SIAM Conference on Applications of Dynamical Systems May 17-21, 2015 Snowbird, Utah

SRB Measures for Time-Dependent and Random Attractors

Lai-Sang Young
Courant Institute, NYU

http://www.cims.nyu.edu/~lsy/

SRB measures for deterministic, autonomous systems

(no randomness, no drive)

M = finite dim manifold, f = map or f_t = flow

Assume * dissipative, orbits tend to attractors

* chaotic e.g. positive Lyapunov exponents

Conceptually, an SRB measure μ is a prob distribution on M s.t.

(I) (time avg = space avg)

$$\frac{1}{n}\sum_{i=0}^{n-1}\varphi(f^ix)\to\int\varphi d\mu\quad \text{Leb-a.e. }x\qquad \text{ observables}$$

- (2) (characteristic W^u geometry) μ has conditional densities on unstable manifolds
- (3) (entropy formula) $h_{\mu}(f) = \int \sum_{\lambda_i > 0} \lambda_i m_i \ d\mu$

where λ_i = Lyapunov exponents, m_i = multiplicities

(In general,
$$h \leq \int \sum \lambda_i^+ m_i \ d\mu$$
)

Conceptual properties of SRB measures:

- (1) time avg = space avg, (2) characteristic W^u geometry,
- (3) entropy formula

Review article: Young, J Phys A 2013

Rigorous results:

Axiom A attractors: $(1) \iff (2) \iff (3)$

(Sinai, Ruelle, Bowen 1970s)

General diffeomorphisms and arbitrary inv measures:

- (2) => (1) if no zero Lyap exp and ergodic (Pugh-Shub 1990)
- (2) ←⇒ (3) finite dim diffeo (Ledrappier-Strelcyn, L, L-Young 1980-88) inf dim - dissipative PDEs (Li-Shu, Blumenthal-Young 2014,15)

Interpretation of (3): For arbitrary inv meas μ ,

(a)
$$h=\sum \lambda_i^+ \delta_i m_i$$
 , $0 \le \delta_i \le 1$ (Ledr-Young 198) where $\delta_i m_i = \dim$ of μ in directions E_i

(b) Under certain assumptions, $\sum \lambda_i^+ m_i - h$ ~ escape rate Gap in entropy formula ~ measure of dissipation

Conceptual properties of SRB measures:

- (1) time avg = space avg, (2) characteristic W^u geometry,
- (3) entropy formula

Review article: Young, J Phys A 2013

Rigorous results:

Axiom A attractors:
$$(1) \iff (2) \iff (3)$$

(Sinai, Ruelle, Bowen 1970s)

General diffeomorphisms and arbitrary inv measures:

- (2) ⇒ (1) if no zero Lyap exp and ergodic (Pugh-Shub 1990)
- (2) ← (3) finite dim diffeo (Ledrappier-Strelcyn, L, L-Young 1980-85) inf dim dissipative PDEs (Li-Shu, Blumenthal-Young 2014,15)

Interpretation of (3): For arbitrary inv meas μ ,

(a)
$$h=\sum \lambda_i^+\delta_i m_i$$
 , $0\leq \delta_i \leq 1$ (Ledr-Young 1985) where $\delta_i m_i = \dim \operatorname{of} \ \mu$ in directions E_i

(b) Under certain assumptions, $\sum \lambda_i^+ m_i - h$ ~ escape rate Gap in entropy formula/fractal dim ~ degree of dissipation

Generalizations to random / nonautonomous frameworks

(A) Periodic forcing

$$\frac{dx}{dt} = X(x) + p(x,t) , \quad p(x,t+T) = p(x,t)$$

Many rigorous examples of strange attractors w/ SRB measures are related to shear-induced chaos

Idea: unforced system has nonchaotic dynamics; forcing magnifies underlying shear to produce `folds' --- and strange attractors.

Examples: periodic kicking of limit cycles (Wang-Young 2003)

In ODE as well as PDEs, e.g. periodically forced Brusselator (autocatalytic chemical reaction) near Hopf bifurcation (Lu-War

$$u_t = d_1 \Delta u + u - (b+1)u + u^2v$$

+ periodic forcing
 $v_t = d_2 \Delta v + bu - u^2v$

Generalizations to random / nonautonomous frameworks

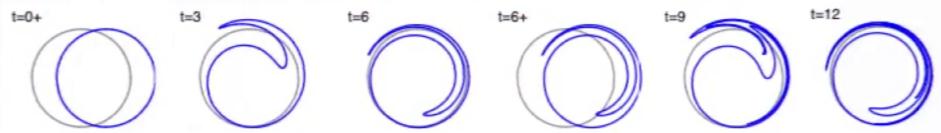
(A) Periodic forcing

$$\frac{dx}{dt} = X(x) + p(x,t) \;, \quad p(x,t+T) = p(x,t)$$
 Many rigorous examples of strange attractors w/ SRB measures

are related to shear-induced chaos

Idea: unforced system has nonchaotic dynamics; forcing magnifies underlying shear to produce `folds' --- and strange attractors.

