

iSchedule to Personalize Learning A Novel Approach to Timetabling in Practice

14 November 2011 Anjuli Kannan ■ Gerald van den Berg ■ Adeline Kuo

Analytics Operations Engineering, Inc.

Agenda

Operational problem Solution approach Challenges

- Constructing the graph
- Handling graphs that cannot be colored in k colors
- Scheduling electives
- Adhering to course capacities

Implementing our solution in practice

Agenda

Operational problem Solution approach Challenges

- Constructing the graph
- Handling graphs that cannot be colored in k colors
- Scheduling electives
- Adhering to course capacities

Implementing our solution in practice

Background Bringing personalized education to NYC school children

The NYC Department of Education is experimenting with education models that emphasize personalized learning

The NYC innovation zone (iZone) schools offer ability-based tracks in multiple subject areas and give students control over their educational planning.

iZone360

Redesigning the whole school, including budgets, staff, space, scheduling, instruction and technology around the needs, motivations and strengths of individual students.

read more

iLearnNYC

Flexibly meeting the needs of individual students through online and blended learning. read more

InnovateNYC

Piloting, evaluating, and scaling innovations that meet school needs and accelerate student learning. read more

The difficulties of personalized education A new scheduling problem

In order to customize student learning experiences, the iZone schools would like to build a master schedule that:

- 1. Allows students to meet their requirements
- 2. Enables students to take their preferred electives
- 3. Adheres to resource constraints

The difficulties of personalized education A new scheduling problem

Existing scheduling software used by NYC does not generate master schedules, but rather, assigns students to a pre-determined master schedule.

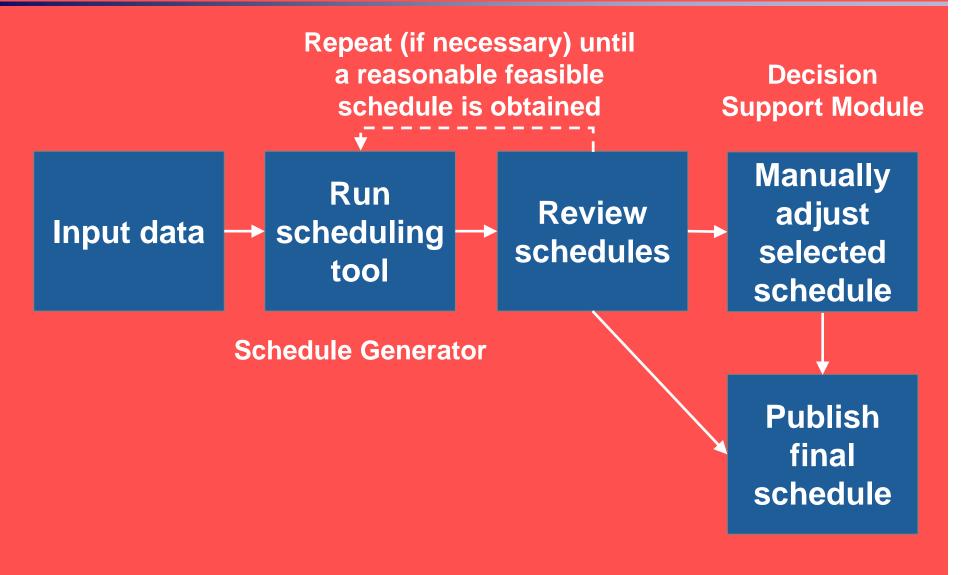
Scheduling in practice has challenges not faced in academic research

- Human element—hard to measure quality of schedule
- Cannot relax constraints of our choosing
- Time constraints for developing model and solution

The difficulties of personalized education Novel challenges of this scheduling problem

Individualized instruction results in a large number of constraints about which courses cannot take place at the same time

- E.g., if a student is required to take Algebra and Biology, these two courses must be scheduled for different times
- Students in the same grade do not always take the same set of courses, so a large number of *conflict sets* arises


The difficulties of personalized education Unique constraints to satisfy

Teachers	Courses	Rooms			
Availability					
Union laws	Capacity				
Max load	# meetings	Flexibility			
Common planning	Single/double pds				
Co-taught/t					

	Ribbon Schedule					
	Α	В				
1	Algebra	Algebra				
2	Phys Ed	Music				
3	Lunch	Lunch				
4	Biology	Biology				

Non-ribbon Schedule					
	Α	В			
1	Algebra	Biology			
2	Phys Ed	Biology			
3	Lunch	Algebra			
4	Biology	Lunch			

