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Integrated Photonics Platform 
for Efficient Electron-Light Coupling

Coherent Optical Phase Modulation & Laser-Driven Electron OpticsMotivation

Si3N4 Microresonators

• Resonant cavity field enhancement
• Electron-light velocity 

phase matching

enhancing the interaction[5]

• Fiber-coupled, chip-based microresonators
• Top air cladding to facilitate electron-light coupling
• High internal Q factor 𝑄𝑄0~0.74 × 106 at 1550nm
• Modes with strong coupling to electrons and 

anomalous dispersion

Electron beam properties[4]

Continuous-wave optical pump setup[5]

• Nanometer spatial resolution
• Sub-eV energy spread in initial beam

Electron-light interaction is typically 
weak, required intense optical pulses

• Narrow line-width frequency-tunable CW fiber laser
• Control over input power and polarization
• Optical analysis of transmitted light 

Efficient continuous 
electron beam 

modulation by CW laser

Electron microscopy provides unique insights into heterogeneous
nanomaterials and integrated circuits[1,2], but it does not yet
harness many advanced capabilities from photon science, including
programmable optics, coherent spectroscopy, or quantum-
enhanced imaging.

Merging these two realms defines a new frontier in nanometrology
and promises a novel class of light-enhanced electron
microscopes[3,4]. However, this requires concepts and technology to
interact and detect electrons and photons at the single-particle
level.

Here, we present the coupling and manipulation of electron beams
with light at an unprecedented efficiency using integrated
photonics[5-7]. These advances may contribute to the in-situ
metrology of functional silicon photonic devices.

Electron energy spectra
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Phase matching
• Observe inelastic scattering 

for low CW input powers

Phase Matching

• Vary electron energy 
• determine the maximum coupling

• Efficient interaction 
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• Correlation of 

electron energy and 
relative photon arrival
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Free-Electron 
Cavity-Photon Pairs 

& Single Particle Heralding

In-situ 
Metrology of 
Integrated Photonic Devices

 combined nm-µeV spatial 
and spectral in-situ 

characterization of an 
integrated photonics circuit

designed & fabricated 
by Kippenberg group 
and Center of 
MicroNanoTechnology
(CMi) at EPFL [12]

 Aberration correction, beam chopping & dose 
control, beam splitters & phase plates, …

Micro-
resonator 

Optical 
input

Electron 
beam

• Absorption and emission of photons 
in intense optical near-fields[8,9]

 Formation of energy sidebands

• Final electron state:

�|Ψ𝑓𝑓 = ∑𝑁𝑁 𝐽𝐽𝑁𝑁 2 𝑔𝑔 𝑒𝑒𝑖𝑖 arg 𝑔𝑔 | ⟩𝐸𝐸0 +𝑁𝑁𝑁𝑁𝑁

depends on electron-light coupling strength
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Electron Beam Modulation at 
GHz-PHz Frequencies

Electron energy-gain spectroscopy of a cavity mode
• optical transmission as a function of detuning
• electron energy spectra recorded with 

fast detector (100-µs binning)
energy resolution (sub-neV) decoupled 

from ZLP width (~500 meV)
in-situ resonator mode characterization

photon-induced near-field electron microscopy (PINEM)
• energy-filtered image stack of individual photon sidebands
• Quantitative reconstruction of mode profile

 Shot-noise reduced 
electron source (countable 

number of electrons)

 Contrast enhancement by 
correlative imaging

coherent optical phase modulation in space & time[10,11]

𝜑𝜑 𝑧𝑧, 𝑥𝑥 = −2𝑖𝑖 𝑔𝑔 sin
𝜔𝜔
𝑣𝑣𝑒𝑒
𝑧𝑧 + 𝑘𝑘|| 𝑥𝑥 + 𝜑𝜑0

• Modulation of the electron beam at the optical frequency (PHz)[10]

• Soliton pulses allow for deep sub-harmonic 
modulations (GHz-THz)[7]

~10-15 s / PHz

Picosecond roundtrip 
time of solitons

Femtosecond 
modulation

~10-12 s / THz

J.-W. Henke et al., Nature 600, 653 (2021). & Y. Yang et al., Science 383, 168–173 (2024). A. Feist et al., Science 377, 777 (2022).

Inelastic scattering at 
the resonator creates 
single photons[13]

 Correlated electron-
photon pairs[6]

 detection of either 
particle heralds the other
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