Examples: periodic kicking of limit cycles (Wang-Young 2003)



In ODE as well as PDEs, e.g. periodically forced Brusselator (autocatalytic chemical reaction) near Hopf bifurcation (Lu-Wang-Young 2013)

$$\begin{cases} u_t = d_1 \Delta u + a - (b+1)u + u^2v \\ + \text{ periodic forcing} \end{cases}$$

$$v_t = d_2 \Delta v + bu - u^2v$$

(B) Random dynamical systems

$$dx_t = a(x_t)dt + \sum_{i=1}^{n} b_i(x_t) \circ dW_t^i$$
 $W_t^i = \text{Brownian motion}$

Solution has representation as stochastic flow of diffeomorphisms

$$\cdots f_{\omega_3}\circ f_{\omega_2}\circ f_{\omega_1}, \qquad i.i.d. \qquad \text{or} \qquad \cdots f_{\omega_1}\circ f_{\omega_0}\circ f_{\omega_{-1}}\cdots$$
 (averaged) stationary measure
$$\mu=\int (f_\omega)_*\mu \ \mathbb{P}(d\omega)$$

Distributions at time 0 given history are given by

$$\mu_{\omega^{-}} := \mu | \{ \omega_{i}, i \leq 0 \} = \lim_{n \to \infty} (f_{\omega_{-1}} \circ \cdots \circ f_{\omega_{-n+1}} \circ f_{\omega_{-n}})_{*} \mu$$

THEOREM (a) If $\lambda_{\rm max} < 0$, $\mu_{\omega}-$ are random sinks (Le Jan 1987) (b) If $\lambda_{\rm max} > 0$, $\mu_{\omega}-$ are random SRB measures in terms of (i) characteristic geometry and (ii) entropy formula

(Ledrappier-Young 1988)

Rmk: randomness leads to simpler picture

For deterministic mans SRR measures hard to prove whour in

For deterministic maps, SRB measures hard to prove w/out invariant cones

(B) Random dynamical systems

$$dx_t = a(x_t)dt + \sum_{i=1} b_i(x_t) \circ dW^i_t \qquad \qquad W^i_t \ = \text{Brownian motion}$$

Solution has representation as stochastic flow of diffeomorphisms

$$\cdots f_{\omega_3}\circ f_{\omega_2}\circ f_{\omega_1}, \qquad i.i.d. \qquad \text{or} \qquad \cdots f_{\omega_1}\circ f_{\omega_0}\circ f_{\omega_{-1}}\cdots$$
 (averaged) stationary measure
$$\mu=\int (f_\omega)_*\mu \ \mathbb{P}(d\omega)$$

Distributions at time 0 given history are given by

$$\mu_{\omega^{-}} := \mu | \{ \omega_i, i \leq 0 \} = \lim_{n \to \infty} (f_{\omega_{-1}} \circ \cdots \circ f_{\omega_{-n+1}} \circ f_{\omega_{-n}})_* \mu$$

THEOREM (a) If $\lambda_{\rm max} < 0$, $\mu_{\omega}-$ are random sinks (Le Jan 1987) (b) If $\lambda_{\rm max} > 0$, $\mu_{\omega}-$ are random SRB measures in terms of

(i) characteristic geometry and (ii) entropy formula

(Ledrappier-Young 1988)

Rmk: randomness leads to simpler picture

For deterministic maps, SRB measures hard to prove w/out invariant cones

Recall dim formula for single maps : $h_{\mu}(f) = \sum (\delta_i m_i) \lambda_i^+, \quad 0 \leq \delta_i \leq 1$

THEOREM. With sufficient randomness, dim of $\,\mu_{\omega^-}$ satisfies

$$(\delta_1, \dots, \delta_r) = (1, 1, \dots, 1, *, 0, \dots, 0)$$

Interpretation: effective dim ~ # positive Lyap exp

(Ledrappier-Young 1988)

Application to biological & engineered systems: reliability

$$I_{\omega}(t)$$

Say a system is reliable if same $I_{\omega}(t)$ elicits same R(t) following transient

Mathematically : reliable iff random sinks iff $\lambda_{\max} < 0$ unreliable iff random SRB measure iff $\lambda_{\max} > 0$

Example: coupled oscillators at t = 50,500,2000

(Lin-SheaBrown-Young 2009)

Recall dim formula for single maps : $h_{\mu}(f) = \sum (\delta_i m_i) \lambda_i^+, \quad 0 \leq \delta_i \leq 1$

