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Data assimilation

t

Observations

Model

combination

model + observations

⇓

identification of the state (and/or

parameters) of a geophysical system

— 4D-VAR : optimal control method, based on the minimization of the

discrepancy between the model solution and the observations.

— Sequential methods : Kalman filtering, ensemble Kalman filters, . . .

— Hybrid methods : En-4DVar, 4D-EnVar, . . .

— Observer approach : the Back and Forth Nudging.
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⇒ 1. Nudging and observers

2. Back and Forth Nudging algorithm

3. Diffusive BFN algorithm
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Forward nudging

Let us consider a model governed by a system of ODE :

dX

dt
= F (X), 0 < t < T,

with an initial condition X(0) = x0.

Y(t) : observations of the system

H : observation operator.




dX

dt
= F (X)+K(Y −H(X)), 0 < t < T,

X(0) = X0,

where K is the nudging (or gain) matrix.

In the linear case (where F is a matrix), the forward nudging is called

Luenberger or asymptotic observer.
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Forward nudging

— Meteorology : Hoke-Anthes (1976)

— Oceanography (QG model) : De Mey et al. (1987), Verron-Holland

(1989)

— Atmosphere (meso-scale) : Stauffer-Seaman (1990)

— Optimal determination of the nudging coefficients :

Zou-Navon-Le Dimet (1992), Stauffer-Bao (1993),

Vidard-Le Dimet-Piacentini (2003)

Lakshmivarahan-Lewis (2011)
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Forward nudging : linear case

Luenberger observer, or asymptotic observer

[Luenberger, 1966]





dXtrue

dt
= FXtrue, Y = HXtrue,

dX

dt
= FX+K(Y −HX).

d

dt
(X −Xtrue) = (F−KH)(X −Xtrue)

If F − KH is a Hurwitz matrix, i.e. its spectrum is strictly included in the

half-plane {λ ∈ C;Re(λ) < 0}, then X → Xtrue when t → +∞.
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More complex observers

If the model has more than one variable (or if all components are not observed),

the standard nudging only corrects the observed variables with themselves.

⇒ extension to more complex observers, in which non observed variables are

controlled by observed ones.

Example on a 2D shallow water model :




∂h

∂t
= −∇ · (hv),

∂v

∂t
= −(v · ∇)v − g∇h

on a square domain with rigid boundaries and no-slip lateral boundary condi-

tions. These equations are derived from Navier-Stokes equations, assuming the

horizontal scale is much greater than the vertical one ⇒ conservation of mass

and of momentum.

Can we identify/correct both variables (height and velocity) if only the water

height h is observed ?
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Observer design

Any non-linear observer for this model writes :




∂h

∂t
= −∇ · (hv)+Fh(hobs, v, h),

∂v

∂t
= −(v · ∇)v − g∇h+Fv(hobs, v, h),

where F = 0 when the estimated height h is equal to the observed height hobs.

Formal requirements : symmetry preservation (invariance to translations and

rotations of the model, and then of the observer), smoothing by convolution

(noisy data), local stability (strong asymptotic convergence of the linearized

error system)

Most simple observer that should work : (smallest order of derivative)

Fh = ϕh ∗ (h− hobs), Fv = ϕv ∗ ∇(h− hobs)

with simple invariant kernels :

ϕ(x, y) = β exp(−α(x2 + y2)).
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Convergence study

Convergence on the linearized system : let δh and δv be the perturbations

around the reference state, and let h̃ = δh− δhtrue and ṽ = δv − δvtrue be the

estimation errors, solutions of

∂h̃

∂t
= −h̄ ∇ · ṽ−ϕh ∗ h̃,

∂ṽ

∂t
= −g∇h̃−ϕv ∗ ∇h̃.

