EXAM REVIEW COURSE — March 2017


Approach to Part 2

Goal: Determine axial and bending forces in beam and check adequacy


- Determine design condition
- Calculate forces in beam (required strength)
- · Calculate nominal strengths (axial and flexural)
- Apply
 - resistance factor (LRFD), or
 - safety factor (ASD)
- · Compare available and required strength

Calculate Force in Beam—Flexure

6.7 kips

$$M_u = PL/_4 = 6.7 \text{ kips * (6')/4}$$

 $R_u = 10.1 \text{ ft-kips}$

Maximum flexure

 $R_u = 0$ ft-kips

Maximum axial

SE EXAM REVIEW COURSE — March 2017

Calculate Force in Beam—Flexure

$$B_1 = \frac{C_m}{1 - \alpha P_r / P_{e1}} \ge 1$$
 (C2-2)

$$\frac{\pi^{2}EI}{(K_{1}L)^{2}} = 684 \text{kips}$$

$$C_{m} = 1-0.2 P_{u}/P_{e1} \quad \text{Table C-C2.1}$$

$$Take as 1.0$$

$$B_{1} = 1.007$$

$$Take as 1.0$$

Calculate Nominal Strength—Flexure

S5×10 is compact Check yielding, LTB

Section in Chap- ter F	Cross Section	Flange Slender- ness	Web Slender- ness	Limit States
F2		С	С	Y, LTB
E2		NC 6	_	LTD

© American Institute of Steel Construction. Reprinted with permission. All rights reserved

Yield

$$M_n$$
 = ZF_y
= 5.67 in.³ × 36 ksi = 204 kips-in.
= 17.4 ft-kips

SE EXAM REVIEW COURSE — March 2017

Calculate Nominal Strength—Flexure

Lateral Torsional Buckling

S5×10

 $\begin{array}{l} F_{\rm y}\!=\!36~{\rm kips~per~square~inch}\\ S_x\!=\!4.90~{\rm inches^3}\\ {\rm A}\!=\!2.93~{\rm inches^2}\\ r_{\rm y}\!=\!0.638~{\rm inches}\\ L_{\rm p}\!=\!2.66~{\rm feet}\\ L_{\rm r}\!=\!14.4~{\rm feet~(for~}C_b\!=\!1)\\ ({\rm BF})\!=\!0.341 \end{array}$

This section is compact, and the allowable bending stress is dependent on the value of the maximum unbraced length of the compression flange, which is assumed to be

 L_b = 6 feet

The bending coefficient is obtained from AISC Table 3-1 as C_b = 1.32

Hence,

 $L_p < L_b < L_r$

Inelastic buckling governs, and the allowable flexural strength in the absence of axial load is obtained from AISC Equation (F2-2)

Calculate Nominal Strength—Flexure

Lateral Torsional Buckling

$$M_n = C_b \left[M_p - \left(M_p - 0.7 F_y S_x \right) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le M_p$$

$$M_n = C_b \left[M_p - BF \left(L_b - L_p \right) \right] = 21.46 \text{ kips}$$

Yielding controls

$$\phi M_n = \phi Z F_y = (0.9)17.4 \text{ ft-kips} = 15.7 \text{ ft-kips}$$

 $M_u / \phi M_n = 0.643$

SE EXAM REVIEW COURSE — March 2017

Calculate Nominal Strength—Axial

$$KL/r_y = 1.0 \times 6 \times 12 / 0.638$$

= 113

$$\phi F_{cr} = 16.5 \text{ ksi}$$

AISC Table 4-22

$$\phi P_n = \phi F_{cr} A_q = 48.5 \text{ kip}$$

 $P_u/\phi P_n = 0.10$ (with max. moment)

$$P_{\mu}/\phi P_{p} = 0.20$$
 (axial only) OK

Compare Available and Required Strength (combined)

