Multidirectional subspace expansion for singleand multi-parameter Tikhonov regularization SIAM LA15

lan Zwaan

Department of Mathematics and Computer Science Eindhoven University of Technology

October 27, 2015

Introduction

What?

Consider a (large scale) least squares problem

$$A\mathbf{x} \approx \mathbf{b}, \quad \mathbf{b} = A\mathbf{x}_{\star} + \mathbf{n}, \quad \|\mathbf{n}\| = \epsilon,$$

where A is sparse and ill-conditioned \leadsto need regularization.

We will investigate general form Tikhonov regularization

$$\arg\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|^2 + \mu \|L\mathbf{x}\|^2,$$

and multi-parameter Tikhonov regularization

$$\underset{\pmb{x}}{\arg\min} \|A\pmb{x} - \pmb{b}\|^2 + \sum_{i=1}^{\ell} \mu^i \|L^i \pmb{x}\|^2.$$

Introduction Why?

Usually use general form or multi-parameter for better solutions.

- ▶ N(L) is not penalized
- L can dampen unwanted properties
- ▶ L' when additional prior information is available

General form can be transformed to standard form:

$$\underset{\mathbf{y}}{\operatorname{arg\,min}} \|A(I - (A(I - L^{\dagger}L))^{\dagger}A)L^{\dagger}\mathbf{y} - \mathbf{b}\|^{2} + \mu \|\mathbf{y}\|^{2},$$

$$\mathbf{y} = L\mathbf{x},$$

but can be cumbersome to compute and deal with.

Impossible for multi-parameter.

Standard form

Standard form Tikhonov regularization ($\mu > 0$)

$$\underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|A\boldsymbol{x} - \boldsymbol{b}\|^2 + \mu \|\boldsymbol{x}\|^2$$

Create orthogonal bases U_{k+1} and V_k with Golub–Kahan–Lanczos bidiagonalization:

$$A^* U_k = V_k B_k^*$$
$$AV_k = U_{k+1} \bar{B}_k$$

 \bar{B}_k is lower-bidiagonal and B_k is the upper square part of \bar{B}_k .

Standard form

New problem becomes

$$\min_{\mathbf{x} \in \mathcal{V}_k} ||A\mathbf{x} - \mathbf{b}||^2 + \lambda ||\mathbf{x}||^2
= \min_{\mathbf{c}} ||AV_k \mathbf{c} - \mathbf{b}||^2 + \mu ||V_k \mathbf{c}||^2
= \min_{\mathbf{c}} ||\bar{B}_k \mathbf{c} - \beta \mathbf{e}_1||^2 + \mu ||\mathbf{c}||^2.$$

Now
$$\mathbf{x}_k = V_k \mathbf{c} \in \mathcal{V}_k$$
, where

$$\mathcal{V}_{k} = \text{span}(V_{k})$$

= $\mathcal{K}_{k}(A^{*}A, A^{*}\boldsymbol{b})$
= $\text{span}\{A^{*}\boldsymbol{b}, (A^{*}A)A^{*}\boldsymbol{b}, \dots, (A^{*}A)^{2}A^{*}\boldsymbol{b}, (A^{*}A)^{k-1}A^{*}\boldsymbol{b}\}.$

General form

Consider again general form Tikhonov regularization

$$\arg\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|^2 + \mu \|L\mathbf{x}\|^2$$

One possibility is to generate V_k as before and compute

$$LV_k = W_k K_k$$

and

$$\min_{\mathbf{x} \in \mathcal{V}_k} ||A\mathbf{x} - \mathbf{b}||^2 + \mu ||L\mathbf{x}||^2
= \min_{\mathbf{c}} ||AV_k \mathbf{c} - \mathbf{b}||^2 + \mu ||LV_k \mathbf{c}||^2
= \min_{\mathbf{c}} ||\bar{B}_k \mathbf{c} - \beta \mathbf{e}_1||^2 + \mu ||K_k \mathbf{c}||^2.$$

Another approach

Lampe, Reichel, and Voss (2012) compute

$$AV_k = U_{k+1}\bar{H}_k$$
 $LV_k = W_kK_k$

as before, but expand with

$$A^*b - (A^*A + \mu_k L^*L)V_k c.$$

Has the following nice properties:

- \triangleright orthogonal to V_k in exact arithmetic
- gradient of objective function in Xk
- residual of the normal equations

Easy to extend to multi-parameter regularization

$$A^*b - (A^*A + \sum_{i=1}^{\ell} \mu_k^i L^{i*}L^i)V_k c.$$

Only one new basis vector per iteration!

Multidirectional subspace expansion.

Effectively expand with

$$(A^*A + \sum_{i=1}^{\ell} \mu_k^i L^{i*} L^i) V_k c.$$

Q: Optimal? Or can we find a "better" linear combination of

$$A^*A\mathbf{x}_k$$
, $L^{1*}L^{1}\mathbf{x}_k$, ..., $L^{\ell*}L^{\ell}\mathbf{x}_k$.