Eliminating ṽ yields a modified damped wave equation with external viscous

damping :

∂2h̃

∂t2
= gh̄∆h̃+h̄ ϕv ∗∆h̃− ϕh ∗

∂h̃

∂t
.
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Convergence study

Theorem : If ϕv and ϕh are defined by ϕ(x, y) = β exp(−α(x2 + y2)) with

βv, βh, αv, αh > 0, then the first order approximation of the error system around

the equilibrium (h, v) = (h̄, 0) is strongly asymptotically convergent. Indeed if

we consider the following Hilbert space and norm : H = H1(Ω)× L2(Ω),

‖(u,w)‖H =

(∫

Ω

‖∇u‖2 + |w|2
)1/2

,

then

lim
t→∞

∥∥∥∥

(
h̃(t),

∂h̃

∂t
(t)

)∥∥∥∥
H

= 0 .

This theorem proves the strong and asymptotic convergence of the error h̃

towards 0, and then it also gives the same convergence for ṽ. We deduce that

the observer tends to the true state when time goes to infinity.

Proof : based on Fourier decomposition of the solution.
[Auroux et al, IEEE TAC 2011]
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Numerical tests
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Evolution of the estimation error in relative norm versus the number of time steps,

in the case of noisy observations (20% noise), with αh = αv = 1 m−2 and

βh = 2.10−7 s−1, and with a 100% error on the initial conditions, for the height

h, longitudinal velocity vx and transversal velocity vy.
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Numerical tests : non-linear model
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⇒

1. Nudging and observers

2. Back and Forth Nudging algorithm

3. Diffusive BFN algorithm
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Backward nudging

Another issue of standard nudging are : we get no information about the

initial condition ; what can we do on a small time window ?

⇒ Can we recover the initial state from the final solution ?

Backward model :





dX̃

dt
= F (X̃), T > t > 0,

X̃(T ) = X̃T .

If we apply nudging to this backward model :





dX̃

dt
= F (X̃)−K(Y −HX̃), T > t > 0,

X̃(T ) = X̃T .
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BFN : Back and Forth Nudging algorithm

Iterative algorithm (forward and backward resolutions) :

X̃0(0) = Xb (first guess)





dXk

dt
= F (Xk)+K(Y −H(Xk))

Xk(0) = X̃k−1(0)





dX̃k

dt
= F (X̃k)−K ′(Y −H(X̃k))

X̃k(T ) = Xk(T )

[Auroux and Blum, C. R. Acad. Sci. Math. 2005]

If Xk and X̃k converge towards the same limit X, and if K = K ′, then X

satisfies the state equation and fits to the observations.
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Choice of the direct nudging matrix K

Implicit discretization of the direct model equation with nudging :

Xn+1 −Xn

∆t
= FXn+1 +K(Y −HXn+1).

Variational interpretation : direct nudging is a compromise between the mini-

mization of the energy of the system and the quadratic distance to the obser-

vations :

min
X

[
1

2
〈X −Xn, X −Xn〉 −

∆t

2
〈FX,X〉+

∆t

2
〈R−1(Y −HX),Y −HX〉

]
,

by chosing

K = kHTR−1

where R is the covariance matrix of the errors of observation, and k is a scalar.

[Auroux and Blum, Nonlin. Proc. Geophys. 2008]
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Choice of the backward nudging matrix K
′

The feedback term has a double role :

• stabilization of the backward resolution of the model (irreversible sys-

tem)

• feedback to the observations

If the system is observable, i.e. rank[H,HF, . . . ,HFN−1] = N , then there

exists a matrix K ′ such that −F −K ′H is a Hurwitz matrix (pole assignment

method).

Simpler solution : one can define K ′ = k′HTR−1, where k′ is e.g. the smallest

value making the backward numerical integration stable.
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Example of convergence results

Viscous linear transport equation :




∂tu− ν∂xxu+ a(x)∂xu = −K(u− uobs), u(x, t = 0) = u0(x)

∂tũ− ν∂xxũ+ a(x)∂xũ = K ′(ũ− uobs), ũ(x, t = T ) = uT (x)

We set w(t) = u(t)− uobs(t) and w̃(t) = ũ(t)− uobs(t) the errors.

