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Introduction
What?

Consider a (large scale) least squares problem
Ax=b, b=Ax.+n, |n||=e¢,
where A is sparse and ill-conditioned ~~ need regularization.

We will investigate general form Tikhonov regularization

arg min ||Ax — b||? + p|| Lx||?,
X

and multi-parameter Tikhonov regularization

¢
arg min ||Ax — b||* + Z w'||L x||2.
> i=1



Introduction
Why?

Usually use general form or multi-parameter for better solutions.
» N(L) is not penalized
» [ can dampen unwanted properties

» L' when additional prior information is available

General form can be transformed to standard form:
arg min | A(1 — (A(I — L'L)! A)Lly — Bl + uly |,
¥ B

but can be cumbersome to compute and deal with.

Impossible for multi-parameter.



Review
Standard form

Standard form Tikhonov regularization (i > 0)

arg min [|Ax — b||* + u||x||?
X

Create orthogonal bases Ui+ and Vi with Golub—Kahan—Lanczos
bidiagonalization:

AUy = VB
AVi = Up41Bx

By is lower-bidiagonal and By is the upper square part of B.



Review
Standard form

New problem becomes

min ||Ax — b||? + \||x]|?
xeVy

= min [|AVie — b]|* + | Viee|

= min ||Bee — e |2 + e

Now x; = Vi c € Vi, where

Vi = span( V)
= Kx(A*A, A*b)
= span{A*b, (A*A)A*Db, ..., (A*A)2A*b, (A*A)¥1A*b}.



Review

General form

Consider again general form Tikhonov regularization

BT [ b|| + pl| Lx]|?

One possibility is to generate V), as before and compute
LV, = Wi Ky

and

min [|Ax — bl|* + p| Lx||°

xeV,
= min || AVicc — b]|* + p|| LVic]|?

= min |Bxe — Bey||* + p||Kic||?.



Review

Another approach
Lampe, Reichel, and Voss (2012) compute

AV) = U1 Hxk LV, = WKk
as before, but expand with
A*b — (A*A+ u L* L) Vic.

Has the following nice properties:
» orthogonal to Vj in exact arithmetic
» gradient of objective function in xi
» residual of the normal equations

Easy to extend to multi-parameter regularization
A*b— (A*A+ Y iy piL* L) Ve

Only one new basis vector per iteration!



Multidirectional subspace
expansion.



Multidirectional expansion
Idea

Effectively expand with
(A A+ 5 i L* e,

Q: Optimal? Or can we find a “better” linear combination of
Aoy, P oy TP

A: Not (reliably) without extra MVs.

With extra MVs: expand with each term.

Downside: £ + 1 new basis vectors per iteration!

Solution: keep only the “best” and remove ¢ vectors per it.
N.B.: 7 is often small, e.g., £ < 3.



Multidirectional expansion
Step-by-step

In iteration k + 1
» Expand basis with £ + 1 new vectors and obtain V. /..
» Select regularization parameters pty .1 and compute €.z 1.
» Compute orthonormal matrix Z such that Z¢g . 1.410001 = £e4.
» Observe that

Vik+e+1Ck+e+1 = Vik€Cik + Vikrrk+e1Z7 (€€1).

» Multiply the last £ + 1 columns of Vj.s.1 by Z~.
» Multiply the last # + 1 columns of Hyx.si1 by Z*.
» Multiply the last £ + 1 columns of K,£+£+1 by Z*.



Multidirectional expansion
Step-by-step

Need to make Hys+1 UH and K., ; UT.

>

Yy ¥ ¥V ¥

Compute P such that PFlk+2;k+[’+2,k+1;k+€+1 is UT.
Compute @ such that QKIi+1;k+£+1.k+1:k+£+1 is UT.
Apply P and Q to the bottom rows of Hy s.1 and K[, ;.
Multiply the last £ + 1 columns of Uy .2 by P*.

Multiply the last £ + 1 columns of W, ,.; by Q*.

We now have a similar decomposition as at the start

AVicrer1 = UkreraHirer1,  U'Viren = Wi Ko

but with our approximation in span( Vj.1).



