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Are Tensors too Difficult?

Murray & Rice, Differential geometry and statistics, 1993:
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Classically it would have been said that the tensor transforms by
this rule. It is horrible formulae like this that have given tensor
analysis a bad name. ~ '

“... the manipulation of matrices is a hundred times better supported in
our brains and in our software tools than that of tensors."

(N. Trefethen, Maxims about numerical mathematics, science, computers,
and life on earth)
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Notation and Concepts

We need a notational and conceptual framework that
@ exhibits the structure of the problems
@ is independent of the order of the tensor, or easily generalizable
@ allows the formulation and implementation of algorithms

Q: Can we find such a framework in math books on tensor calculus?
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Notation and Concepts

We need a notational and conceptual framework that

@ exhibits the structure of the problems
@ is independent of the order of the tensor, or easily generalizable
@ allows the formulation and implementation of algorithms

Q: Can we find such a framework in math books on tensor calculus?
A: NO! (in general), because we are asking different questions now.
Many fundamental mathematical problems are open!

Tensor methods have been used since the 1960’s in psychometrics
and chemometrics! Only recently in numerical community.
Applications in signal processing and various areas of data mining.

Recent survey:
Tammy Kolda & Brett Bader, Tensor Decompositions and Applications,
SIAM Review, to appear. (Download from Tammy’s web page)
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@ Tensor data
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@ Inner Product and Norm
@ Contractions
© HosvD
e Best Approximation
@ Grassmann Optimization
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e Sparse Tensors: Krylov Methods
e Conclusions

Lars Eldén (Linkoping Univ.) Tensor Computations SIAM AM July 2008



Multi-Mode Data:

Example: Classification of hand-written digits

pixel mode, 400 pixels
3—tensor D with digit mode, ~ 1000 digits per class
class mode, 10 classes

digits

All digits of one class represented by a slice
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Two Aspects of SVD: Expansion — Decomposition

1. Expansion in terms of rank-1 matrices:

n _— —
X= ZO’,‘U,'V,-T = + +
i=1

2. Matrix decomposition: R™" 3 X = ULV’

X| = u

mxn mxm mxn
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Tensor Expansion in Rank-1 Terms

@ Parafac/Candecomp/Kruskal: Harshman, Caroll, Chang 1970

@ Numerous papers in psychometrics and chemometrics

@ From a mathematical point of view: difficult problem, sometimes
ill-posed, see De Silva and Lim 2006.

@ From the point of view of applications: very useful! (Rasmus Bro’s
talk)
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Tensor Decomposition: Tucker Model

@ Tucker 1964, numerous papers in psychometrics and
chemometrics

@ De Lathauwer, De Moor, Vandewalle, SIMAX 2000: notation,
theory.

@ The matrices U() are usually orthogonal.
This talk: Tucker model for 3-tensors only!
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Classification of Handwritten Digits
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HOSVD for Data Reduction

pixel mode, 400 pixels
digit mode, ~ 1000 digits per class
class mode, 10 classes

classes s :
7 |
F

pixels D

Q

digits

Cf. low-rank approximation of matrix by SVD: A ~ UxX VkT
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Project all Digits to Low Dimension

— |ﬂ N -la |

(PT)-D F D
Each column is a digit 10 class Coordinates
in low dimension bases

Slice 1 of F is a basis for class u
Compute the SVD of each slice: F(:,:, u) = U*X*(V*)T and use k
columns, Uy, as basis vectors.
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Classification with HOSVD Compression

@ Training phase:

@ Collect the training digits into a tensor D.

@ Compute the HOSVD of D.

© Compute the low rank “basis” tensor F = (P'); - D.

© Compute and store the basis matrices B* = Uy for each class.
@ Test phase: For each test digit d

@ Projectd = P'd.

© Compute the residuals R(x) = ||(/ — B*(B*)T)d||, u=1,...,10.

