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Motivation

Electron microscopy provides unique insights into heterogeneous
nanomaterials and integrated circuits!¥2, but it does not yet
harness many advanced capabilities from photon science, including
programmable optics, coherent spectroscopy, or quantum-
enhanced imaging.
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Merging these two realms defines a new frontier in nanometrology
and promises a novel class of light-enhanced electron
microscopes!34l. However, this requires concepts and technology to
interact and detect electrons and photons at the single-particle
level.
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in intense optical near-fields!°]
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depends on electron-light coupling strength
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Coherent Optical Phase Modulation & Laser-Driven Electron Optics
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coherent optical phase modulation in space & timel10:11]
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— Aberration correction, beam chopping & dose
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Electron beam properties!®]

 Nanometer spatial resolution
* Sub-eV energy spread in initial beam
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Continuous-wave optical pump setup!®]

* Narrow line-width frequency-tunable CW fiber laser

* Control over input power and polarization

e Optical analysis of transmitted light

Electron energy spectra

Integrated Photonics Platform
for Efficient Electron-Light Coupling

* Resonant cavity field enhancement
* Electron-light velocity
phase matching
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Si;N, Microresonators

Fiber-coupled, chip-based microresonators

Top air cladding to facilitate electron-light coupling
High internal Q factor Q,~0.74 x 10° at 1550nm
Modes with strong coupling to electrons and
anomalous dispersion
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electron beam
modulation by CW laser
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Metrology of Cavity-Photon Pairs
Integrated Photonic Devices & Single Particle Heralding
J.-W. Henke et al., Nature 600, 653 (2021). & Y. Yang et al., Science 383, 168-173 (2024). A. Feist et al., Science 377, 777 (2022).
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* Quantitative reconstruction of mode profile
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