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what is a tensor?
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what is a tensor?

@ for every complex question there is an answer that is clear, simple,
and wrong

@ clear, simple, and wrong answer:
“a tensor is a multiway array”

@ unfortunately also widely believed — simple answer to complex
question has its appeal
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what is a tensor?

@ indication that answer cannot be so simple: Einstein's letter to
Sommerfeld, dated October 29, 1912

e J. Earman, C. Glymour, “Lost in tensors: Einstein's struggles with
covariance principles 1912-1916," Stud. Hist. Phil. Sci., 9 (1978),
no. 4, pp. 251-278

o fortunately the last century of progress in algebra, geometry, and
physics has made tensors a lot easier to explain and understand
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why we should get it right

@ each example below contains an order-3 tensor

@ example 1: multiplication of complex numbers
(a+ bi)(c + di) = (ac — bd) + i(bc + ad)
@ example 2: matrix product

a1 az| |bi b2| _ |a1byi+ azhs aiby + axby
a3 as| |bz by asby + asbs  azby + asbs

@ example 3: Grothendieck inequality

m n < >
max E E aji (X [
§m+n—1 i=1 J:]_ y b yJ

X15--sXm, Y15, Yn€
< K, TS 5
< Kg max ) _aji€j0;
815e0n€{—1,4+1} =1 Lj=1 Y71

€15--5Em;

@ no 3-way array anywhere
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start from the familiar

@ tensors of order 0

> scalars:
elements of a field: A € R, C, etc

more generally a commutative ring: Z, C*>°(M), etc
@ tensors of order 1

> vectors:
elements of a vector space: v e V

> covectors:

elements of a dual vector space: v* € V*,
i,e., v¥:V — Cis a linear functional

more generally a module
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start from the familiar

@ tensors of order 2

> linear operators:
p: U=V

ie.,
<p(/\1u1 + /\2U2) = /\1QD(U1) + /\290(“2)

» bilinear functionals:
B:UxV—->C

B(Arug + Aauz, v) = A1 5(ug, v) + A2B(uz, v),
Bu, Adrvi + Aavp) = A1 B(u, vi) + A2B(u, v2)

» other possibilities: linear operators
.U =V, ¢o:U—>V" ¢:U" —>V*

and bilinear functionals

B:U"'xV—-C, B:UxV'—=C, B:U"'xV*"—=C
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first (and only) unfamiliar case

@ tensors of order 3
> bilinear operators:
B:UxV—>W

ie.,

B(Arur + Aauz, v) = A1 (ug,v) + A2B(uz, v),
Bu, Adrvi + Aavz) = A1 B(u, vi) + A2 B(u, v2)

» trilinear functionals:
7T:UxVxW-—C

T(A]_U]_ + >\2u27 v, W) = )\17'([]]_, v, W) + )\27’([]2, v, W)7
T(u, Apvy + dova, w) = Ay 7(u, v, w) + A7 (u, vo, w),
T(u, v, Aywy + Aown) = A1 7(u, v, wi) + Ao7(u, v, wp)
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first (and only) unfamiliar case

@ tensors of order 3
» other possibilities: bilinear operators

B:U'xV—-W, 8:UxV"=W,...,0:U0*xV" - W*
and trilinear functionals
T U XVXWSC, 7:UxV'xW—C,..., 7 : U xV*xW* - C

@ but they are all the same up to covariance and contravariance

@ notation:
U®V={p:U—Vlinear}
UVeW={8:UxV— W bilinear}
VieoVe®---®@Vy= {7' Vi x- - xVy_1 =2 Vy multilinear}

elements called tensors of order d or d-tensors
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bases and coordinates

@ recall: vector spaces have bases
@ recall: whenever we choose a basis, we get coordinates
@ choose bases

ug,...,unpof U, wvi,...,v,of V) wy,... w,of W
@ order 1: any u € U representable as
ai
a=|:|eC”
am

where u = "7, aju;
@ order 2: ; any linear ¢ : U — V representable as

a1 -+ din
A — . . . E Can
dml " dmn

where p(u;) =377, ajv;
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bases and coordinates

@ order 3: any bilinear 5 : U x V — W representable as

aiil - ainl aiz -+ aie2 ailp - Alnp

amil *** amnl ami12 *** amn2 amilp *** amnp

_\P

where B(u;,v;) = > )4 ajjcWi
@ d-tensors representable as d-dimensional hypermatrices
@ doesn't this mean that “tensors are multiway arrays”?
@ no on multiple levels:

> ‘“representable” is far from “identical to"
» hypermatrices are not the same as multiway arrays
» not true if U, V, W are not free modules, i.e., no bases
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tensor: first appearance of the word

Woldemar Voigt, Die fundamentalen physikalischen Eigenschaften der
Krystalle in elementarer Darstellung, Verlag Von Veit, Leipzig, 1898.

