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Motivation - a dynamical/thermodynamical sea ice
model (neXtSIM)

Challenges in developing a suitable ensemble-
based data assimilation method

Development of algorithm and results for 1-
dimensional example
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Data Assimilation with neXtSIM

How do we implement an ensemble-based method (EnKF-like) method
for neXtSIM?

Mesh-based Challenges Observation-based Challenges
» Each ensemble member will have » Combination of satellite
its own adaptive mesh observations and in-situ

» Remeshing occurs independently  observations
for each ensemble member, and » How do we incorporate Eulerian

may occur at different times and Lagrangian observations in
» Ensemble meshes will have same model?

different sizes - how can we » How will we assimilate different

compute ensemble statistics? types of observations at different

times?
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Proposed Solution:

At analysis time, project each
ensemble mesh onto a fixed
“supermesh”

At most one vertex in each mesh box
- fill in empty boxes by interpolating

Perform the analysis on this filled-in
supermesh

The supermesh can be fixed in time
or change at each analysis time

Super-meshing




A 1-Dimensional Example

We consider the dissipative form of _ Time=04

Burgers’' equation

U = EU,, — Ul
for z € [0,1] with periodic boundary
conditions and initial condition |

u(0,z) = sin2nz + -;-sin nZ.
We take the parameter € = 0.005. a5}

Our goal is to estimate u at various
points in time and space, given

noisy observations of u. ® 01 02 03 04 05 06 07 08 08




Super-meshing in the 1-D Case

» Each ensemble member will have its i Time = 0.05
own adaptive mesh .,
» The adaptive mesh, z(t), evolves in 06
time 04}
» We consider the mesh valid if §; < = |
z,+1 —— z, <:" 52 for all i 0% & & & 5 » ® S0 00000 esB RO PE DO BN
l [
. - ; 02+
»Otherwise, a remeshing process
04 -
occurs
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»To left is example with §; = 0.02 and
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Evolution of Ensemble Members

e Each ensemble member has its
own adaptive mesh

157

» Values of u are defined at adaptive

mesh points .

« Ensemble members evolve .
according to adaptive moving = 0
mesh equations

 Evolution of u and evolution of
mesh are coupled at

* Remeshing occurs when mesh

Time = 0.02

points become too close together, @ o
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z
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or too far apart



Projecting onto the supermesh

The smaller mesh parameter, §;, is what allows us to define a constant-

dimensional state space for our DA algorithm. Specifically, letting N = % we

e [0,1) = [0,6;) U [6,,28,) U...
U[(N —2)d1, (N —1)8;) U [(N — 1)8;,1)
=LiULyU---ULp.

z(t,1) z(t, 2) z(t, 3) z2(t,4) z(t,5) z(t,6) z(t,7) z(t, 8)
il | | | A i | i | li | i
z:1(¢) z2(t) z3(t) 25(t) z6(t) 27(t) zs(t) z10(t)



Defining the State Space

We then

define
z;(t) = z(t,j) (mesh point)

u;(t) = u(t, z(t,j)) (physical
if z(t,j) € L;. With this definition, we can defYﬁg%lairegtate

vector

wy(t)

ua(t)

o (u(t)\ fﬁﬁ;(f)
F) = (z(t) ] z1(¢)

z2(t)

zn (E)



Filling in the Ensemble Members

» For now, we only perform data
assimilation on the physical

variables, and not the mesh points
themselves

»Ensemble members will generally
have different meshes, so they will
have different “active” cells

» We address this by “filling in” each
ensemble mesh

» This allows us to carry out DA in the
standard way on a state space of
full dimension

05

Filled-in Ensemble Member
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Ensemble Kalman Filter (EnKF) with super-
meshing (1D-case)

Define

A e R"*MN

to be the matrix of forecast ensemble members. We subtract the matrix
whose columns contain the ensemble means to form the matrix of

anomalies: AN—A—_Ac RN XN,

We assume we have p observations of u at certain points in the interval
[0,1), and that we have an observation operator that maps the state
space to the observation space. We can then define the matrix

S =H(A)—H(A) e RV*P



Numerical Experiment

» We run the experiment from time - ik ol
t =0tot =1, performing data | .
assimilation time step t,ps = 0.2 g % Tawe e
» We use an ensemble of size N, = :i.g i) |:'E!,i:" .2 °3 ==
20. Initially, all ensemble members sHH 0. !.f-ll ol }-!: iz
_ l_ (T, '.' '!i: S22 l" - L
have the same mesh. Initial 1] 5% i f.gess0l] lﬂjl. ‘0h
OEIPLHE H ) O
ensemble values of u centered at 24.08,8,230%8 T lene g';,_;_.:,:
true initial value of u with standard JSF . o O lf "1,
deviation g, = 2 SR .




Numerical Experiment

» We run the experiment from time : initial ensemble
t =0tot = 1, performing data

assimilation time step t,ps = 0.2 E_: ce S, 0 . .o
» We use an ensemble of size N, = ""'.E o) |:': Jiete N I
20. Initially, all ensemble members Ei!liljl-!ll.'!:!__l::ﬂ; =i!I !'f
have the same mesh. Initial - “""!':'i!i! '!:.l] H.[I_I'._'_ _'l'
LT ' 3 Lt

ensemble values of u centered at N o8, 0,207 "T e !'1'.|..:.:
true initial value of u with standard J 2% e o 38 " 'f "1%s,0
L] L] [ ]

deviation g,ps = 2
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Tima = 0.4

T il
e e r——
A e Pyl
Ll b e

- -
E
i 3 L r 1. ] ik i " ) # =
Time = 0.8 ) Time = 1
-
Tl LEPE . )
- T g - ' - T e - o

B i e Bl =y et el
- e R

r

)

f
= .

e



RMSE and Spread

Forecast and Analysis Error and Spread

2 —
Forecast RMSE
1.8 | I Analysis RMSE
s Observation Error
1.6 + | Forecast Spread
|- == s Analysis Spread
1.4




Future Directions

» Run experiment with Lagrangian observations

» Test a more interesting one-dimensional model (Kuramoto-Sivashinsky
experiment in progress)

» Further develop a “low-resolution” model, in which the state space is
defined by larger remeshing parameter

» Eventually work up to two-dimensional models, with neXtSIM the
ultimate goal
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