© Determine pimin = argmin,, R(u) and classify d as zumin.
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Classification results: US Postal Service Database

0.065

Error rate

0.055

I I I I
6 8 10 12 14 16
Number of basis vectors

Figure: Error rates for different compressions (> 97.8%), and basis
dimension.
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Mode—/ Multiplication of a Tensor by a Matrix

Assume that dimensions are such that all operations are well-defined.
Mostly 3-tensors. Lim’s notation. (No standard notation yet)

B = (X)1 - A, /]7 ZXIV vk -

All column vectors are multiplied by the matrix X.
Multiplication in all modes at the same time:

B = (Xv Y: Z) : A7 B(’Ja k) = Z XivYjuZkx@uu-

AT

For convenience we write

B=(X",YT,ZT). A=A (X,Y,2)
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Inner Product and Norm

Inner product (contraction: R7™"M" — R)

(A,B) = ajbix
iJk

The Frobenius norm:
Al = (A, A)'/2

Matrix case

(A B) =tr(ATB)
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Partial Contractions

C=(ADB);, Cikim = > _ axjkbaim (4-tensor)
B
D=(AB),, dk =Y _ ayjbauk,  (2-tensor),
A
e=(AB)=(AB);, e= > aywbyw, (scalar).
A, v

Notation (3-tensor):

<~A7 B>1:2 = <A7 B>—3
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Tensor SVD (HOSVD): A = (UM U@ U®) .S

U®)

A un| | s U@

@ Compute the SVD of all mode—i vectors
@ UO) is left singular matrix of mode i
Q@ s=A. (U(1),U(2),U(3))
The “mass” of S is concentrated around the (1,1, 1) corner.
Not optimal: does not give the solution of MiNwankB)=(r1,1,13) A — Bl

De Lathauwer et al (2000)
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Best Rank—(ry, r2, r3) Approximation

gt

Best rank—(rq, rz, r3) approximation:

min |[A—(X,Y,2)-S|, X'X=1 Y'y=1 Z'z=I
X,Y,Z,S

The problem is over-parameterized! I
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Best Approximation

min |A— B

rank(B)=(r1,r2,rs)

is equivalent to

_1 2

2
— %Z (Z a)\“yx)\jyukzu/> )

Skl \A v

subject to
X" X=l,, Y'Y=, Z'Z=I,
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Grassmann Optimization

The Frobenius norm is invariant under orthogonal transformations:

O(X,Y,Z) = (XU, YV, ZW) = %HA- (XU, YV, ZW)]2

for orthogonal U € R"*", V € R2*"2 and W € R3*"s,
Maximize ® over equivalence classes

[X] = {XU | U orthogonal}.

Product of manifolds: Gr® = Gr(J, ry) x Gr(K, r2) x Gr(L, r3)

max ¢(X,Y,Z)= max 1<A' (X,Y,2),A-(X,Y,2))
(X,Y,2)eGr® (X,Y,2)eGr®
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Newton’s Method on one Grassmann Manifold

Taylor expansion + linear algebra on tangent space’ at X

G(X(t) =~ G(X(0)) + (A, VG) + %<A, H(A)),
Grassmann gradient:

0G

= K= —— — /1 xxT
The Newton equation for determining A:
9?G
I_IX<gXX7 A>1:2 - A<X, GX>1 = —VG7

(Gxx )/klm = m .

"Tangent space at X: all matrices Z satisfying Z" X = 0.
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Newton-Grassmann Algorithm on Gr®

Here: local coordinates

Given tensor .4 and starting points (X, Yo, Z) € Gr®
repeat

@ compute the Grassmann gradient VA<1A>

@ compute the Grassmann Hessian

© matricize H and vectorize Vo

© solve D = (D, Dy, D,) from the Newton equation

© take a geodesic step along the direction D, giving new
iterates (X,Y,Z)

until [Vo||/® < TOL

Implementation using TensorToolbox (Bader/Kolda) and home-made
object-oriented Grassmann classes in Matlab
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Newton’s method on Gr®