“An abstract entity represented by an array of components
that are functions of coordinates such that, under a
transformation of cooordinates, the new components are related
to the transformation and to the original components in a
definite way.”

L-H. Lim tensors in computational mathematics 13 /28



in modern language

@ hypermatrix represents tensor only if it satisfies change-of-basis rule
@ choose new bases

uy,...,up, of U, wvy,..o,vpof V.o wi,... w) of W

and let X, Y, Z be corresponding change-of-basis matrices
o if a € C™ represents u € U with respect to old basis and a’ € C™
represents it with respect to new basis, then

a’=Xla

o if Ae C™ " represents ¢ : U — V with respect to old basis and
A’ € C™*" represents it with respect to new basis, then

A = XAY 1

o if Ac C™*"*P represents 5 : U x V — W with respect to old basis
and A’ € C™*"¥P represents it with respect to new basis, then

! J—
A=(X,Y,Z7H- A
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main point

for a quantity to be defined on tensors, it must coordinate-independent,
i.e., does not depend on a choice of bases

@ invariance or equivariance under GL(V7) x -+ x GL(V4) on
Vi®- - ®Vy: eg. Ac C™*",

rank(XAY 1) = rank(A) for all (X, Y) € GLy(C) x GL,(C)

@ invariance or equivariance under action of GL(V) on V®9: e g.
A, B e Cmn,

XABX™! = (XAX1)(XBX™1) forall X € GL,(C)
@ or invariant under more restrictive changes of bases
det(XAX 1) = det(A) for all X € SL,(C)
IXAY*|l. = ||A|l« for all (X,Y) € Uny(C) x U,(C)
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example

@ many recent proposals for “multiplying higher-order tensors” — do
they make sense?

@ start with the simplest case

n b n -b: P n -b:
a1 a2 v Al by b - b1 ZJ",:I a1jbji Z{;:l aijbj Z_’/;:l ajbjn
a1 an o ap by bp - by Yiiaiby Xilganibp -0 3 agibj

. . R I . = . . . .
a A - amn bpp bpp -+ bnp Simranby Xiganbp 0 Xy anbp
i a2 - Al by b - bip ajnbin appbp c-- apbiy
a  ap v A by by - byp ap1bor  apbyp - b2y
. . ol . = . . . .
a1 am ot amn bpi by o+ bpp anibpt  ap2bp2 - annbpn

@ usual product x defines a product of 2-tensors
@ Hadamard product o only defines a product of matrices

@ nothing to do with ring structure: (C"*" 4, x), (C"*" 4, 0) both
rings
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which bases should we choose?
@ order 1: given u € U, choose basis so that u is represented by

1

0
A

0
get one-dimensional problem depending on A € C
@ order 2: given ¢ : U — V, choose bases so that ¢ is represented by

01

Or

0

get r-dimensional problem depending on o € C" where r = rank(y)
@ e.g., best bases could be given by left and and right singular vectors
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which bases to choose?

best bases depend on the tensor in your problem

@ depend on your problem too: may want smallest r so that

r
A: Z,:]_O-’u®v

i.e., rank of ¢
@ or may want smallest o1 + - -+ + o, i.e., nuclear norm of A

@ note that rank (invariant under general linear transformation) and
nuclear norm (invariant under unitary transformations) defined on
2-tensors

@ extends to higher-order tensors
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rank, decomposition, nuclear norm

@ goal: compute bilinear operation
B:UxV—->W
@ tensor rank [Hitchcock, 1927]
. r
rank(3) = min {r B = Zi:l AU QV; ® w,-}

gives least number of multiplications needed to compute 3
@ tensor decomposition

r
8= Zi:l AiU; ® Vi ® w;

gives an explicit algorithm for computing 5
@ tensor nuclear norm [LHL-Comon, 2010; Derksen, 2016]

. r r
18 =inf {37 IN:a=3"" Aweview, reN}
quantifies optimal numerical stability of computing 3
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fast(est) algorithms

