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•  Runtime of an algorithm is the sum of 
•  #flops x (time/flop) 
•  #words moved x (1/bandwidth) 
•  #messages x latency 

 

What is communication? 

•  Communication is expensive, computation is cheap 
–  in terms of both time and energy! (time → joules) 
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Future exascale systems 

Petascale	
Systems	(2009)	

Predicted	Exascale	
Systems	

Factor	
Improvement	

System	Peak	 2⋅ ​10↑15 	flops/s	 ​10↑18 	flops/s	 ~1000	
Node	Memory	

Bandwidth	 25	GB/s	 0.4-4	TB/s	 ~10-100	

Total	Node	Interconnect	
Bandwidth	 3.5	GB/s	 100-400	GB/s	 ~100	

Memory	Latency	 100	ns	 50	ns	 ~2	
Interconnect	Latency	 1	𝜇s	 0.5	𝜇s	 ~2	
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•  Gaps	between	communica)on/computa)on	cost	only	growing	larger	in	
future	systems	

*Sources:	from	P.	Beckman	(ANL),	J.	Shalf	(LBL),	and	D.	Unat	(LBL)		

•  Avoiding	communica?on	will	be	essen?al	for	applica?ons	at	exascale!	



Motivation for CA Algorithms 
•  This problem will not be solved (in the foreseeable future) in 

hardware 

•  Needs to be addressed higher in the computing stack - at the 
algorithm level 

 
•  A paradigm shift in the way the numerical algorithms are 

designed is required  
•  We can't only think about computational complexity, 

we must also think about communication complexity 

•  Communication-avoiding algorithms:  
•  Minimize communication volume (total words moved) 
•  Minimize number of messages  
•  Minimize over multiple levels of memory/parallelism  
•  Allow redundant computations 
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Work in CA algorithms 

• For numerical linear algebra computations… 

1.  Prove lower bounds on communication cost 

2.  Design new (stable) algorithms that attain 
these lower bounds 

3.  Implement algorithms on various machines, 
for various applications 



Brief History: Dense Linear Algebra 
•  Communication long recognized as a bottleneck 

•  BLAS1 →  BLAS2 → BLAS3 
•  EISPACK, LINPACK → LAPACK, ScaLAPACK 

•  Lower bounds for (dense) matrix multiply 
•  Hong and Kung (1981): for sequential matmul, must move Ω(​​𝑛↑3 ∕​
𝑀↑​1∕2   ) words (𝑀 is size of fast memory) 

•  Irony, Tiskin, Toledo (2004): Generalized to parallel case: when each 
of 𝑃 processors stores 𝑀=𝑂( ​​𝑛↑2 ∕𝑃 ) words, Ω( ​​𝑛↑3 ∕​𝑃↑​1∕2   ) 
words moved.  

•  Attainable by Cannon's Algorithm (Cannon 1969), SUMMA (van 
de Geijn and Watts 1997) 

•  Demmel, Grigori, Hoemmen, Langou (2008): same lower bounds 
apply to LU, QR factorization 
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Generalization: 3 nested loops 
•  Generalized by Ballard, Demmel, Holtz, 

Schwartz (2011) to any "3-nested loops" 
algorithm, using Loomis Whitney inequality 

•  matmul, Cholesky, LU, LDLT, QR, Floyd-
Warshall, etc.; for dense and sparse 
matrices; sequential, parallel, hybrid 

•  words moved = Ω( ​#,lops∕​𝑀↑​1∕2   ),  
        messages = Ω( ​#,lops∕​𝑀↑​3∕2   ) 
•  (assuming 𝑀=𝑂( ​𝑛↑2 /𝑃) ) 
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Algorithm	 Minimizes	#	
words	moved	

Minimizes	#	words	moved	and	#	messages	

Cholesky	 ScaLAPACK	 ScaLAPACK	

LU	 ScaLAPACK	 CALU		
(Grigori,	Demmel,	Xiang,	2008),	(Khabou,	Demmel,	Grigori,	Gu,	2012)		