Developing a tool to automate scheduling

Agenda

Operational problem Solution approach

Challenges

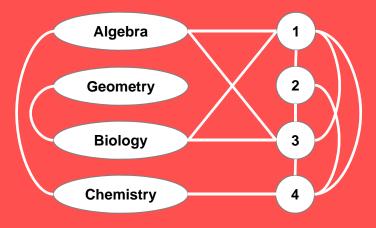
- Constructing the graph
- Handling graphs that cannot be colored in k colors
- Scheduling electives
- Adhering to course capacities

Implementing our solution in practice

Choosing an approach

This problem has not previously been explored

- Existing problems are course scheduling, school timetabling, and student scheduling
- This problem contains the complexities of all three


Some approaches to existing scheduling problems

- Direct heuristics
- Graph coloring, bipartite matching, network flow
- Integer programming
- Evolutionary algorithms and simulated annealing

Model

Problem is modeled as a graph

- One node for each course meeting
- One node for each period
- Edges represent the relationship "cannot take place at the same time"

The problem reduces to graph coloring

Generating schedules

1. List of constraints

2. Graph representation

2

3

4

Stu

Ade

Ade

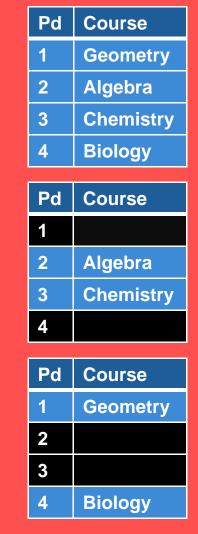
Anj

Anj

Algebra

Geometry

Biology


Chemistry

151 0			Period Available				
dent	Course	Course	Teacher	1	2	3	4
eline	Algebra	Algebra	Euclid		\checkmark		\checkmark
eline	Chemistry	Geometry	Des Cartes	\checkmark	\checkmark	\checkmark	\checkmark
juli	Geometry	Biology	Darwin		\checkmark		\checkmark
juli	Biology	Chemistry	Curie	\checkmark	\checkmark	\checkmark	

4. Publish schedule

2

3

3. Colored graph

Algebra

Geometry

Biology

Chemistry

Agenda

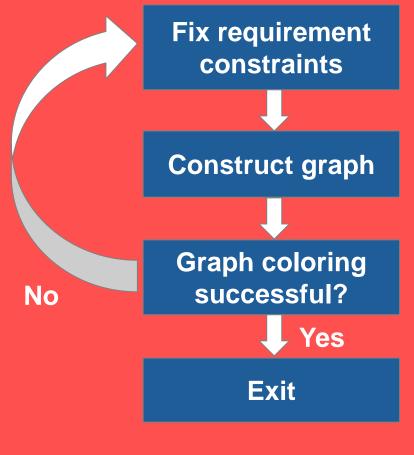
Operational problem Solution approach Challenges

- Constructing the graph
- Handling graphs that cannot be colored in k colors
- Scheduling electives
- Adhering to course capacities

Implementing our solution in practice

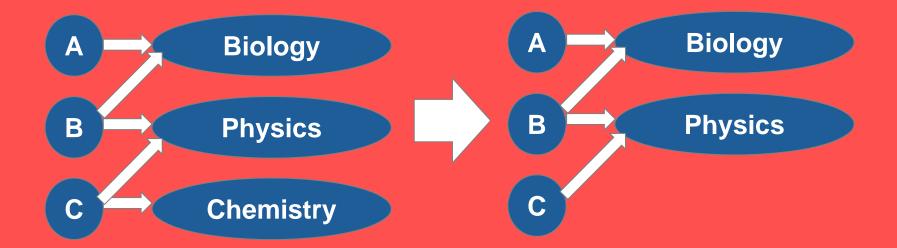
Constructing the graph

In some cases, a student has choices about how to satisfy a course requirement.


 Example: a student may be required to take Algebra and either Biology or Chemistry

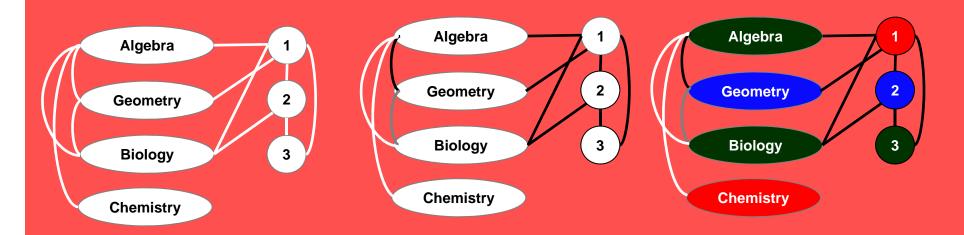
This gives us choices about how to construct our graph

 In the above example, *either* Algebra and Biology cannot take place at the same time *or* Algebra and Chemistry cannot take place at the same time


Constructing the graph

To avoid exploring all combinations of student requirements:

Constructing the graph Generating a minimum conflict set


To increase the likelihood that the graph is colorable, we construct what we call a *minimum conflict set,* a set of constraints that is designed to be as small as possible while still accounting for all student requirements.