@ bilinear complexity: counts only multiplication of variables, ignores
addition, subtraction, scalar multiplication
@ Gauss's method
(a+ bi)(c + di) = (ac — bd) + i(bc + ad)
= (ac — bd) + i[(a+ b)(c + d) — ac — bd]
@ usual: 4 x'sand 2 £’s; Gauss: 3 x'sand 5 +'s
@ Strassen’s algorithm

a @ (b b _ aib + axb, B+~v+(a1+a —as—as)bs
as  as| |bs b4 a+ v+ as(b2+ bs — by — bs) a+ B+

where

a=(as—ai)(bs—bs), B =(azs+as)(bs— b1), v = a1b1 + (as + as — a1) (b1 + bs — b3)

@ usual: 8 x's and 8 &'s; Strassen: 7 x's and 15 &'s
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complexity of Gauss's method

e 3:CxC—C, (z,w)— zw is R-bilinear map
o BeR>®R%®R? is a tensor
@ choose basis e; = (1,0), e = (0,1) € R?, get hypermatrix

_ 1 0 01 2X2x%x2
i=o 2] 1o ]ex

@ usual multiplication
f=(e1®e1—exRe)Re;+(e1Rer+er®e;)Rer

@ Gauss multiplication

ﬂ:(e1+e2)®(e1+e2)®e2
t+te;®e;®(e;—e) —ex ey ® (e1 + e)

o rank(8) = 3 = rank(8) [De Silva-LHL, 2008]
Y



stability of Gauss's method
@ nuclear norm
181« = 4
@ attained by usual multiplication

/B:(el®el_e2®e2)®el+(el®e2+82®el)®e2

@ but not Gauss multiplication

B=(e1+e)®(e1+e)®er
+te1Re;R(e; —e) —er e ® (e +e)
coefficients (upon normalizing) sums to 2(1 + v/2)

@ Gauss's algorithm less stable than the usual algorithm
@ optimal bilinear complexity and stability:

4 \/§ 1 ®3 \/g 1 ®3 93

p=3 < [2e1 + 282] + [—2e1 + 282] + (—e2) >
attains both rank(3) and ||3]|« [Friedland—LHL, 2016]
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matrix multiplication tensor

G Cf |91 a b1 b2
cs ca| |a3 aa| |b3s ba

@ write
n2 n2
Ck = Zi:l 21:1 Wijkaibj
@ suppose .
Hijk = szl UipVipWkp
then

r ( I'l2 I12 b
Ck = E w, E u; a-> (E V; )
k p=1 kp PR j=1 P

e more generally, hypermatrix fim np = (pijjx) € C™"*"PXMP represents
matrix multiplication tensor

[T CMXn o CNXP _y CMXP
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complexity = tensor rank

@ write iy = fin,n,n, i.€., Mmatrix multiplication tensor for square matrices

e number of multiplications given by rank(u,)

@ asymptotic growth
» usual: O(n%)
earliest: O(n'°827) [Strassen, 1969]
longest: O(n?37477) [Coppersmith—-Winograd, 1990]
recent: O(n?3728%42) [Williams, 2011]
latest: O(n?3728639) [Le Gall, 2014]
exact: O(n*) where

vV vy VY VvYy

w = inf{a : rank(u,) = O(n®)}
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self-concordance

@ convex f : Q CR" — R self-concordant at x € Q if
[V3£(x)(h,h,h)]? < 40 [V2F(x)(h, h)]®
for all h € R" [Nesterov—Nemirovskii, 1994]

" 9%f(x) Pf(x)
2 — .
f(x)(h,h) = Gty hih, x)(h,h,h) = Y Gt o i

ij= ij k=1

@ convex programming problem may be solved to arbitrary e-accuracy in
polynomial time if it has self-concordant barrier functions (e.g. LP,
QP, SOCP, SDP, GP)

@ affine invariance of self-concordance implies that it is a property
defined on the tensors V2f(x) and V3f(x)
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Grothendieck inequality
o Ac R™X" there exists Kg > 0 such that

m n
max 0> ailxiyy)

X1ye-5Xm;¥Y1,5---5¥n i=1 J:]-
m

n
< Ke max > D 2Eid);
€150-Em,01,--,0n€{—=1,4+1} i=1 j=1 o

remarkable: K¢ independent of m and n [Grothendieck, 1953]
important: unique games conjecture and SDP relaxations of NP-hard
problems

best known bounds: 1.676 < K¢ < 1.782

Grothendieck’s constant is injective norm of matrix multiplication
tensor [LHL, 2016]

max Mm,n,m+n(A7Xa Y)
AX Y0 | Alloo,1[[X[[1,2] Y[2,00
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