QR	 ScaLAPACK	 CAQR		
(Demmel,	Grigori,	Hoemmen,	Langou,	2008),	(Ballard	et	al.,	2014)		

•  3D	matmul:	𝑀=𝑂( ​​𝑛↑2 ∕​𝑃↑​2∕3   )	,			2.5D	matmul:	𝑀=𝑐​𝑛↑2 /𝑃	
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z	
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Tall-Skinny QR 
•  TSQR: QR factorization of a tall 

skinny matrix using Householder 
transformations 

•  QR decomposition of m x b matrix W, 
m >> b  

•  P processors, block row layout  

•  Classic Parallel Algorithm  
•  Compute Householder vector for 

each column  
•  Number of messages ∝ b log P 

•  Communication Avoiding 
Algorithm  

•  Reduction operation, with QR as 
operator  

•  Number of messages ∝ log P  
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CAQR 
•  Demmel, Grigori, Hoemmen, Langou (2008) 
•  TSQR on panels 
•  Performing trailing matrix update is complicated - Q factor represented implicitly  

•  Can reconstruct Householder vectors from Tall-Skinny QR (TSQR-HR) 
(Ballard, Demmel, Grigori, Jacquelin, Knight, Nyugen, 2015) 
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step 0 step 1 step 2 

•  As stable as Householder QR 

TSQR/CAQR implemented in  
•  Intel MKL library  
•  GNU Scientific Library 
•  ScaLAPACK  
•  Spark for data mining  

•  Close to optimal 
•  Assume 𝑀=𝑂( ​​𝑛↑2 ∕𝑃 ) 
•  Choose 𝑏 near 𝑛/ ​𝑃↑1/2  

•  Words moved: 𝑂( ​​𝑛↑2 ​log ⁠𝑃 ∕​𝑃↑​1∕2   ) 
•  Lower bound: Ω( ​​𝑛↑2 ∕​𝑃↑​1∕2   ) 

•  Messages: 𝑂(𝑛​log ⁠𝑃 /𝑏) 
•  Lower bound: Ω( ​𝑃↑1/2 )  

Recent work (Ayala, Claeys, Grigori) 
•  Talk tomorrow in Part II (MS93) 
•  Comm.-optimal low-rank approximation of 

matrices arising from boundary element 
problems 

•  Uses CAQR factorization 



Tall-Skinny LU 

•  Step 1: preprocessing: select a set of b good pivot rows 
•  Reduction operation with GEPP being the operator used to select 

pivot rows at each node of the reduction tree 
•  Like in TSQR, shape of reduction tree depends on underlying 

architecture 
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•  Similar idea as in TSQR; uses tournament pivoting 

•  Stability caveat: upper bound on the growth factor is worse than for 
GEPP 

•  For GEPP, growth factor bounded by ​2↑𝑛−1 ; for CALU, ​2↑𝑛ℓ , 
where ℓ is the depth of the reduction tree 

•  But usually stable in practice 

•  Step 2: permute the b pivot rows into the first b positions in the panel; 
perform LU factorization with no pivoting 

𝑊=[█​𝑊↓0 @​𝑊↓1 @​𝑊↓2 @​𝑊↓3  ]=[█​Π↓00 ​𝐿↓00 ​𝑈↓00 @​
Π↓10 ​𝐿↓10 ​𝑈↓10 @​Π↓20 ​𝐿↓20 ​𝑈↓20 @​Π↓30 ​𝐿↓30 ​𝑈↓30  ]=[█​
Π↓01 ​𝐿↓01 ​𝑈↓01 @​Π↓11 ​𝐿↓11 ​𝑈↓11  ]= ​Π↓02 ​𝐿↓02 ​𝑈↓02 	

​Π↓2↑𝑇 ​Π↓1↑𝑇 ​Π↓0↑𝑇 𝑊=𝐿𝑈	



CALU 
•  (Grigori, Demmel, Xiang, 2008), (Khabou, Demmel, Grigori, Gu, 2012) 

•  Assume 2D grid of P processors, using a 2D block cyclic layout with square 
blocks of size b 