• If K and K ′ are constant, then ∀t ∈ [0, T ] : w̃(t) = e(−K−K′)(T−t)w(t)

(still true if the observation period does not cover [0, T ])

• If the domain is not fully observed, then the problem is ill-posed.

Error after k iterations : wk(0) = e−[(K+K′)kT ]w0(0)

 exponential decrease of the error, thanks to :

• K +K ′ : infinite feedback to the observations (not physical)

• T : asymptotic observer (Luenberger)

• k : infinite number of iterations (BFN) [Auroux and Nodet, COCV 2012]
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Observability condition

Let χ(x) be the time during which the characteristic curve with foot x lies in

the support of K. Then the system is observable if and only if min
x

χ(x) > 0.

Partial observations in space : half of the domain is observed.
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Shallow water model

∂tu− (f + ζ)v + ∂xB =
τx

ρ0h
− ru+ ν∆u

∂tv + (f + ζ)u+ ∂yB =
τy

ρ0h
− rv + ν∆v

∂th+ ∂x(hu) + ∂y(hv) = 0

• ζ = ∂xv − ∂yu is the relative vorticity ;

• B = g∗h+
1

2
(u2 + v

2) is the Bernoulli potential ;

• g∗ = 0.02 m.s−2 is the reduced gravity ;

• f = f0 + βy is the Coriolis parameter (in the β-plane approximation), with

f0 = 7.10−5 s−1 and β = 2.10−11 m−1.s−1 ;

• τ = (τx, τy) is the forcing term of the model (e.g. the wind stress), with a

maximum amplitude of τ0 = 0.05 s−2 ;

• ρ0 = 103 kg.m−3 is the water density ;

• r = 9.10−8 s−1 is the friction coefficient.

• ν = 5 m2.s−1 is the viscosity (or dissipation) coefficient.
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Shallow water model

2D shallow water model, state = height h and horizontal velocity (u, v)

Numerical parameters : (run example)

Domain : L = 2000 km × 2000 km ; Rigid boundary and no-slip BC ; Time

step = 1800 s ; Assimilation period : 15 days ; Forecast period : 15 + 45 days

Observations : of h only (∼ satellite obs), every 5 gridpoints in each space

direction, every 24 hours.

Background : true state one month before the beginning of the assimilation

period + white gaussian noise (∼ 10%)

Comparison BFN - 4DVAR : sea height h ; velocity :u and v.

[Auroux, Int J Numer Methods Fluids 2009]
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Diffusion problem

Backward model and diffusion :

The main issue of the BFN is : how to handle diffusion processes in the

backward equation ?

Let us consider only diffusion : heat equation (in 1D)

∂tu = ∂xxu

The backward nudging model will be :

∂tũ = ∂xxũ+K(ũ− uobs)

from time T to 0. By using a change of variable t′ = T − t, we can rewrite the

backward model as a forward one :

∂t′ ũ = −∂xxũ−K(ũ− uobs),

and we can see that even if the nudging term stabilizes the model, the backward

diffusion is a real issue (unbounded eigenvalues, except for discrete Laplacian).
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Diffusion problem

Hopefully, in geophysical problems, diffusion is not a dominant term. The

model has smoothing properties, and diffusion is small → diffusion processes

are not highly unstable in backward mode, even if the model is clearly unstable

without nudging.

Theoretically, there is a problem :

• Viscous linear transport equation : if the support of K is a strict

sub-domain (i.e. some parts of the space domain are not observed),

there does not exist a solution to the backward model, even in the

distribution sense.

• Viscous Burgers equation : even if K is constant (in time and space

⇒ full observations), the backward equation is ill-posed, as there is no

stability (or continuity) with respect to the initial condition.