Handling graphs that cannot be colored in *k* colors

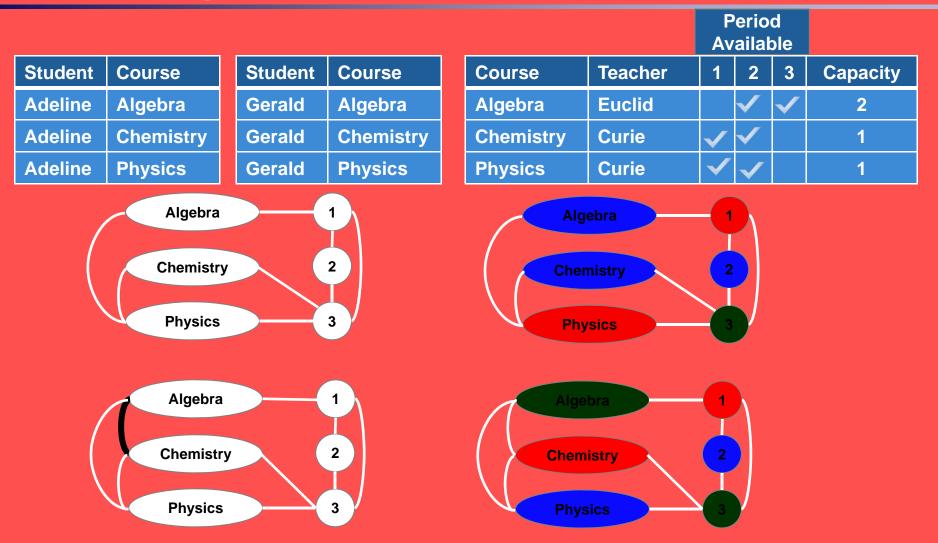
Student	Course	Student	Course
Adeline	Algebra	Gerald	Geometry
Adeline	Chemistry	Gerald	Biology
Anjuli	Geometry	Mitchell	Algebra
Anjuli	Biology	Mitchell	Biology

			Perio Vailat	
Course	Teacher	1	2	3
Algebra	Euclid		\checkmark	\checkmark
Geometry	Euclid		\checkmark	\checkmark
Biology	Darwin			\checkmark
Chemistry	Curie	\checkmark	\checkmark	\checkmark

Nodes are colored to minimize impact to students

Analytics Operations Engineering, Inc.

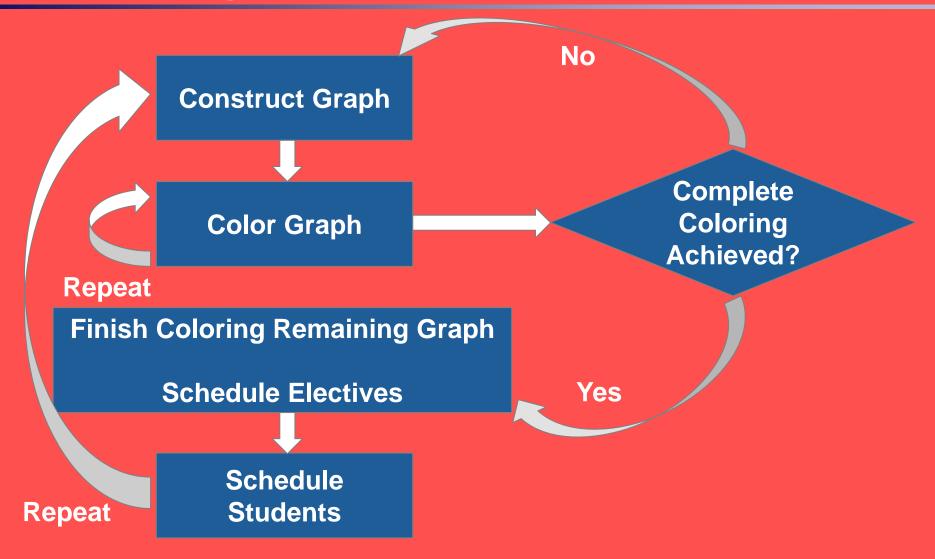
Scheduling electives



Art class

Scheduling electives is a tradeoff between number of electives scheduled and equity across students

- Electives scheduled in order of popularity to maximize number of students who get an elective
- Priority given to students who did not get their first choice in order to achieve equity


Adhering to course capacities

Capacities must be taken into account in the graph construction step

Analytics Operations Engineering, Inc.