For ib = 1 to n-1 step b  
1. Find permutation for current panel using TSLU 
2. Apply all row permutations (pdlaswp)  

 - broadcast pivot information along the rows of the grid 
3. Compute panel factorization (dtrsm)  
4. Compute block row of U (pdtrsm)  

 - broadcast right diagonal part of L of current panel  
5. Update trailing matrix (pdgemm)  

 - broadcast right block column of L  
 - broadcast down block row of U  
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CALU implemented in 
•  Cray’s libsci 
•  To be implemented in 

LAPACK/ScaLAPACK 

𝑀=𝑂( ​​𝑛↑2 ∕𝑃 ), choose 𝑏 near 𝑛/ ​𝑃↑1/2  
•  Words: 𝑂( ​​𝑛↑2 ​log ⁠𝑃 ∕​𝑃↑​1∕2   ) ; Lower bound: Ω( ​​𝑛↑2 ∕​
𝑃↑​1∕2   ) 

•  Messages: 𝑂(𝑛​log ⁠𝑃 /𝑏) ; Lower bound: Ω( ​𝑃↑1/2 )  



Sparse Matrix Computations 
•  Sparse Matrix x Vector (SpMV) (𝑦 = 𝐴𝑥) 

•  Very communication-bound; no reuse 
•  Lower bound depends on sparsity 

structure, algorithm used (1D rowwise/
colwise, 2D, etc.) 

•  Communication cost depends on 
partition 

•  Hypergraph models capture 
communication dependencies 
(Catalyurek, Aykanat, 1999) 

•  minimize hypergraph cut = 
minimize words moved 
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•  Repeated SpMVs (𝑌=[𝐴𝑥, ​𝐴↑2 𝑥,…, ​𝐴↑𝑘 𝑥]) 
•  Naive approach: k repeated SpMVs 
•  Communication-avoiding approach: "matrix powers kernel" 

•  see, e.g., (Demmel, Hoemmen, Mohiyuddin, Yelick, 2008) 
•  Avoids communication: 

•  In serial, by exploiting temporal locality in reading 𝐴, reading 
vectors 

•  In parallel, by doing only 1 ‘expand’ phase (instead of 𝑘). 
•  Requires sufficiently low ‘surface-to-volume’ ratio 
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Example:	tridiagonal	matrix,	s	=	3,	n	=	40,	p	=	4	

Naïve	algorithm:	
s	messages	per	neighbor	

Matrix	powers	
op)miza)on:	

1	message	per	neighbor	

Parallel Matrix Powers Kernel 
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Sparse Matrix Computations 

•  Sparse matrix x sparse matrix 
•  (Ballard, Druinsky, Knight, Schwartz, 2016) 
•  Fine-grained and coarse-grained hypergraph models for sparse 

matrix-matrix multiplication 
•  Identifying a communication-optimal algorithm for particular input 

matrices is equivalent to solving a hypergraph partitioning problem 
 
•  Sparse matrix x dense matrix 

•  Building block of an increasing number of applications in many 
areas such as machine learning and graph algorithms 

•  (Koanantakool, Azad, Buluc, Morozov, Oh, Oliker, Yelick, 2016) 
•  Communication lower bounds 
•  New communication-avoiding algorithms based on 1.5D 

decomposition 
•  Outperform 2D and 3D variants in both theory and practice 
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Krylov subspace methods 

•  In each iteration,  
•  Add a dimension to the Krylov subspace 

–  Forms nested sequence of Krylov 
subspaces 

 

     ​𝒦↓1 (𝐴, ​𝑟↓0 )⊂ ​𝒦↓2 (𝐴, ​𝑟↓0 )⊂⋯
⊂ ​𝒦↓𝑖 (𝐴, ​𝑟↓0 ) 
 

•  Orthogonalize (with respect to some ​𝒞↓𝑖 ) 
•  Select approximate solution ​𝑥↓𝑖 ∈ ​𝑥↓0 + ​