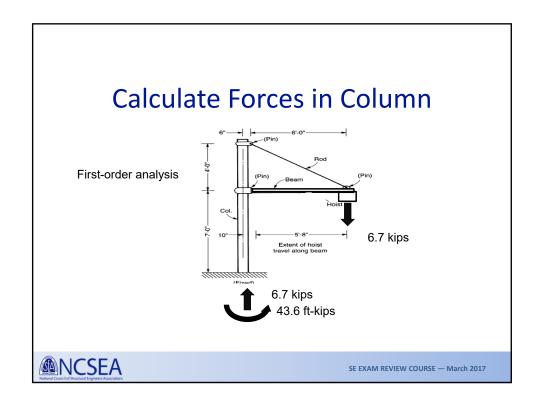
Chapter H

$$P_u / \phi P_n < 0.2$$

$$\frac{1}{2}P_{u}/\phi P_{n} + M_{u}/\phi M_{n} = 0.69 \text{ OK}$$

SE EXAM REVIEW COURSE — March 2017

Approach to Part 3


Goal: Determine axial and bending forces in column and check adequacy

- Determine design condition
- Calculate forces in column (required strength)
- Calculate nominal strengths (axial and flexural)
- Apply
 - resistance factor (LRFD), or
 - safety factor (ASD)
- · Compare available and required strength

Determine Design Condition The state of th

SE EXAM REVIEW COURSE — March 2017

MNCSEA

Calculate Forces in Column

 $\Delta_1 < \frac{1}{2} M_1 L^2 / EI = 2.17$ in.

(L = 11 ft conservatively)

 $P \Delta = 14.5 \text{ kip in.} = 1.21 \text{ kip ft.}$

 $\Delta_2 \sim \Delta_1 \left(M_1 + P \Delta \right) / M_1 = 1.03$

 $\Delta_2 / \Delta_1 = 1.03$

Use second-order analysis, effective length method

 Δ_2 / Δ_1 < 1.1, K=1

Minimum lateral force > 0.02 Y = 0.134 kips

SE EXAM REVIEW COURSE — March 2017

Calculate Force in Beam—Flexure

$$B_1 = \frac{C_m}{1 - \alpha P_r / P_{e1}} \ge 1$$

$$\frac{\pi^2 E I}{\left(K_1 L\right)^2} = 1119 \text{ kips}$$
 $K_1 = 1$; assume no lateral translation

$$C_m = 1$$

$$B_1 = 1.01$$
 $M_u = 1.01$ (43.6 ft-kips + 0.13 kips × 11ft) = 45.5 ft-kips

Calculate Nominal Strength—Flexure

8-inch pipe is compact Check yielding

Section in Chap- ter F	Cross Section	Flange Slender- ness	Web Slender- ness	Limit States
F8	-0-	N/A	N/A	Y, LB

Yield

American Institute of Steel Construction. Reprinted with permission. All rights reserved.

$$M_n = ZF_y = 20.8 \text{ in.}^3 \times 35 \text{ ksi}$$

= 728 kips-in.= 60.7 ft-kips
 $M_u/\phi M_n = 0.76$

SE EXAM REVIEW COURSE — March 2017

Calculate Nominal Strength—Axial

 $KL/r_y = 1 \times (11ft)(12 \text{ in./ft})/(2.95 \text{ in.}) = 44.75$

(K = 1 per amplified first-order analysis)

$$\phi F_{cr} = 28.4 \text{ ksi}$$

AISC Table 4-22

$$\phi P_n = \phi F_{cr} A_g = 223 \text{ kip}$$

$$P_u/\phi P_n = 0.03$$

Compare Available and Required Strength (Combined)

Chapter H

$$P_u / \phi P_n < 0.2$$

$$\frac{1}{2}P_{u}/\phi P_{n} + M_{u}/\phi M_{n} = 0.77 \text{ OK}$$

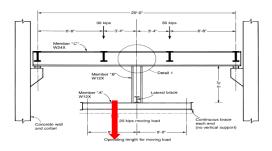
SE EXAM REVIEW COURSE — March 2017

Example 2.6

• From Alan Williams, Ph. D., SE

Structural Engineering

PE License Review Problems & Solutions 8th Ed.