Overall algorithm

Agenda

Operational problem Solution approach Challenges

- Constructing the graph
- Handling graphs that cannot be colored in k colors
- Scheduling electives
- Adhering to course capacities

Implementing our solution in practice

Implementation: user interface

i Scl	nedule
D	eveloped for
iZ	ONE
Nyc	Public Schools
Select Parameters:	
Master Schedule	Schedules to Generate
Use CURRENT Master Schedule	# of Student Assgnmts per MS: 5
Find NEW Master Schedule	
2 Click on Create Schedule:	Create Schedule

Ar

Sample Inputs

Teacher Course Load

		# 2-PD	# 1-PD			REQ'D		
COURSE	SEC #	BLKS	BLKS	SIZE	SUBJ	ROOM	TEACHER #1	TEACHER #2
GEOMETRY	1	1	0	25	MATH	101	EUCLID	
GEOMETRY	2	1	0	25	MATH	101	EUCLID	
GEOMETRY	3	1	0	25	MATH	101	DESCARTES	
GEOMETRY ADV	1	1	0	25	MATH	101	EUCLID	DESCARTES

Student Requirements

LAST NAME	FIRST NAME	COURSE	REQUIRED	PREFERENCE
SMITH	JOHN	GEOMETRY	Y	
SMITH	JOHN	BIOLOGY	Y	2
SMITH	JOHN	CHEMISTRY	Y	1
SMITH	JOHN	ENGLISH	Y	
SMITH	JOHN	US HISTORY	Y	
SMITH	JOHN	FRENCH	Y	1
SMITH	JOHN	SPANISH	Y	2
SMITH	JOHN	ART	N	3
SMITH	JOHN	MUSIC	N	2
SMITH	JOHN	TENNIS	N	1
SMITH	JOHN	SWIM		4

Implementation: user interface

Sample Outputs

	Teacher Schedule				
	MR. EUCLID				
	А	В			
1	GEOMETRY/SEC 1/RM 101	GEOMETRY/SEC 1/RM 101			
2	GEOMETRY/SEC 2/RM 101	GEOMETRY/SEC 2/RM 101			
3					
4		ADVISORY EUCLID/SEC 1/RM <none></none>			
5	GEOMETRY/SEC 3/RM 101	GEOMETRY/SEC 3/RM 101			
6	PLANNING EUCLID DESCARTES/SEC 1/RM <none></none>				
7		PLANNING MATH DEPT/SEC 1/RM <none></none>			
8	GEOMETRY ADV/SEC 1/RM 101	GEOMETRY ADV/SEC 1/RM 101			

Student Schedule

	JOHN SMITH					
	А	В				
1	CHEMISTRY/SEC 1/RM 303	CHEMISTRY/SEC 1/RM 303				
2	SPANISH/SEC 1/RM 102	SPANISH/SEC 1/RM 102				
3	ART/SEC 1/RM ART	STUDY HALL/SEC 1/RM 201				
4	LUNCH/SEC 1/CAFETERIA	ADVISORY NEWTON/SEC 1/RM <none></none>				
5	GEOMETRY/SEC 3/RM 101	GEOMETRY/SEC 3/RM 101				
6	ENGLISH/SEC 2/RM 404	ENGLISH/SEC 2/RM 404				
7	TENNIS/SEC 1/RM TENNIS	TENNIS/SEC 1/RM TENNIS				
8	US HISTORY/SEC 1/RM 505	US HISTORY/SEC 1/RM 505				

Analytics Operations Engineering, Inc.

Using our solution in schools

The iSchedule tool has been introduced to 3 schools

"Current NYC Department of Education technology would not meet my scheduling needs, as we have a number of innovative programs that exceed the current technology. The iSchedule allows me to consider *all of the constraints* that are presented by a variety of student and teacher needs, *rather than using a one-size-fits-all model.*

Through this tool, I can generate many schedules that represent different priorities, and then choose amongst them. Allowing me to weigh the pros and cons of each schedule ensures that we are making the most informed decisions to best meet students' needs. By meeting our students' physical, academic, social and emotional needs, we are able to push them closer to the rigor necessary in college and the workforce."

> -Jaime Dubei Principal at Queens Collegiate

Future work

Improvements to algorithm

- Incorporate evolutionary or machine learning algorithm into graph construction or graph coloring
- Diagnose scheduling bottlenecks

Improvements to user interface

Refine based on principals' feedback

NYC wants to get more schools on board every year

Conclusions

- Individualized instruction poses a novel and challenging scheduling problem
- iSchedule presents one possible solution based on randomization, graph theory, and direct heuristics
- Implementation at iZone schools is successful
- Incorporating machine learning and/or evolutionary algorithms can improve the quality of schedules and speed of generation

Q&A