Differentiate ®(X, Y, Z) along a geodesic curve (X(t), Y(t),Z(t)) in
the direction (Ax, Ay, A;):

8X3t
ot

= (AX)Sta

and

ax(t) dvy(t) dz(t)\ _
( a ’ odt T dt ) (B By s Bz),
Since A-(X,Y,Z)islinearin X, Y, Z separately:

d(A-(X,Y,2))
dt

—A (DY, 2)+A-(X, Dy, Z)+ A (X, Y, D).
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First Derivative

OZ) - ;Zm- (X,Y,2),A-(X,Y,2)) = (A-(Ax, Y, 2), A-(X,Y,2))

F (A (X,0),2), A (X, Y,2)) + (A- (X, Y,A;), A (X, Y, 2)).

We want to write (A - (Ax, Y, Z), A-(X,Y,Z)) inthe form (Ax, ®x)
Define the tensor ¥ = A - (X, Y, Z) and write

<-A (AX’ Y?Z)vf> = <ICX(AX)7~¢> = <AX7,C;k(f>v
For fixed Y and Z we have a linear operator:

AX [— IC)((A)() == ./4 . (Ax, Y, Z)
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Adjoint Operator

Linear operator:
Ax — Kx(Ax) =A-(Ax, Y, 2Z)
with adjoint
(Kx(Ax), F) = (Ax, K3 F) = (Ax, (A- (I, Y, 2), F)_4)
where the partial contraction is defined

<B C I1 ’2 Zblﬂwclg,uz/

SIAM AM July 2008
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Grassmann Gradient

X-part: multiply by My = / — XXT

MNxdy = Nx(A-(I,Y,2),F)_
=(A- (1LY, 2),A-(X,Y,2Z)) 4 = XXT(A-(I,Y,2Z),F)_4
=(A-(LY,2),A-(,Y,2))_1X — X{F,F)_1,

Complete gradient (recall 7 = A- (X, Y, 2)):
Vo = (Mx®y, Nydy, Mzd,),
where
Nx®x = (A (LY, 2Z),A- (Y, Z))_1X — X(F,F)_4
My®y = (A-(X,1,2), A-(X,1,2))-2Y = Y(F,F) 5
Nyd, = (A- (X, Y, ), A-(X,Y,))_3Z — Z(F,F)_3

Lars Eldén (Linkoping Univ.) Tensor Computations SIAM AM July 2008



Second Derivative

e

ar

=(A-(Ax, Y, 2),A-(Ax, Y, 2)) + (A-(Ax, Ay, Z), A-(X,Y,2))

+ <"4 (AX7 Y7Z)7A (XaAyaz)> + <A(AX7 YaAZ)aA' (X7 sz)>
(

+ A'(AX’ Y7Z)3A(X7 Y7A2)>+ )

plus 10 analogous terms.
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Grassmann Hessian

H(A) = (Oxu(D), Dyu(A), Du(A)) : T3 — T3,
where
Pu(A) = Hax (Ax) + Hay(Dy) + Haz(D2),  xul-) : T — Ty,
¢y*(A) = HyX(AX) + HYY(AY) + Hyz(Az), be*() : TS — Ty,
(DZ*(A) = Hzx(Ax) + sz(Ay) + HZZ(AZ), q)z*() : TS — TZ;
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Grassmann Hessian, “Diagonal Part”

HY,V(AY): I_IY<BY’B}’>—2A}’_A}/<~7:??>727 B}/ZA'(X:LZ)?
Hzz(Dz) =Nz (B2, Bz) 3Dz — D (F,F)_3, Bz=A-(X,Y,]).

HXX(AX) - I_|X <BX7BX>,1 Ax - Ax <-7:;f> 15 Bx =A- (I7 Y7 Z) )
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Grassmann Hessian, “Upper Triangular Part”,

Hxy(Ay) = Tx (<<nya-7:>_(1,2) ,Ay>2 412

(BB D), )
where Cyy = A- (/,1,2), etc.