- Page 166
- Illustration of connection limit states

Example 2.6

Given

 Structural steel framing supported on concrete corbels and walls as shown in the building cross-section in Exhibit 2.6. Loadings: Vertical loads on member "C" and a moving load on member "A" are shown in the cross-section.

MNCSEA

SE EXAM REVIEW COURSE — March 2017

Example 2.6

- Materials
 - Grade 50 Steel
 - E70XX welding rods
- Assumptions
 - Do not consider weight of steel members
 - Allowance for impact and lateral load is not required
 - Ignore deflections

Required

Provide calculations and complete the sketch in the workbook of the welded connection for Detail 1 for the joint at the center line of member "C." Indicate on this sketch any welds and/or additional plates.

Example 2.6

W12 × 30 member "B":

Yield stress F_{yb} = 50 ksi

Web thickness $t_w = 0.260$ inches

Web depth $d_w = 11.42$ inches

Flange width b = 6.52 inches

Flange thickness t_b = 0.44 inches

Depth $d_b = 12.3$ inches

Area A_B = 8.79 square inches

W24 × 62 member "C":

Yield stress F_{vb} = 50 ksi

Web thickness t = 0.43 "

Fillet depth k = 1.09 inches

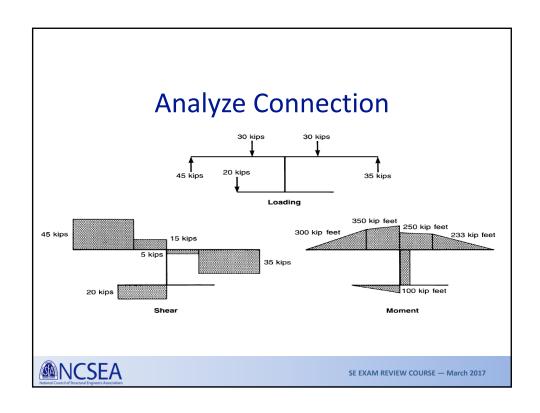
Web depth between fillets $d_c = 21.5$ "

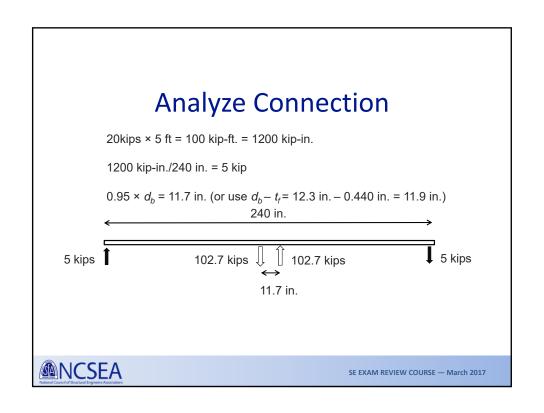
Flange thickness $t_f = 0.59$ "

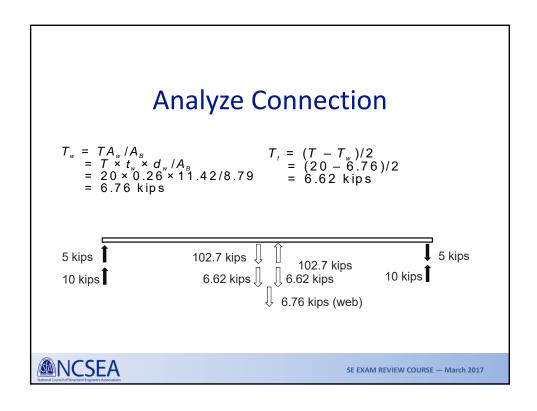
Depth d = 23.7 "