𝒦↓𝑖 (𝐴, ​𝑟↓0 )  

 using ​𝑟↓𝑖 =𝑏−𝐴​𝑥↓𝑖 ⊥ ​𝒞↓𝑖  

•  Krylov Subspace Method is a projection process onto the Krylov subspace 

 ​𝒦↓𝑖 (𝐴, ​𝑟↓0 )=span{​𝑟↓0 , 𝐴​𝑟↓0 , ​𝐴↑2 ​𝑟↓0 , …, ​𝐴↑𝑖−1 ​𝑟↓0 }  

where 𝐴 is an 𝑁×𝑁 matrix and ​𝑟↓0 =𝑏−𝐴​𝑥↓0  is a length-𝑁 vector 

•  Linear systems 𝐴𝑥=𝑏, eigenvalue problems, singular value problems, least squares, 
etc.  

•  Ex: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual 
(GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.  
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Communication-avoiding (s-step) KSMs 
•  Idea: Compute blocks of 𝑠 iterations at once  

•  Compute updates in a different basis (using matrix powers kernel) 
•  Communicate every 𝑠 iterations instead of every iteration  
•  Reduces number of synchronizations per iteration by a factor of s 

•  An idea rediscovered many times… 
•  First related work: s-dimensional steepest descent, least squares 

•  Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68)  
•  Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., 

Van Rosendale (1983); Chronopoulos  and Gear (1989) 
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•  Another approach: "pipelined" Krylov subspace methods 
•  Reduce the cost of synchronization by enabling overlapping of All-

Reduces and other computations 

Recent work (Yamazaki, Hoemmen, Dongarra, Luszczek) 
•  Talk tomorrow in Part II (MS93) 
•  Performance comparison of s-step and pipelined Krylov subspace methods 
•  New approach that combines these two techniques 



CA-CG (s-step CG) 
Outer Loop 

Compute basis  
(Matrix powers) 

O( ​𝑠↑2 ) Inner 
Products (one 

synchronization) 

Inner Loop 

Local Vector 
Updates (no 

comm.) 

End Inner Loop 

Inner Outer Loop 

s	
)mes	

​𝑟↓0 =𝑏−𝐴​𝑥↓0 , ​𝑝↓0 = ​𝑟↓0  
for 𝑘=0:nmax/𝑠 

        Compute ​𝒴↓𝑘  and ​ℬ↓𝑘  such that 𝐴​​𝒴 
↓𝑘 = ​𝒴↓𝑘 ​ℬ↓𝑘  and  

 span(​𝒴↓𝑘 ) = ​𝒦↓𝑠+1 (𝐴, ​
𝑝↓𝑠𝑘 )+ ​𝒦↓𝑠 (𝐴, ​𝑟↓𝑠𝑘 ) 

        ​𝒢↓𝑘 = ​𝒴↓𝑘↑𝑇 ​𝒴↓𝑘  
        ​​𝑥↓0↑′ =0, 𝑟↓0↑′ = ​𝑒↓𝑠+2 , ​
𝑝↓0↑′ = ​𝑒↓1  
        for 𝑗=1:𝑠 

                ​𝛼↓𝑠𝑘+𝑗−1 = ​​𝑟↓𝑗−1↑′𝑇 ​
𝒢↓𝑘 ​𝑟↓𝑗−1↑′ /​𝑝↓𝑗−1↑′𝑇 ​𝒢↓𝑘 ​
ℬ↓𝑘 ​𝑝↓𝑗−1↑′           
                ​𝑥↓𝑗↑′ = ​𝑥↓𝑗−1↑′ + ​𝛼↓𝑠𝑘+𝑗
−1 ​𝑝↓𝑗−1↑′   
                ​𝑟↓𝑗↑′ = ​𝑟↓𝑗−1↑′   − ​𝛼↓𝑠𝑘+𝑗
−1 ​ℬ↓𝑘 ​𝑝↓𝑗−1↑′  
                ​𝛽↓𝑠𝑘+𝑗 = ​​𝑟↓𝑗↑′𝑇 ​𝒢↓𝑘 ​𝑟↓𝑗↑
′ /​𝑟↓𝑗−1↑′𝑇 ​𝒢↓𝑘 ​𝑟↓𝑗−1↑′   