4-tensor contracted with a matrix giving a matrix:

<<ny>7:>—(1,2) ’Ay>2,4;1,2
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lllustration of Hessian Computation

Local coordinates.
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Methods for Best Approximation

@ Grassmann-based

@ Newton (LE, B. Savas)

@ Trust region/Newton (Ishteva, De Lathauwer et al.)
© BFGS quasi-Newton (Savas, Lim)

© Limited memory BFGS (Savas, Lim)

@ Alternating
@ HOOI (Kroonenberg, De Lathauwer)
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Numerical Example |

RELATIVE NORM OF THE GRADIENT

40 60 80 100
ITERATION #

A random tensor A e R20x20x20 with random entries N(0, 1)
approximated with a rank —(5, 5, 5) tensor.
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Numerical Example Il

- - = BFGS
noo e L-BFGS
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ITERATION #

A random tensor A e R100x100x100 with random entries N(0, 1)
approximated with a rank —(5, 10, 20) tensor.
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Sparse Tensors in Information Sciences

In information sciences the tensors are often sparse:

@ Term-document-author (Dunlavy et al)
@ Graphs, web link analysis (Kolda et al)

For sparse matrices: Krylov methods give low rank approximations:

AV = Ui Hy

| —

A ~ = UkHk VkT.

The matrix is only used as operator: u = Av
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Sparse Tensors

Can we generalize Krylov methods to tensors and obtain low rank
approximations?
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Golub-Kahan Bidiagonalization for Rectangular Matrix

@ fiuy=b,vy=0
@ fori=1:k
ajv; = ATu; — Biv 1,
Bit1Uipr = AV; — ol
@ end

The coefficients «; and g; are chosen to normalize the vectors.
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Golub-Kahan Bidiagonalization for Rectangular Matrix

@ fiuy=b,vy=0
@ fori=1:k
aivi = ATu; — Bivi_y, [aivi=A- (Ui — Bivi-1,]
Bixalipr = AV — oty [Bipq Uiy = A+ (Vi) — ajuj]
@ end

The coefficients «; and g; are chosen to normalize the vectors.
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Krylov Method for Tensor Approximation

Arnoldi style (i.e., including Gram-Schmidt orthogonalization)
@ Let uy and vq be given
(*] h111 wi=A- (U1, V1)1’2
@ forv=2:m
hu =A- (UIJ—1a Vi1, WI/—1)
hr/,u—1,u—1 U, =A- (VV—17 Wy 1 )2,3 - U,_1hy
hy=A- (UIJ7 Vl,,1, Wuf1)
hyyy-1Vy = A« (U, Wy—1)13— V_1hy
hw = A~ (Uy, v, W, 1)
hl/l/l/Wl/ =A- (Ul/7 Vu)172 - W1/—1hW
@ end

Approximate

A ~ (Um, Vm, Wm) ° Ha H = (Un7;7 Vn71-7 WI‘;";) : A
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Tensor Krylov Methods

@ Many variants are possible: see the talk by Berkant Savas in the
session MS117 Friday at 4.30

@ Suitable for

@ sparse tensors
e tensors whose dimensions vary rapidly (new data)
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Conclusions

@ Tensor methods/algorithms without index-wrestling
e Indices hidden using matrix-inspired notation and object-oriented

software
o Generalization to higher order tensors is straightforward

e Partial contractions play the role of adjoints
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Conclusions

@ Tensor methods/algorithms without index-wrestling
e Indices hidden using matrix-inspired notation and object-oriented
software
o Generalization to higher order tensors is straightforward
e Partial contractions play the role of adjoints
@ Grassmann optimization (for Tucker model)

@ Needed because tensors cannot be deflated like matrices
@ Unconstrained optimization
o Newton: Quadratic convergence

@ Sparse tensors: Krylov methods
@ Many fundamental mathematical and algorithmic problems remain
@ Numerous new applications in information sciences

@ Tensor algorithms and computations can be (easily) managed if
we define the right abstractions!
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