Without viscosity, one can prove the convergence of the BFN on these equa-

tions. [Auroux and Nodet, COCV 2012]
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⇒

1. Nudging and observers

2. Back and Forth Nudging algorithm

3. Diffusive BFN algorithm
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Diffusive BFN

Diffusive free equations in the geophysical context :

In meteorology or oceanography, theoretical equations are usually diffusive

free (e.g. Euler’s equation for meteorological processes).

In a numerical framework, a diffusive term is added to the equations (or

a diffusive scheme is used), in order to both stabilize the numerical inte-

gration of the equations, and take into consideration some subscale phenomena.

Example : weather forecast is done with Euler’s equation (at least in Météo

France. . .), which is diffusive free. Also, in quasi-geostrophic ocean models,

people usually consider ∇4 or ∇6 for dissipation at the bottom, or for vertical

mixing.
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Diffusive BFN

Addition of a diffusion term :

∂tX = F (X)+ν∆X, 0 < t < T,

where F has no diffusive terms, ν is the diffusion coefficient, and we assume

that the diffusion is a standard second-order Laplacian (could be a higher

order operator).

We introduce the D-BFN algorithm in this framework, for k ≥ 1 :




∂tXk = F (Xk)+ν∆Xk+K(Y −H(Xk)),

Xk(0) = X̃k−1(0), 0 < t < T,





∂tX̃k = F (X̃k)−ν∆X̃k−K ′(Y −H(X̃k)),

X̃k(T ) = Xk(T ), T > t > 0.
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Diffusive BFN

It is straightforward to see that the backward equation can be rewritten, using

t′ = T − t :

∂t′X̃k = −F (X̃k)+ν∆X̃k+K ′(Y −H(X̃k)), X̃k(t
′ = 0) = Xk(T ),

where X̃ is evaluated at time t′. As it is now forward in time, this equation can

be compared with the forward nudging equation :

∂tXk = F (Xk)+ν∆Xk+K(Y −H(Xk)), Xk(0) = X̃k−1(t
′ = T ).

Then the backward equation can easily be solved, with an initial condition,

and the same diffusion operator as in the forward equation. Only the physical

model has an opposite sign.

The diffusion term both takes into account the subscale processes and stabilizes

the numerical backward integrations, and the feedback term still controls the

trajectory with the observations.
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Linear transport equation

∂tu+ a(x) ∂xu = 0, t ∈ [0, T ], x ∈ Ω, u(t = 0) = u0 ∈ L2(Ω)

with periodic boundary conditions, and we assume that a ∈ W 1,∞(Ω).

Numerically, for both stability and subscale modelling, the following equation

would be solved :

∂tu+ a(x) ∂xu = ν∂xxu, t ∈ [0, T ], x ∈ Ω, u(t = 0) = u0 ∈ L2(Ω),

where ν ≥ 0 is assumed to be constant.
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Linear transport equation

Let us assume that the observations satisfy the physical model (without diffu-

sion) :

∂tuobs + a(x) ∂xuobs = 0, t ∈ [0, T ], x ∈ Ω, uobs(t = 0) = u0
obs ∈ L2(Ω).

We assume in this idealized situation that the system is fully observed (and H

is then the identity operator).

Then the D-BFN algorithm applied to this problem gives, for k ≥ 1 :





∂tuk+a(x) ∂xuk = ν∂xxuk+K(uobs,k − uk),

t ∈ [2(k − 1)T, 2(k − 1)T + T ], x ∈ Ω

uk(2(k − 1)T, x) = ũk−1(2(k − 1)T, x)




∂tũk−a(x) ∂xũk = ν∂xxũk+K(ũobs,k − ũk),

t ∈ [2kT − T, 2kT ], x ∈ Ω

ũk(2kT − T, x) = uk(2kT − T, x).
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Smoothing equation

At the limit k → ∞, vk and ṽk tend to v∞(x) solution of

ν∂xxv∞ +K(u0
obs(x)− v∞) = 0,

or equivalently

−
ν

K
∂xxv∞ + v∞ = u0

obs.