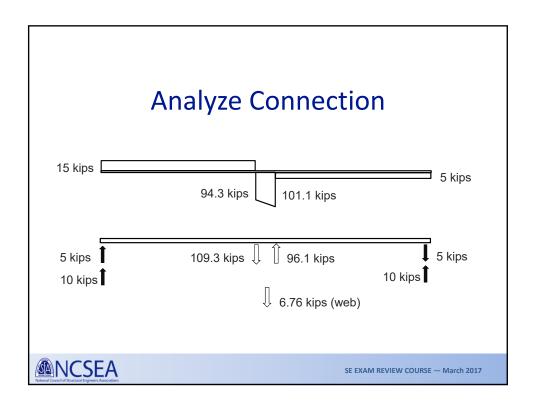
Flange width $b_f = 8.99$ "

Area A = 18.2 square inches


SE EXAM REVIEW COURSE — March 2017


Part 2 Approach


Goal: Check appropriate connection limit states design any reinforcement


- Analyze connection
- · Identify and check limit states
 - Flange weld strength Web weld strength
 - Panel zone shearLoc
- Local web yielding
 - Web cripplingFlange local bending
- Design reinforcement

Identify and Check Limit States

Flange Connection

To develop the full flexural and axial capacity of the flanges of member "B," it is necessary for the flanges to be connected to member "C" with full-penetration groove welds

SE EXAM REVIEW COURSE — March 2017

Identify and Check Limit States

Web connection

The web thickness of member "B" is 0.43 inches, and the minimum allowable fillet weld size is given by AISC Table J2.4 as 3/16 inch. The allowable force on a 3/16-inch fillet weld is obtained from AISC Table J2.5 as

$$q = 3 \times 0.928$$

= 2.78 kips per inch

The strength of the double 3/16-inch fillet weld in tension is

$$P_w = 2qd_w$$

= 2 × 2.78 × 11.42
= 64 kips
> 6.76 kips

Hence, the 3/16-inch fillet weld is satisfactory.

Identify and Check Limit States

• Panel zone shear

From AISC Section J10.6, the web capacity is

$$F_w = 0.4 F_{yc} \times t \times d$$

= 0.4 \times 36 \times 0.43 \times 23.70
= 146.75

Hence, the web of member "C" need not be reinforced.

SE EXAM REVIEW COURSE — March 2017

Identify and Check Limit States

Local web yielding

The available capacity of the W24 × 62 beam web for local yielding is given by AISC Equation (J10-2) as

where $R_n/W = F_y t_w (N + 5k)/1.5$

N =length of bearing

= thickness of beam flange of member "B"

= 0.44 inch

k = distance from outer face of flange to web toe of fillet

= 1.09 inches

 t_w = web thickness R_n / W = $50 \times 0.43(0.44 + 5 \times 1.09)/1.5$ = 0.43 inch = 84.42 kips

Identify and Check Limit States

- Web crippling
 - When the concentrated compressive force to be resisted is applied at a distance from the member end that is greater than or equal to d / 2:

$$R_n = 0.80t_w^2 \left[1 + 3\left(\frac{N}{d}\right) \left(\frac{t_w}{t_f}\right)^{1.5} \right] \sqrt{\frac{EF_{yw}t_f}{t_w}}$$

$$= 108 \text{ kips OK}$$

SE EXAM REVIEW COURSE — March 2017

Identify and Check Limit States

Flange local bending < 109 kips
 From AISC Equation (J10-1), the available capacity
 of the flange for flange local bending is given as

$$P_{fb} = 6.25t_f^2 F_y / W$$

= 6.25 × 0.59² × 50 / 1.67
= 65.14...governs

· Reinforcement is required

Design Reinforcement

The force delivered to the stiffener is then

$$R_{st} = P_t - P_{fb}$$

= 109.32 - 65.14
= 44.18 kips

The required area of a pair of stiffeners is then

$$A_{st} = R_{st}/(F_{yst}/W)$$

= 44.18 / (36/1.67)
= 2.05 inches²

SE EXAM REVIEW COURSE — March 2017

Design Reinforcement

Using a pair or stiffener plates 4 inches \times ½ inch, with a 1½-inch corner clip, as recommended in AISC Commentary Section J10.8, provides a stiffener area at the column flange of