A: Not (reliably) without extra MVs.

With extra MVs: expand with each term.

Downside: $\ell+1$ new basis vectors per iteration!

Solution: keep only the "best" and remove ℓ vectors per it.

N.B.: ℓ is often small, e.g., $\ell \leq 3$.

Step-by-step

In iteration k+1

- Expand basis with $\ell+1$ new vectors and obtain $V_{k+\ell+1}$.
- ▶ Select regularization parameters μ_{k+1} and compute $c_{k+\ell+1}$.
- Compute orthonormal matrix Z such that Zc_{k+1:k+ℓ+1} = ξe₁.
- Observe that

$$V_{k+\ell+1}c_{k+\ell+1}=V_kc_{1:k}+V_{k+1:k+\ell+1}Z^*(\xi e_1).$$

- ▶ Multiply the last $\ell + 1$ columns of $V_{k+\ell+1}$ by Z^* .
- ▶ Multiply the last $\ell + 1$ columns of $\overline{H}_{k+\ell+1}$ by Z^* .
- ▶ Multiply the last $\ell + 1$ columns of $K_{k+\ell+1}^i$ by Z^* .

Step-by-step

Need to make $\bar{H}_{k+\ell+1}$ UH and $K_{k+\ell+1}^i$ UT.

- ► Compute P such that $P\bar{H}_{k+2:k+\ell+2,k+1:k+\ell+1}$ is UT.
- Compute Q such that QKⁱ_{k+1:k+ℓ+1,k+1:k+ℓ+1} is UT.
- ▶ Apply P and Q to the bottom rows of $\bar{H}_{k+\ell+1}$ and $K_{k+\ell+1}^i$.
- ▶ Multiply the last $\ell + 1$ columns of $U_{k+\ell+2}$ by P^* .
- Multiply the last ℓ + 1 columns of Wⁱ_{k+ℓ+1} by Q*.
- We now have a similar decomposition as at the start

$$AV_{k+\ell+1} = U_{k+\ell+2}\bar{H}_{k+\ell+1}, \quad L^iV_{k+\ell+1} = W^i_{k+\ell+1}K^i_{k+\ell+1},$$

but with our approximation in $span(V_{k+1})$.

Example

Expand V_1 with A^*Av_1 and L^*Lv_1 . Compute

$$AV_{1+2} = U_{2+2}\bar{H}_{1+2}, \quad LV_{1+2} = W_{1+2}K_{1+2}$$

Select μ_2 and compute c_{1+2} , Z, P, and Q.

$$\frac{\bar{H}_{1+2}}{0} \xrightarrow{\bar{H}_{1+2}} \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{bmatrix} \xrightarrow{\bar{H}_{2:3}Z^*} \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix} \xrightarrow{P\bar{H}_{3:4,2:3}Z^*} \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{bmatrix}$$

$$\frac{K_{1+2}}{0} \xrightarrow{\begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{bmatrix}} \xrightarrow{K_{2:3}Z^*} \xrightarrow{\begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix}} \xrightarrow{QK_{2:3,2:3}Z^*} \xrightarrow{\begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{bmatrix}}$$

Now truncate.

Review

Methods for one parameter: L-Curve, GCV, ..., discrepancy.

For discrepancy solve

$$\phi_k(\mu) = \|A\mathbf{x}_k(\mu) - \mathbf{b}\|^2 = (\eta \epsilon)^2 \qquad (\eta > 1),$$

where

$$\mathbf{x}_k(\mu) = \underset{\mathbf{x}}{\operatorname{arg min}} \|A\mathbf{x} - \mathbf{b}\|^2 + \mu \|L\mathbf{x}\|^2.$$

Easy with SVD or GSVD.

Problem for multiple parameters...

Review

Discrepancy for multi-parameter

- ▶ Brezinski, Kilmer, and Miller (2003)
- Lu, Pereverzev, Shao, and Taunenhahn (2011)
- ► Gazzola and Novati (2013)

Ideas

Consider

$$\underset{\boldsymbol{x}}{\arg\min} \|A\boldsymbol{x} - \boldsymbol{b}\|^2 + \mu \left(\sum_{i=1}^{\ell} \omega^i \|L^i \boldsymbol{x}\|^2 \right).$$

Choose μ s.t. the discrepancy principle is satisfied.

Choose ω^i to "undo" scaling and more?