THEOREM. With sufficient randomness, dim of $\,\mu_{\omega^-}$ satisfies

$$(\delta_1, \cdots, \delta_r) = (1, 1, \cdots, 1, *, 0, \cdots, 0)$$

Interpretation: effective dim ~ # positive Lyap exp

(Ledrappier-Young 1988)

Application to biological & engineered systems: reliability

$$\xrightarrow{I_{\omega}(t)}$$
 fluctuating input

(large) dynam sys

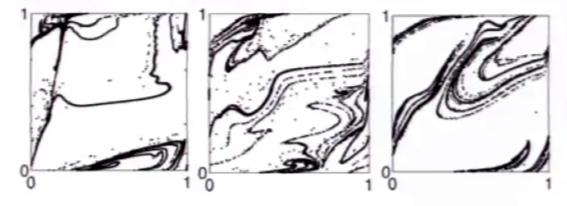
$$R(t)$$
response

Say a system is reliable if same $I_{\omega}(t)$ elicits same R(t) following transient

Mathematically: reliable iff random sinks iff $\lambda_{max} < 0$ unreliable iff random SRB measure iff $\lambda_{max} > 0$

Example: coupled oscillators at t = 50, 500, 2000

(Lin-SheaBrown-Young 2009)



(C) Dynamical systems driven by other dyn sys or stoch processes: math framework unifying (A) and (B)

$$\Omega={
m Diff}({
m M}), \quad {
m Z}={
m map} \ {
m or} \ {
m flow} \ {
m or} \ {
m stoch} \ {
m process} \ {
m on} \ \Omega$$

Skew product representation : e.g.
$$Z = (f_1, f_2, f_3, \cdots)$$

Diff(M)-valued stationary process

Equivalently
$$\sigma:\Omega^{\mathbb{N}} o \Omega^{\mathbb{N}}$$
 inv prob u

Consider

$$F^+: ((f_n), x) \mapsto (\sigma(f_n), f_0(x))$$

Taking inverse limit : get $F: \Omega^{\mathbb{Z}} \times M \to \Omega^{\mathbb{Z}} \times M$ with invariant measure projecting to stationary measure of Z.

Idea of SRB measures on M-fibers describing state of system at time 0 given history can make sense

Conjecture: If Z is Markov with "sufficiently random" transition probs, SRB results for i.i.d. maps should carry over

(C) Dynamical systems driven by other dyn sys or stoch processes: math framework unifying (A) and (B)

$$\Omega={
m Diff}({
m M}), \quad {
m Z}={
m map} \ {
m or} \ {
m flow} \ {
m or} \ {
m stoch} \ {
m process} \ {
m on} \ \Omega$$

Skew product representation:

e.g.
$$Z = (f_1, f_2, f_3, \cdots)$$

Diff(M)-valued stationary process

Equivalently
$$\,\sigma:\Omega^{\mathbb{N}} o\Omega^{\mathbb{N}}\,$$
 inv prob $\,
u$

Consider

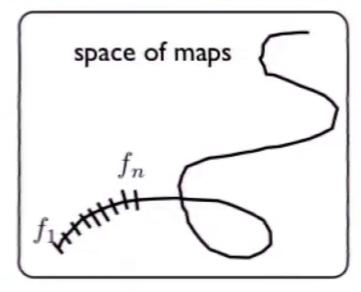
$$F^+$$
: $((f_n), x) \mapsto (\sigma(f_n), f_0(x))$

Taking inverse limit : get $F: \Omega^{\mathbb{Z}} \times M \to \Omega^{\mathbb{Z}} \times M$ with invariant measure projecting to stationary measure of Z.

Idea of SRB measures on M-fibers describing state of system at time 0 given history can make sense

Conjecture: If Z is Markov with "sufficiently random" transition probs, SRB results for i.i.d. maps should carry over

(D) Time-dependent dynamical systems (no stationarity)



Consider $\cdots \circ f_3 \circ f_2 \circ f_1$ along arbitrary path in space of maps

if f_i changes slowly enough, then $(f_n \circ \cdots \circ f_1)_*$ (init distr) $\longrightarrow \mu_n$ where $\mu_n \approx \text{SRB measure of } f_n$

propose:

"adiabatic dynamics" = systems with slowly drifting parameters and time-dependent SRB measures

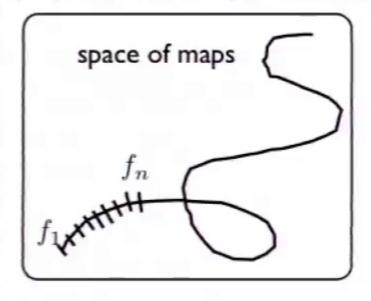
Illustrating example: billiards with slowly moving scatterers

THEOREM. For μ, ν in large class of suitable initial distrible $|(f_n \circ \cdots \circ f_1)_* \mu| = (f_n \circ \cdots \circ f_1)_* \nu| \to 0$ exponentially fast as $n \to \infty$.

