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SRB measures for deterministic, autonomous systems
(no randomness, no drive)

M = finite dim manifold, f =map or f; =flow

Assume * dissipative, orbits tend to attractors
* chaotic e.g. positive Lyapunov exponents

Conceptually, an SRB measure [ is a prob distribution on M s.t.

(1) (time avg = space avg)
1 n—1 _ for all cts
- Z p(flz) — / pdp Leb-ae. x observables

=0
(2) (characteristic W* geometry) [t has conditional densities
on unstable manifolds

hy(f) :/ > Aimi dp

A;>0
where ) . = Lyapunov exponents, i, = multplicities

(In general, h < /ZA;‘mi dp )

(3) (entropy formula)



Conceptual properties of SRB measures:
(1) time avg = space avg, (2) characteristic |}'“ geometry,

(3) entropy formula .
Review article : Young,

Rigorous results : e
Axiom A attractors : (l)<= (2) < (3)
(Sinai, Ruelle, Bowen 1970s)



Conceptual properties of SRB measures:
(1) time avg = space avg,  (2) characteristic |}'" geometry,

(3) entropy formula
Review article : Young,

Rigorous results : ) Phys A 2013

Axiom A attractors : (l)<= (2) < (3)
(Sinai, Ruelle, Bowen 1970s)
General diffeomorphisms and arbitrary inv measures:
(2) = (l) if no zero Lyap exp and ergodic  (Pugh-Shub 1990)
(2) <= (3) finite dim diffeo (Ledrappier-Strelcyn, L, L-Young 1980-85)
inf dim - dissipative PDEs  (Li-Shu, Blumenthal-Young 2014,15)

Interpretation of (3) : For arbitrary inv meas [,
(@) h= Z AFom; , 0<6;<1 (Ledr-Young 1985)
where 0;m; =dim of g in directions E;

(b) Under certain assumptions, Z A"m; —h ~ escape rate

Gap in entropy formula/fractal dim ~ degree of dissipation



Generalizations to random / nonautonomous frameworks |

(A) Periodic forcing
dx

= X(@) +ple,t), pla,t+T)=plx,1)

Many rigorous examples of strange attractors w/ SRB measures
are related to shear-induced chaos

Idea : unforced system has nonchaotic dynamics; forcing magnifies
underlying shear to produce " folds” --- and strange attractors.



Generalizations to random / nonautonomous frameworks

(A) Periodic forcing |
‘;—f = X(z) +p(z,t), plz,t+7T)=p(z,t)

Many rigorous examples of strange attractors w/ SRB measures
are related to shear-induced chaos

Idea : unforced system has nonchaotic dynamics; forcing magnifies
underlying shear to produce " folds” --- and strange attractors.

Examples : periodic kicking of limit cycles (VWang-Young 2003)

=06+ =12

In ODE as well as PDEs, e.g. w =d1Au+a— (b+ Du+u’v ‘
periodically forced Brusselator 5 PGB
(autocatalytic chemical reaction) ve = dz2Av + bu — uv
near Hopf bifurcation  (Lu-Wang-Young 2013)



(B) Random dynamical systems
dx, = a(x)dt + Z b;(x,) o dW; W; = Brownian motion

=1

Solution has representation as stochastic flow of diffeomorphisms

=+ Jws © fuy © fun 2.1.d. or "'fwl ofwoofw_l"'
(averaged) stationary measure
p= [ (fo)p Pldw)

Distributions at time 0 given history are given by
o= = :u"{wzz S 0} = lim (f'“"—l e Of‘-“’—rn;-l " fw—n)*#

n—0C0




(B) Random dynamical systems |
dr, = a(x,)dt + Z b;(x;) o AW} W; = Brownian motion

=1

Solution has representation as stochastic flow of diffeomorphisms |

"'fw3ofw20fw1e 1.1.d. or "'fwl Ofwoofw_l'” |
(averaged) stationary measure
p= [ (fo)sp Pldw)

Distributions at time 0 given history are given by
po— = pl{wi, 1 <0} = Im (fo_, 000 fu 0 fu,)en

n—oC
THEOREM (a) If A\,ax < 0, My —are random sinks (Le Jan 1987) |
(b) If Amax > 0, pt,— are random SRB measures in terms of
(i) characteristic geometry and (ii) entropy formula
(Ledrappier-Young 1988)

Rmk : randomness leads to simpler picture
For deterministic maps, SRB measures hard to prove w/out invariant cones