Let
$$\mu^i$$
 s.t. $\phi^i(\mu^i) = (\eta \epsilon)^2$ and
$$x^i(\mu) = \underset{\mathbf{x}}{\arg\min} \|A\mathbf{x} - \mathbf{b}\|^2 + \mu \|L\mathbf{x}\|^2$$

Take

$$\omega^i = \frac{1}{\|D\mathbf{x}^i(\mu^i)\|}$$

Continued

What happens if we scale any of the terms?

$$\operatorname*{arg\,min}_{\tilde{\boldsymbol{x}}}\|\alpha A\tilde{\boldsymbol{x}} - \beta \boldsymbol{b}\|^2 + \sum_{i=1}^{\ell} \tilde{\mu}^i \|\lambda^i L^i \tilde{\boldsymbol{x}}\|^2$$

The noisy component of βb is simply βn and $\|\beta e\| \leq \beta \epsilon$, hence discrepancy becomes

$$\|\alpha A\tilde{\mathbf{x}} - \beta \mathbf{b}\| = \beta \eta \epsilon,$$

which is satisfied when

$$\tilde{\mathbf{x}} = \beta/\alpha \mathbf{x}$$
, and $\tilde{\mu}^i = \alpha^2/\lambda^2 \mu^i$.

Continued

Choosing ω^i to "undo" scaling implies $\tilde{\mu}^i = \mu \tilde{\omega}^i$.

Need $\tilde{\omega}^i$ s.t. $\tilde{\omega}^i = \alpha^2/(\lambda^i)^2 \omega^i$ but

$$\omega^i = \frac{1}{\|D\mathbf{x}^i(\mu^i)\|} \sim \frac{\alpha^3}{(\lambda^i)^2\beta}$$

Easy fix

$$\omega^{i} = \frac{\|\mathbf{x}^{i}(\mu^{i})\|}{\|D\mathbf{x}^{i}(\mu^{i})\|} \sim \frac{\beta}{\alpha} \frac{\alpha^{3}}{(\lambda^{i})^{2}\beta} = \frac{\alpha^{2}}{(\lambda^{i})^{2}}$$

Alternative

$$\omega^{i} = \frac{\|A\mathbf{x}^{i}(\mu^{i})\|}{\|DA\mathbf{x}^{i}(\mu^{i})\|}$$

Results

Results

Setup

1D

- Problems from Regularization tools (Hansen, 1994)
- $\epsilon = 0.01 \| \boldsymbol{b} \|$, $\eta = 1.01$.
- Differential regularization operator and orthogonal projection.

2D

- ▶ 412x412 image blurred with $\sigma = 5$ and half-bandwidth 11.
- Total-variation type regularization based on the Perona–Malik diffusion equation.
- $\epsilon = \mathbb{E}[\|\mathbf{n}\|] = 0.05\|\mathbf{b}\|$, η s.t. $\|\mathbf{n}\| \le \eta \epsilon$ in 99.9% of the cases.

Results

Table: Median error of 100 runs for different problems.

Problem	Single	Multi	Ratio
Baart	$1.73 \cdot 10^{-1}$	$3.04 \cdot 10^{-2}$	$1.76 \cdot 10^{-1}$
Deriv2-1	$2.25 \cdot 10^{-1}$	$3.81 \cdot 10^{-3}$	$1.69 \cdot 10^{-2}$
Deriv2-2	$2.29 \cdot 10^{-1}$	$1.98 \cdot 10^{-2}$	$8.65 \cdot 10^{-2}$
Deriv2-3	$4.36 \cdot 10^{-2}$	$4.32 \cdot 10^{-2}$	$9.91 \cdot 10^{-1}$
Foxgood	$3.28 \cdot 10^{-2}$	$2.42 \cdot 10^{-3}$	$7.38 \cdot 10^{-2}$
Gravity-1	$3.68 \cdot 10^{-2}$	$1.80 \cdot 10^{-2}$	$4.89 \cdot 10^{-1}$
Gravity-2	$5.54 \cdot 10^{-2}$	$4.00 \cdot 10^{-2}$	$7.22 \cdot 10^{-1}$
Gravity-3	$1.01 \cdot 10^{-1}$	$9.13 \cdot 10^{-2}$	$9.06 \cdot 10^{-1}$
Heat-5	$1.01 \cdot 10^{-2}$	$1.01 \cdot 10^{-2}$	$1.00 \cdot 10^{+0}$
Heat-1	$8.51 \cdot 10^{-2}$	$8.79 \cdot 10^{-2}$	$1.03 \cdot 10^{+0}$
Phillips	$2.36 \cdot 10^{-2}$	$2.07 \cdot 10^{-2}$	$8.75 \cdot 10^{-1}$
Shaw	$1.12\cdot 10^{-1}$	$1.12\cdot 10^{-1}$	$1.00 \cdot 10^{+0}$

Results

Figure: Approximating the solution from baart (blue) with single (red) and multidirectional (yellow) subspace expansion.

Gaussian blur

Figure: Blur test case; original (left), blurred and noisy (middle), and reconstructed (right).

Gaussian blur convergence

Figure: Blur test case; PSNR vs iteration number and single (blue) vs multidirectional (red) subspace expansion.

Gaussian blur performance

Table: The number of matrix-vector products and wall clock time used by the different methods.

Method	Total	Α	A *	L	L*	Time (s)
Single	599	150	150	150	149	46.5
Multi	857	279	150	279	149	56.9
Parity	629	203	112	203	111	37.3

Q: Why can we beat "Single" even though we use more MVs?

A: Because we can exploit blocking operations.