(Stenlund-Young-Zhang 2013)

Note time-dep "limits"

(D) Time-dependent dynamical systems (no stationarity)



Consider $\cdots \circ f_3 \circ f_2 \circ f_1$ along arbitrary path in space of maps

Conceptually, expect:

if f_i changes slowly enough, then $(f_n \circ \cdots \circ f_1)_*$ (init distr) $\longrightarrow \mu_n$ where $\mu_n \approx \text{SRB}$ measure of f_n

I propose:

"adiabatic dynamics" = systems with slowly drifting parameters and time-dependent SRB measures

Illustrating example: billiards with slowly moving scatterers

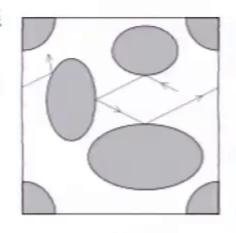
THEOREM. For μ, ν in large class of suitable initial distr,

$$|(f_n \circ \cdots \circ f_1)_* \mu - (f_n \circ \cdots \circ f_1)_* \nu| \to 0$$

exponentially fast as $n \to \infty$.

(Stenlund-Young-Zhang 2013)

time-dep "limits" w/ SRB geometry



(E) Leaky dynamical systems (phase space with holes)

open set $H\subset M$ ''hole" : orbit "lost forever" once it enters hole

Equiv : not fully invariant domains, i.e. $U \subset M, \ f(U) \not\subset U$

Questions: escape rates, surviving distributions, hole dependence etc.

e.g. μ_0 = reasonable init distr, $\mu_n = f_*(\mu_{n-1})|_{M \setminus H}$ normalized $\mu_n \to \mu_\infty$ as $n \to \infty$ (if limit exists)

Illustrating example: periodic Lorentz gas with holes (Demers-Wright-

THEOREM (I) escape rate $\lambda > 0$ well defined 2010, 2012)

(2) μ_{∞} well defined, has SRB geometry, and satisfies

 $f_*(\mu_\infty)|_{M\setminus H} = e^{-\lambda}\mu_\infty$ conditionally invariant

(3) assoc with μ_{∞} is an inv meas μ characterized by SRB measures $h_{\mu}(f) - \sqrt{\sum \lambda_{i}^{+} m_{i} d\mu} = -\lambda \iff$ of entropy formula

(4) as hole size goes to 0. μ_{∞} tends to SRB measure

Above extended to nonuniformly hyperbolic systems admitting Markov towers in the sense of (Young 1998)

(E) Leaky dynamical systems (phase space with holes)

open set $H\subset M$ ''hole" : orbit "lost forever" once it enters hole

Equiv : not fully invariant domains, i.e. $U \subset M, \ f(U) \not\subset U$

Questions: escape rates, surviving distributions, hole dependence etc.

e.g.
$$\mu_0$$
 = reasonable init distr, $\mu_n=f_*(\mu_{n-1})|_{M\backslash H}$ normalized $\mu_n\to\mu_\infty$ as $n\to\infty$ (if limit exists)

Illustrating example: periodic Lorentz gas with holes (Demers-Wright-Young

2010, 2012)

THEOREM (I) escape rate $\lambda > 0$ well defined (2) μ_{∞} well defined, has SRB geometry, and satisfies

$$f_*(\mu_\infty)|_{M\setminus H}=e^{-\lambda}\mu_\infty$$
 conditionally invariant

(3) assoc with μ_{∞} is an inv meas μ characterized by SRB measures

(4) as hole size goes to 0, μ_{∞} tends to SRB measure

Above extended to nonuniformly hyperbolic systems admitting Markov towers in the sense of (Young 1998)

Conclusions

- SRB measures are known to be the natural physical measures in chaotic dissipative autonomous dynamical systems
- Many real-world systems have stochastic components;
 they are often driven, time-dependent, leaky, etc.

Main message of this talk:

 Ideas surrounding SRB measures can be adapted to these more realistic settings, both conceptually and rigorously, and they are equally relevant in these settings.

> Review article: Young, J Phys A 2013

Conclusions

- SRB measures are known to be the natural physical measures in chaotic dissipative autonomous dynamical systems
- Many real-world systems have stochastic components;
 they are often driven, time-dependent, leaky, etc.

Main message of this talk:

 Ideas surrounding SRB measures can be adapted to these more realistic settings, both conceptually and rigorously, and they are equally relevant in these settings.

> Review article: Young, J Phys A 2013