Ensemble Data Assimilation on a Non-Conservative Adaptive Mesh

Colin Guider

C.K.R.T. Jones

Alberto Carrassi and Ali Aydogdu

Outline

- Motivation a dynamical/thermodynamical sea ice model (neXtSIM)
- Challenges in developing a suitable ensemblebased data assimilation method

 Development of algorithm and results for 1dimensional example

The neXtSIM Model

Variables

- Center variables
 - Ice thickness h and snow thickness h_s
 - Ice concentration A
 - Ice damage d
 - Internal stress tensor σ
- Nodal variables
 - Sea ice velocity u

Methodology

- Lagrangian model running on triangular, unstructured mesh
- When mesh becomes too distorted, a remeshing process

The neXtSIM Model

Variables

- Center variables
 - Ice thickness h and snow thickness h_s
 - Ice concentration A
 - Ice damage d
 - Internal stress tensor σ
- Nodal variables
 - Sea ice velocity u

Methodology

- Lagrangian model running on triangular, unstructured mesh
- When mesh becomes too distorted, a remeshing process

Data Assimilation with neXtSIM

How do we implement an ensemble-based method (EnKF-like) method for neXtSIM?

Mesh-based Challenges

- ➤ Each ensemble member will have ➤ Combination of satellite its own adaptive mesh
- Remeshing occurs independently for each ensemble member, and may occur at different times
- Ensemble meshes will have different sizes - how can we compute ensemble statistics?

Observation-based Challenges

- observations and in-situ observations
- > How do we incorporate Eulerian and Lagrangian observations in same model?
- > How will we assimilate different types of observations at different times?

The neXtSIM Model

Variables

- Center variables
 - Ice thickness h and snow thickness h_s
 - Ice concentration A
 - Ice damage d
 - Internal stress tensor σ
- Nodal variables
 - Sea ice velocity u

Methodology

- Lagrangian model running on triangular, unstructured mesh
- When mesh becomes too distorted, a remeshing process

The neXtSIM Model

Variables

- Center variables
 - Ice thickness h and snow thickness h_s
 - Ice concentration A
 - Ice damage d
 - Internal stress tensor σ
- Nodal variables
 - Sea ice velocity u

Methodology

- Lagrangian model running on triangular, unstructured mesh
- When mesh becomes too distorted, a remeshing process

Data Assimilation with neXtSIM

How do we implement an ensemble-based method (EnKF-like) method for neXtSIM?

Mesh-based Challenges

- Each ensemble member will have Combination of satellite its own adaptive mesh
- Remeshing occurs independently for each ensemble member, and may occur at different times
- Ensemble meshes will have different sizes - how can we compute ensemble statistics?

Observation-based Challenges

- observations and in-situ observations
- > How do we incorporate Eulerian and Lagrangian observations in same model?
- > How will we assimilate different types of observations at different times?

Proposed Solution: Super-meshing

- At analysis time, project each ensemble mesh onto a fixed "supermesh"
- At most one vertex in each mesh box
 fill in empty boxes by interpolating
- Perform the analysis on this filled-in supermesh
- The supermesh <u>can be fixed in time</u> or <u>change at each analysis time</u>

A 1-Dimensional Example

We consider the dissipative form of Burgers' equation

 $u_t = \varepsilon u_{zz} - u u_z$ for $z \in [0,1]$ with periodic boundary conditions and initial condition

$$u(0,z) = \sin 2\pi z + \frac{1}{2}\sin \pi z.$$

We take the parameter $\epsilon = 0.005$.

Our goal is to estimate u at various points in time and space, given noisy observations of u.

Super-meshing in the 1-D Case

- Each ensemble member will have its own adaptive mesh
- The adaptive mesh, z(t), evolves in time
- We consider the mesh valid if $\delta_1 \le z_{i+1} z_i < \delta_2$ for all i
- Otherwise, a remeshing process occurs
- To left is example with $\delta_1 = 0.02$ and $\delta_2 = 0.05$

Evolution of Ensemble Members

- Each ensemble member has its own adaptive mesh
- Values of u are defined at adaptive mesh points
- Ensemble members evolve according to adaptive moving mesh equations
- Evolution of u and evolution of mesh are coupled
- Remeshing occurs when mesh points become too close together, or too far apart

Projecting onto the supermesh

The smaller mesh parameter, δ_1 , is what allows us to define a constantdimensional state space for our DA algorithm. Specifically, letting $N = \frac{1}{\delta_1}$, we write

$$[0,1) = [0,\delta_1) \cup [\delta_1, 2\delta_1) \cup \dots$$
$$\cup [(N-2)\delta_1, (N-1)\delta_1) \cup [(N-1)\delta_1, 1)$$
$$= L_1 \cup L_2 \cup \dots \cup L_N.$$

Defining the State Space

We then define

$$z_i(t) = z(t,j)$$
 (mesh point)
 $u_i(t) = u(t,z(t,j))$ (physical

if $z(t,j) \in L_i$. With this definition, we can define our state vector

$$\mathbf{x}(t) = \begin{pmatrix} \mathbf{u}(t) \\ \mathbf{z}(t) \end{pmatrix} = \begin{pmatrix} u_1(t) \\ u_2(t) \\ \vdots \\ u_N(t) \\ z_1(t) \\ z_2(t) \\ \vdots \\ z_N(t) \end{pmatrix}$$

Filling in the Ensemble Members

- For now, we only perform data assimilation on the physical variables, and not the mesh points themselves
- Ensemble members will generally have different meshes, so they will have different "active" cells
- We address this by "filling in" each ensemble mesh
- ➤ This allows us to carry out DA in the standard way on a state space of full dimension

Ensemble Kalman Filter (EnKF) with supermeshing (1D-case)

Define

$$\mathbf{A} \in \mathbb{R}^{N \times N_e}$$

to be the matrix of forecast ensemble members. We subtract the matrix whose columns contain the ensemble means to form the matrix of anomalies: $\mathbf{A}' = \mathbf{A} - \bar{\mathbf{A}} \in \mathbb{R}^{N \times N_e}$

We assume we have p observations of u at certain points in the interval [0,1), and that we have an observation operator that maps the state space to the observation space. We can then define the matrix

$$\mathbf{S} = \mathcal{H}(\mathbf{A}) - \mathcal{H}(\bar{\mathbf{A}}) \in \mathbb{R}^{N \times p}$$

Numerical Experiment

- We run the experiment from time t = 0 to t = 1, performing data assimilation time step $t_{obs} = 0.2$
- We use an ensemble of size $N_e = 20$. Initially, all ensemble members have the same mesh. Initial ensemble values of u centered at true initial value of u with standard deviation $\sigma_{ens} = 2$

Numerical Experiment

- We run the experiment from time t = 0 to t = 1, performing data assimilation time step $t_{obs} = 0.2$
- We use an ensemble of size $N_e = 20$. Initially, all ensemble members have the same mesh. Initial ensemble values of u centered at true initial value of u with standard deviation $\sigma_{ens} = 2$

Forecast and Analysis Means

RMSE and Spread

Future Directions

- > Run experiment with Lagrangian observations
- ➤Test a more interesting one-dimensional model (Kuramoto-Sivashinsky experiment in progress)
- Further develop a "low-resolution" model, in which the state space is defined by larger remeshing parameter
- Eventually work up to two-dimensional models, with neXtSIM the ultimate goal