    ​𝑝↓𝑗↑′ = ​𝑟↓𝑗↑′ + ​𝛽↓𝑠𝑘+𝑗 ​
𝑝↓𝑗−1↑′  
        end 

                                               ​[𝑥↓𝑠(𝑘+1) − ​
𝑥↓𝑠𝑘 , ​𝑟↓𝑠(𝑘+1) , ​𝑝↓𝑠(𝑘+1) ]= ​
𝒴↓𝑘 [ ​𝑥↓𝑠↑′ , ​𝑟↓𝑠↑′ , ​𝑝↓𝑠↑′ ] 

end 
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CA-CG (s-step CG) 
s-step	CA-CG	with	monomial	basis	(𝒴=[ ​𝑝↓𝑖 ,𝐴​𝑝↓𝑖 ,…, ​𝐴↑𝑠 ​𝑝↓𝑖 , ​𝑟↓𝑖 ,𝐴​𝑟↓𝑖 ,…​𝐴↑𝑠−1 ​
𝑟↓𝑖 ])	
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𝐴:	bcsstk03	from	UFSMC,	𝑏:	equal	components	in	
the	eigenbasis	of	𝐴	and	‖𝑏‖=1	

𝑁=112, 𝜅(𝐴)≈7e6	

Changes to how the 
recurrences are 
computed can 
exacerbate finite 
precision effects of 
convergence delay 
and loss of accuracy! 



•  CA variants are designed to reduce the time/iteration 
•  But what we really want to minimize is the runtime, subject to some 

constraint on accuracy, 

runtime = (time/iteration) x (# iterations) 
  

Optimizing CA iterative solvers 

•  Known that attainable accuracy and convergence rate in CA Krylov subspace 
methods depends on conditioning of the generated s-step bases  

•  (C. and Demmel, 2014), (C. and Demmel, 2015), (Philippe and Reichel, 
2012) 

•  Using finite precision analysis, can develop ways to improve numerical behavior 
while still avoiding communication in each iteration 

•  e.g., residual replacement (C. and Demmel, 2014), adaptive basis size (C. 
2016) 

•  To reduce communication, can also focus on reducing the number of iterations 
•  Preconditioning  

•  Challenging to implement in a CA way, but sometimes possible, e.g., 
ILU (Grigori, Moufawad, 2015), SPAI (Dehnavi, Demmel, Fernández, 
2014), DD (Yamazaki, Rajamanickam, Boman, Hoemmen, Heroux, 
Tomov, 2014) 

•  Enlarged basis methods (Grigori, Moufawad, Nataf, 2016), (Al Daas, 
Grigori, Hénon, Ricoux, 2017) 
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Extensions: Strassen's Matmul 

•  Ballard, Demmel, Holtz, Schwartz (2011 SPAA, 2012 JACM, 2014 CACM) 
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Classical	𝑂( ​𝑛↑3 )	
matmul	

Strassen's	𝑂( ​𝑛↑lg 
7 )	matmul	

Strassen-like	𝑂( ​
𝑛↑𝜔 )	matmul	

words	moved:	 Ω(​𝑀/𝑃 ⋅ ​(​𝑛/
√⁠𝑀  )↑3 )	

Ω(​𝑀/𝑃 ⋅ ​(​𝑛/
√⁠𝑀  )↑lg 7 )	

Ω(​𝑀/𝑃 ⋅ ​(​𝑛/
√⁠𝑀  )↑𝜔  )	

•  New communication-optimal 
parallelization of Strassen’s 
algorithm 

•  Outperforms all previous matrix 
multiplication algorithms 

(Strong scaling on a Cray XT4) 

Recent work: (Schwartz	and	Karstadt)	
•  4th talk in this MS 
•  New faster version of Strassen's alg. 
•  Communication costs, 

parallelization, extension to other 
Strassen-like algorithms  



Extensions: Tensor Computations 

•  For tensor contractions, generalized lower bounds apply 
•  Cyclops Tensor Framework (Solomonik, Matthews, Hammond, 

