
Convolution Neural Nets meet
PDE’s

Eldad Haber
Lars Ruthotto

SIAM CS&E 2017



I Convolution Neural Networks (CNN)

I Meet PDE’s

I Optimization

I Multiscale

I Example

I Future work



CNN - A quick overview
I Neural Networks with a particular architecture

I Exist for a long time (90’s), (Lecun, Hinton)

I For large amounts of data can perform very well
I Applications

I Image classification
I Face recognition
I Segmentation
I Driverless cars
I ...

I A few recent quotes:
I Apple Is Bringing the AI Revolution to Your

iPhone, WIRED 2016
I Why Deep Learning Is Suddenly Changing Your

Life, FORTUNE 2016



CNN - A quick overview
I Neural Networks with a particular architecture

I Exist for a long time (90’s), (Lecun, Hinton)

I For large amounts of data can perform very well
I Applications

I Image classification
I Face recognition
I Segmentation
I Driverless cars
I ...

I A few recent quotes:
I Apple Is Bringing the AI Revolution to Your

iPhone, WIRED 2016
I Why Deep Learning Is Suddenly Changing Your

Life, FORTUNE 2016



CNN - A quick overview

ResNet architecture
I Propagation: for j = 1, . . . ,N

Yj+1 = Yj + hσ(YjKj + bj)

I Classification
c ≈WYN



CNN - A quick overview

Yj+1 = Yj + hσ(YjKj + bj) c ≈WYN

I Y1 - data c - class

I Kj - convolution kernel

I bj - bias

I W - Classifier

Forward: Given an image y1 find its class c

Inverse (training): Given data and classes {Y1, c}
obtain Kj , bj and W that approximately classify the
given data



CNN - The optimization problem

Define a similarity measure S

min
Kj ,bj ,W

S(c,WYN)

s.t Yj+1 = Yj + hσ(YjKj + bj)

I How to solve the problem efficiently

I How to change scales

I Add robustness



CNN as ODE

Yj+1 = Yj+hσ(YjKj+bj) ↔ Ẏ = σ(YK(t)+b(t))

Path planning: Find different path’s for different
classes



Convolution and PDE’s
1D convolution

Ky = [K1,K2,K3] ∗ [y1, . . . , yn]

Change the basis

Ky = s1 ∗ [0, 1, 0] +
s2
2h
∗ [−1, 0, 1] +

s3
h2

[1,−2, 1]

y - a discretization (grid function) of y(x)
At the limit h→ 0

Ky ≈ s1y + s2
dy

dx
+ s3

d2y

dx2



CNN - continuous formulation

min
sj(t),b(t),W

S(c,WYN)

s.t Ẏ = σ

∑
j

sj(t)DjY + b(t)


Dj - differential operators

Continuous formulation - independent of resolution

Guide to move between scales and add layers



CNN - optimization

I Common - stochastic gradient descent and its
variance

I Recent work on stochastic Newton (Nocedal’s
talk on Fri)

I We use
I stochastic GN with very large sample size - SAA
I Variable projection for convex variables



Computational bottleneck

Computing YK
− y>1 −
− ... −
− ... −
− ... −
− y>s −


 K



y>i training image
For large images or 3D computationally expensive

Idea: Train on coarse mesh



Multiscale learning

Restrict the images n times
Initialize the convolution kernels and classifiers
for k = n : −1 : 1 do

Solve the optimization problem on mesh k
from its initial point
Prolong the convolution kernel to level k − 1
Update the classifier weights

end for

How to prolong the kernels?



Moving Kernels between scales

Use multigrid methodology

Approach 1 rediscretization

The Kernel represents a differential operator. Find
the operator and rediscretize.
Example in 1D

I Convolution kernel [−1 − 2 1] h = 1

I Operator: −2 + 2 d
dx − 0.5 d2

dx2

I On a mesh size h = 2 the kernel is
[−1 1 − 0.25]



Moving Kernels between scales

Use multigrid methodology

Approach 2 Galerkin

I In MG we are usually given the fine mesh
operator Kh

I The coarse mesh operator is defined as

KH = RKhP

R - restriction P - prolongation



Moving Kernels between scales - Galerkin

KH = RKhP

Fine → Coarse, but not coarse to fine

Coarse → Fine - in general, non unique

Assume the same sparsity on fine grid leads to a
unique solution

Can be computed solving a small linear system (size
of stencil)



2D example

Use MNIST library of hand writing

∗

∗

pr
o

lo
n

g
at

io
n

re
st

ri
ct

io
n

fine convolution

coarse convolution

Kh =

−0.89 −2.03 4.30
−2.07 0.00 −2.07
4.39 −2.03 1.28

 KH =

−0.48 −0.17 0.82
−0.15 −0.80 0.37
0.84 0.40 0.07

 .



Training MNIST
MNIST is a data set of labeled images of hand
written digits

Goal - automatic classification

Small images 28× 28 toy data set



Training MNIST - Experiment 1

Train on fine - classify on coarse

In some cases train using large computational
resources

In the ”field” poor resources - classify on coarse
mesh

82% success using fine mesh kernels on coarse mesh



Training MNIST - Experiment 1
confusion matrix

correctly classified as ”83089517”

incorrectly classified as ”69599339”



Experiment 2: multiscale

1 101 10
0.05
0.10
0.15
0.20

coarse meshfine mesh

iterationsob
je

ct
iv

e
fu

nc
ti

on

Multilevel convergence



Experiment 2: multiscale

1 101 10
80
85
90
95

100

coarse meshfine mesh

iterations

ac
cu

ra
cy

[%
]

Classification accuracy for fine-level and multi-level
learning.



Summary

I Proposed a new interpretation to CNN as a
PDE optimization problem

I Can move between scales

I Optimization algorithms based on Newton

I Preliminary results on MNIST

To come

I More about optimization

I Depth of network and time

I Adaptive mesh refinement



An add
Call for US students and postdocs from Iran,
Iraq, Syria, Yemen, Somalia, Libya and Sudan
If you are a student or a postdoc

1. Admitted or studying at a major US graduate
school

2. Working in the field of scientific
computing/computational science and
engineering with interest in numerical
optimization, partial differential equations or
machine learning

3. Would like to pursue a PhD degree at the
University of British Columbia

I would love to hear from you.