Multidirectional expansion

Example

Expand V; with A*Av; and L*Lv;. Compute

AVy1o = UsyoHy 4,

Select j1» and compute €147, Z, P, and Q.

Hyso

—

K1+2
—>

Now truncate.
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Parameter selection.



Parameter selection

Review

Methods for one parameter: L-Curve, GCV, ..., discrepancy.

For discrepancy solve

Sk(p) = [|Ax(i) — B|* = (ne)®>  (n>1),
where

Xi () = arg min || Ax — BI|* + u| Lx]>

Easy with SVD or GSVD.

Problem for multiple parameters...



Parameter selection

Review

Discrepancy for multi-parameter
» Brezinski, Kilmer, and Miller (2003)
» Lu, Pereverzev, Shao, and Taunenhahn (2011)
» Gazzola and Novati (2013)



Parameter selection

ldeas
Consider

¢
argxmin |Ax — b||? + p (Z w'||L’x||2) ;

=l

Choose jt s.t. the discrepancy principle is satisfied.
Choose w' to “undo” scaling and more?
Let i s.t. ¢'(u') = (ne)? and

x'(1) = arg min | Ax — BI|* + u Lx|*

Take
1

 [IDx7 ()]

u;i




Parameter selection
Continued

What happens if we scale any of the terms?
f‘ - . .
arg min [|aAX — Bb|* + ) " @INL'x|?
% i=1

The noisy component of 3b is simply 5n and ||Ze| < 3¢, hence
discrepancy becomes

|laAx — Bb|| = [ne,
which is satisfied when

X =pB/ax, and f' =/



Parameter selection
Continued

Choosing w' to “undo” scaling implies i’ = ud'.

Need @' s.t. @' = a?/(N)?w' but

; 1 o’
Ay = = - ~J - 2
[1Dx(p')||  (A)?8
Easy fix
il o ||xi(ﬂi)|| Né ‘—'}'3 - a.z
IDx'(p)||  a(A)23  (AF)?
Alternative
i 1A (u!)]]

)

|| DAXi ()]
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Results



Results
Setup

1D

>

>

>

2D

Problems from Regularization tools (Hansen, 1994)
e = 0.01||b||, n = 1.01.

Differential regularization operator and orthogonal projection.

412x412 image blurred with & = 5 and half-bandwidth 11.

Total-variation type regularization based on the Perona—Malik
diffusion equation.

e = El[||n||]] = 0.05||b||, 1 s.t. ||m|| < ne in 99.9% of the cases.



Numerical experiments

Results

Table: Median error of 100 runs for different problems.

Problem Single Multi Ratio

Baart 1.73-107 304-10% 1.76-10
Deriv2-1 225-10"! 381-10=3 1.69-102
Deriv2-2 229.100! 108-1072 8.65-102
Deriv2-3 436-10"2 432-1072 090.01-101
Foxgood 3.28-10"2 242-10—3 7.38-102
Gravity-1 3.68-10~2 1.80-102 4.89-101
Gravity-2 5.54-10~2 4.00-10~2 7.22-101
Gravity-3 1.01-100! 0.13-102 0.06-101
Heat-5 101-1072 1.01-100%2 1.00-10%9
Heat-1 8§51-100¢ 879-10~2 1.03-10%°
Phillips  2.36-10-2 207-10-2 8.75-10!
Shaw 1.12-10* 112:10* 1.00-10*°




Numerical experiments

Results
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Figure: Approximating the solution from baart (blue) with single (red)
and multidirectional (yellow) subspace expansion.



Numerical experiments

Gaussian blur

Figure: Blur test case; original (left), blurred and noisy (middle), and
reconstructed (right).



Numerical experiments

Gaussian blur convergence
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Figure: Blur test case; PSNR vs iteration number and single (blue) vs
multidirectional (red) subspace expansion.



Numerical experiments

Gaussian blur performance

Table: The number of matrix-vector products and wall clock time used by
the different methods.

Method Total A A" L L° Time (s)

Single 509 150 150 150 149 46.5
Multi 857 279 150 279 149 56.9
Parity 620 203 112 203 111 37.3

Q: Why can we beat “Single” even though we use more MVs?
A: Because we can exploit blocking operations.