 $A_{st} = 2 \times (4 - 1.5) \times 0.5$ = 2.5 inches² > 2.05 inches²... satisfactory

The minimum stiffener thickness required is defined by AISC Section J10.8

 $\begin{array}{l} t_{\rm st} = t_b/2 \\ = 0.44/2 \\ = 0.22 \; {\rm inch} \\ < 0.5 \; {\rm inch} \; \dots \; {\rm satisfactory} \end{array}$

The minimum stiffener width required is defined by AISC Section J10.8 as

$$b_{st} = b_f/3 - t/2$$

= 8.99/3 - 0.43/2
= 2.78 inches
< 4 inches ... satisfactory

Design Reinforcement

The maximum width/thickness ratio is defined by AISC Section J10.8 as

$$b_{st} / t_{st} = 15$$

The actual width/thickness ratio provided is

$$b_{st} / t_{st} = 4 / 0.5$$

= 8
< 15 ... satisfactory

SE EXAM REVIEW COURSE — March 2017

Design Reinforcement

1B. Stiffener Weld Requirements

The available capacity of the welded portion of the pair of stiffeners in tension is given by

$$P_{st} = A_{st}F_{yst}/\Omega$$
= 2.5 × 36/1.67
= 54 kips
> 44.18... satisfactory

The ends of the stiffeners are connected to the column flange with 5/16 fillet welds on both sides. The allowable force on a 1/16-inch, E70XX-grade fillet weld is obtained from AISC Table J2.5 as

q = 0.928 kips per inch per 1/16 inch

Design Reinforcement

To develop the unbalanced flange force, the required fillet weld size in sixteenths of an inch is

 $D = R_{st}/4q(b-1.5)$ = 44.18 / (4 × 0.928 × 2.5) = 4.76 sixteenths

From AISC Table J2.4, the minimum size of fillet weld required for the 0.5-inch thick stiffener is

w = 3/16 inch

Use a weld size of

w = 5/16 inch

The unbalanced flange force to be transmitted by fillet welds to the web is $R_{\rm sr} = 44.18~{\rm kips}$

SE EXAM REVIEW COURSE — March 2017

Design Reinforcement

E70XX fillet welds are provided on one side of the pair of stiffeners, and the total length provided after allowing for the 1½-inch corner clip is

 $R_{st} = 12 - 1.5$ = 10.5 inches

To develop unbalanced flange force, the required fillet weld size in 16ths of an inch is

 $D = R_{st}/2qR_{st}$ = 44.18/(2 × 0.928 × 10.5) = 2.26 sixteenths

From AISC Table J2.4, the minimum size of fillet weld required for the 0.43-inch thick beam web is

w = 3/16 inch

Use of a weld size of

w = 3/16 inch

Connection Design #2 4 × 1/2 × 12" both sides, typ. Both flanges SE EXAM REVIEW COURSE — March 2017

Structural Design Standards Relevant for Steel Design

In order of precedence of controlling requirements for forces and steel design:

- International Building Code (IBC 2012 Edition)
- Minimum Design Loads for Buildings and Other Structures (ASCE 7-10) (forces only)
- (AISC 360-10): Specification for Structural Steel Buildings, with Associated Commentaries

Recommended References and Additional Study Materials

- Williams, Alan and David Fanella. Structural Engineering PE License Review Problems and Solutions, 8th Edition. Kaplan Publishing, 2011.
- Salmon, Charles, John E. Johnson, and Faris A. Malhas. Steel Structures: Design and Behavior. Prentice Hall, 2008.
- AISC. "Manual of Steel Construction (Design Examples)." http://www.aisc.org/content.aspx?id=24314.
- AISC. Seismic Design Manual. 2013.
- ICC. SEAOC Structural/Seismic Design Manual 2009 IBC Vol 3: Building Design Examples for Steel and Concrete. 2012.