This equations is well known in signal or image processing, as being the

standard linear diffusion restoration equation. In some sense, v∞ is the

result of a smoothing process on the observations uobs, where the degree of

smoothness is given by the ratio ν
K .

Convergence result for constant advection equation.

[Auroux, Blum and Nodet, CRAS 2011]
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Numerical experiments

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

observations
smoothed observations

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time

R
M

S
 e

rr
or

Initial condition of the observation

and corresponding smoothed solu-

tion ; RMS difference between the

BFN iterates and the smoothed ob-

servations ; same in semi-log scale.

Movie

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

Time

Lo
g 

R
M

S
 e

rr
or

SIAM DS17 - Recent Developments in Data Assimilation - May 22, 2017 31/41



Numerical experiments

Linear transport equation with non-constant transport :
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Full primitive ocean model

Primitive equations : Navier-Stokes equations (velocity-pressure), coupled

with two active tracers (temperature and salinity).

Momentum balance :

∂Uh

∂t
= −

[
(∇∧ U) ∧ U +

1

2
∇(|U |2)

]

h

− f.z ∧ Uh −
1

ρ0
∇hp+DU + FU

Incompressibility equation : ∇.U = 0

Hydrostatic equilibrium :
∂p

∂z
= −ρg

Heat and salt conservation equations :
∂T

∂t
= −∇.(TU) +DT + FT (+ same for S)

Equation of state : ρ = ρ(T, S, p)
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Full primitive ocean model

Free surface formulation : the height of the sea surface η is given by

∂η

∂t
= −divh((H + η)Ūh) + [P − E]

The surface pressure is given by : ps = ρgη.

This boundary condition is then used for integrating the hydrostatic equili-

brium and calculating the pressure.

Numerical experiments : double gyre circulation confined between closed

boundaries (similar to the shallow water model). The circulation is forced by a

sinusoidal (with latitude) zonal wind.

Twin experiments : observations are extracted from a reference run, accor-

ding to networks of realistic density : SSH is observed similarly to TO-

PEX/POSEIDON, and temperature is observed on a regular grid that mimics

the ARGO network density.
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Full primitive ocean model

Example of observation network used in the assimilation : along-track altimetric

observations (Topex-Poseidon) of the SSH every 10 days ; vertical profiles of

temperature (ARGO float network) every 18 days.
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Numerical results
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iterations of BFN (nudging terms in the temperature and SSH equations only), with

full and unnoisy SSH observations every day. [Ruggiero, PhD thesis 2014]
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Numerical results
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Numerical results

Evolution of the errors during the Back and Forth iterations and during the forecast

phase. In black : evolution of the error for the control and direct nudging experiments.
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Conclusions

Back and Forth Nudging algorithm :

• Easy implementation (no linearization, no adjoint state, no minimiza-

tion process)

• Very efficient in the first iterations (faster convergence)

• Lower computational and memory costs than other DA methods

• Stabilization of the backward model

• Excellent preconditioner for 4D-VAR (or Kalman filters)

Diffusive BFN algorithm :

• Converges even faster, with smaller backward nudging coefficients

• Still produces very precise forecasts
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Perspectives

Extension to more (but not too) complex Back and Forth Observers :

• Observers for N-d compresible Navier-Stokes [Apte et al 2017] : recons-

truction of velocity from density or density from velocity, + arbitrary

choice of the error decay rate

• Use of physical considerations [Ruggiero 2014] : e.g. geostrophic equili-

brium (Coriolis force ≃ pressure gradient) to correct non observed va-

riables

Extension to parameter estimation :

• Add an equation for the parameter (e.g. dα
dt = 0), observe the physical

variables, and try to build an observer that corrects all variables

(including the parameter)

• Use of observers in a similar way as Kalman filtering for parameter esti-

mation ( Fourier decompositions, energy estimates, Lyapunov theory,

. . .) [undergoing work @Nice]
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Thank you for your

attention !
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