Recall dim formula for single maps : 1, () = Z(‘;"m‘) AN, 0<4; <1

THEOREM. With sufficient randomness, dim of pu - satisfies

(617”' 757’):(1717”' 317*303"' 70)

Interpretation : effective dim ~ # positive Lyap exp (Laknppies=towngrh |




Recall dim formula for single maps = (1) = "(6,m:)\, 0<4, <1

THEOREM. With sufficient randomness, dim of - satisfies

(517”'351‘):(1713"'717*7Oa'°'70)
Interpretation : effective dim ~ # positive Lyap exp (Ledrappier-Young 1988)
Application to biological & engineered systems : reliability

L.(t) (large) R(t)

>
fluctuating input dynam sys response

>

Say a system is reliable if same I (t) elicits same R(t) following transient
Mathematically : reliable iff random sinks iff Kirine < ()

unreliable iff random SRB measure iff A, .. > 0

Example: coupled oscillators
at { = 50,500, 2000

(Lin-SheaBrown-Young 2009)




(C) Dynamical systems driven by other dyn sys or
stoch processes : math framework unifying (A) and (B)

() — Diff(M), Z = map or flow or stoch process on ()

eg L= (fl:f2sf3:"')

Diff(M)-valued stationary process

Equivalently o : QN — QN inv prob IV




(C) Dynamical systems driven by other dyn sys or
stoch processes : math framework unifying (A) and (B)

() — Diff(M), Z = map or flow or stoch process on ()

Skew product representation : eg Z= ( f1, fa. f3,--- )
Diff(M)-valued stationary process

Equivalently o - ON 5 ON iy prob I/

Consider

F7: ((fa):x) = (a(f2): folx))
QN

Taking inverse limit:get F : Q“ x M — Q% x M
with invariant measure projecting to stationary measure of Z

Idea of SRB measures on M-fibers describing state of system
at time 0O given history can make sense

Conjecture : If Z is Markov with “sufficiently random” transition probs,
SRB results for i.i.d. maps should carry over




(D) Time-dependent dynamical systems (no stationarity) ‘

i R
space of maps

Consider ---0 fy3o0 fao fi
along arbitrary path in space of maps




(D) Time-dependent dynamical systems (no stationarity)

f Conceptually, expect :

if fz changes slowly enough,
f

\ J

where [1;, = SRB measure
| propose:

“adiabatic dynamics” = systems with slowly drifting parameters

K
space of maps ) Consider ---0 fz3o foo fy
along arbitrary path in space of maps

then

and time-dependent SRB measures

(frn o0 f1)« (init distr) — 1,

lllustrating example: billiards with slowly moving scatterers

THEOREM. For i, V in large class of suitable initial distr, |
[(fano -0 fi)p — (fao---0 f1)| =0

exponentially fast as n — oo . time-dep “limits”

4

U

N

)

-

(]

(Stenlund-Young-Zhang 2013) w/ SRB geometry

(a)

1




(E) Leaky dynamical systems (phase space with holes)

openset - C M “hole” : orbit “lost forever” once it enters hole
Equiv : not fully invariant domains, ie. U C M, f(U) ¢ U




(E) Leaky dynamical systems (phase space with holes)
openset [ C M hole” : orbit “lost forever” once it enters hole
Equiv : not fully invariant domains, ie. U C M, f (U ) g U
Questions: escape rates, surviving distributions, hole dependence etc.

e.g. /Lo = reasonable init distr, [, = f. (,un_1)|M\ H normalized
Hy — s aAS N — 00  (if limit exists)

lllustrating example: periodic Lorentz gas with holes

THEOREM (1) escape rate A > 0 well defined 2010, 2012)
(2) poc well defined, has SRB geometry, and satisfies

felpoo) s\t = € s conditionally invariant
(3) assoc with [oo is an inv meas jt characterized by SRB measures

hu(f) — Z Nmidp = =\ «—f entropy formula

(4) as hole size goes to 0, '/-t:x: tends to SRB measure

Above extended to nonuniformly hyperbolic systems admitting Markov towers
in the sense of (Young 1998)

|
|
|
|

(Demers-Wright-Young ‘




Conclusions

« SRB measures are known to be the natural physical measures
in chaotic dissipative autonomous dynamical systems




Conclusions

* SRB measures are known to be the natural physical measures
in chaotic dissipative autonomous dynamical systems

« Many real-world systems have stochastic components;
they are often driven, time-dependent, leaky, etc.