Stanton, Demmel, 2014) 
•  A massively parallel tensor contraction framework for coupled-

cluster computations 
•  Avoids communication by exploiting replication, dynamically 

selecting a parallel decomposition with the least communication 
cost 
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Recent work (Ballard, Knight, Rouse) 
•  3rd talk in this MS! 
•  Matricized-tensor times Khatri-Rao product (MTTKRP)  

•  Bottleneck in CANDECOMP/PARAFAC decomposition of a 
tensor 

•  Communication lower bounds for sequential and parallel memory 
models, communication costs of existing algorithms 



Extension: Machine Learning 
Algorithms 
•  CA-SVMs (You, Demmel, Czechowski, Song, Vuduc, 2015) 
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Recent work (Devarakonda, Fountoulakis, Demmel, Mahoney) 
•  Talk tomorrow in Part II (MS93) 
•  Communication-avoiding primal and dual block coordinate descent 

methods for regularized least-squares 
•  Extends results on CA-KSMs 

Recent work (Koanantakool, Oh, Morozov, Buluc, Oliker, Yelick) 
•  Talk tomorrow in Part II (MS93) 
•  Communication-Avoiding Sparse Inverse Covariance Matrix 

Estimation 
•  Main bottleneck: iterative sparse-dense matmul 
•  For the first time, enables analyzing high-dimensional data sets with 

millions of variables and arbitrary underlying graph structures 
•  Experimental results using 3D brain fMRI data sets 



Generalization: Arbitrary Nested Loops 
•  Beyond Linear Algebra: Affine Array References 

•  e.g., A(i + 2j; 3k + 4) 
•  (Christ, Demmel, Knight, Scanlon, Yelick, 2013); (Knight, 2015) 

•  Extend previous lower bounds to larger class of programs 
•  Lower bounds are computable - proof via Hölder-Brascamp-Lieb (HBL) 

theory 
•  Matching upper bounds (i.e., optimal algorithms) in special cases: linear 

algebra, tensor contraction, direct N–body, database join, etc. (when 
array references pick a subset of the loop indices) 

•  Ongoing work addresses attainability in the general case 
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Recent work (Knight) 
•  2nd talk in this MS! 
•  Application of HBL theory to 

Convolutional Neural 
Networks (CNNs) 



Generalization: Write-Avoiding Algorithms 
•  (C., Demmel, Grigori, Knight, Koanantakool, Schwartz, Simhadri, 2016) 
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•  Writes can be much more expensive than reads in some current and emerging 
storage devices such as nonvolatile memories. 

“communication-avoiding” (CA): minimize the sum of reads and writes 
"write-avoiding" (WA): CA and also do asymptotically fewer writes than reads 

•  Some CA algorithms are also WA 
•  Matrix multiply, Cholesky, TRSM, direct N-body 

•  For some algorithms, WA algorithm cannot exist (#writes must be within a 
constant factor of the total # of reads and writes; "bounded reuse") 

•  Strassen matmul, Cooley-Tukey FFT, cache oblivious (CO) algorithms for 
classical linear algebra (no WACO algs!) 



Lots of speedups…  

•  Up to 12x faster for 2.5D matmul on 64K core IBM BG/P  

•  Up to 3x faster for tensor contractions on 2K core Cray XE/6  

•  Up to 6.2x faster for All-Pairs-Shortest-Path on 24K core Cray CE6 

•  Up to 2.1x faster for 2.5D LU on 64K core IBM BG/P 

•  Up to 11.8x faster for direct N-body on 32K core IBM BG/P 

•  Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU 

•  Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere 

•  Up to 2x faster for 2.5D Strassen on 38K core Cray XT4 

•  Up to 4.2x faster for MiniGMG benchmark bottom solver, using CA-
BICGSTAB (2.5x for overall solve), 2.5x / 1.5x for combustion simulation 
code  

•  Up to 42x for Parallel Direct 3-Body  

These and many more recent papers available at bebop.cs.berkeley.edu 



 
 
 
 

Thank you! 
 

erinc@cims.nyu.edu 
math.nyu.edu/~erinc 
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