
MS76: Communication-Avoiding Algorithms - Part I
of II

1	

4:00-4:25 Communication-Avoiding Algorithms:
Challenges and New Results
Erin C. Carson

4:30-4:55 Communication-Optimal Loop Nests
Nicholas Knight

5:00-5:25 Communication Lower Bounds for Matricized-
Tensor Times Khatri-Rao Product
Grey Ballard, Nicholas Knight, Kathryn Rouse

5:30-5:55 Matrix Multiplication, a Little Faster
Oded Schwartz and Elaye E. Karstadt

MS93: Communication-Avoiding Algorithms - Part
II of II

Friday, July 14, 4:00 PM - 6:00 PM, Spirit of Pittsburgh B

2	

4:00-4:25 Communication-Avoiding Primal and Dual Methods for
Regularized Least-Squares
Aditya Devarakonda, Kimon Fountoulakis, James Demmel, and Michael
Mahoney

4:30-4:55 Communication-Avoiding Sparse Inverse Covariance Matrix
Estimation
Penporn Koanantakool, Sang-Yun Oh, Dmitriy Morozov, Aydin Buluc, and
Leonid Oliker, Katherine Yelick

5:00-5:25 Black-box Communication Optimal Low Rank
Approximations
Alan Ayala, Laura Grigori

5:30-5:55 Performance of S-step and Pipelined Krylov Methods
Ichitaro Yamazaki, Mark Hoemmen, Jack J. Dongarra, Piotr Luszczek

Communication-Avoiding
Algorithms:

Challenges and New
Results

Erin Carson
New York University

SIAM Annual Meeting 2017

Pittsburgh, PA, USA

•  Runtime of an algorithm is the sum of
•  #flops x (time/flop)
•  #words moved x (1/bandwidth)
•  #messages x latency

What is communication?

•  Communication is expensive, computation is cheap
–  in terms of both time and energy! (time → joules)

2	

communicati
on

computation

Sequen)al	 	Parallel	

CPU	
Cache	

CPU	
DRAM	

DRAM	

CPU	
DRAM	

CPU	
DRAM	

CPU	
DRAM	

Future exascale systems

Petascale	
Systems	(2009)	

Predicted	Exascale	
Systems	

Factor	
Improvement	

System	Peak	 2⋅ ​10↑15 	flops/s	 ​10↑18 	flops/s	 ~1000	
Node	Memory	

Bandwidth	 25	GB/s	 0.4-4	TB/s	 ~10-100	

Total	Node	Interconnect	
Bandwidth	 3.5	GB/s	 100-400	GB/s	 ~100	

Memory	Latency	 100	ns	 50	ns	 ~2	
Interconnect	Latency	 1	𝜇s	 0.5	𝜇s	 ~2	

5	

•  Gaps	between	communica)on/computa)on	cost	only	growing	larger	in	
future	systems	

*Sources:	from	P.	Beckman	(ANL),	J.	Shalf	(LBL),	and	D.	Unat	(LBL)		

•  Avoiding	communica?on	will	be	essen?al	for	applica?ons	at	exascale!	

Motivation for CA Algorithms
•  This problem will not be solved (in the foreseeable future) in

hardware

•  Needs to be addressed higher in the computing stack - at the
algorithm level

•  A paradigm shift in the way the numerical algorithms are

designed is required
•  We can't only think about computational complexity,

we must also think about communication complexity

•  Communication-avoiding algorithms:
•  Minimize communication volume (total words moved)
•  Minimize number of messages
•  Minimize over multiple levels of memory/parallelism
•  Allow redundant computations

6	

Work in CA algorithms

• For numerical linear algebra computations…

1.  Prove lower bounds on communication cost

2.  Design new (stable) algorithms that attain
these lower bounds

3.  Implement algorithms on various machines,
for various applications

Brief History: Dense Linear Algebra
•  Communication long recognized as a bottleneck

•  BLAS1 → BLAS2 → BLAS3
•  EISPACK, LINPACK → LAPACK, ScaLAPACK

•  Lower bounds for (dense) matrix multiply
•  Hong and Kung (1981): for sequential matmul, must move Ω(​​𝑛↑3 ∕​
𝑀↑​1∕2   ) words (𝑀 is size of fast memory)

•  Irony, Tiskin, Toledo (2004): Generalized to parallel case: when each
of 𝑃 processors stores 𝑀=𝑂(​​𝑛↑2 ∕𝑃 ) words, Ω(​​𝑛↑3 ∕​𝑃↑​1∕2   )
words moved.

•  Attainable by Cannon's Algorithm (Cannon 1969), SUMMA (van
de Geijn and Watts 1997)

•  Demmel, Grigori, Hoemmen, Langou (2008): same lower bounds
apply to LU, QR factorization

8	

Generalization: 3 nested loops
•  Generalized by Ballard, Demmel, Holtz,

Schwartz (2011) to any "3-nested loops"
algorithm, using Loomis Whitney inequality

•  matmul, Cholesky, LU, LDLT, QR, Floyd-
Warshall, etc.; for dense and sparse
matrices; sequential, parallel, hybrid

•  words moved = Ω(​#,lops∕​𝑀↑​1∕2   ),
 messages = Ω(​#,lops∕​𝑀↑​3∕2   )
•  (assuming 𝑀=𝑂(​𝑛↑2 /𝑃))

9	

Algorithm	 Minimizes	#	
words	moved	

Minimizes	#	words	moved	and	#	messages	

Cholesky	 ScaLAPACK	 ScaLAPACK	

LU	 ScaLAPACK	 CALU		
(Grigori,	Demmel,	Xiang,	2008),	(Khabou,	Demmel,	Grigori,	Gu,	2012)		

QR	 ScaLAPACK	 CAQR		
(Demmel,	Grigori,	Hoemmen,	Langou,	2008),	(Ballard	et	al.,	2014)		

•  3D	matmul:	𝑀=𝑂(​​𝑛↑2 ∕​𝑃↑​2∕3   )	,			2.5D	matmul:	𝑀=𝑐​𝑛↑2 /𝑃	
		

x	
z	

z	
y	

x	
y	

Tall-Skinny QR
•  TSQR: QR factorization of a tall

skinny matrix using Householder
transformations

•  QR decomposition of m x b matrix W,
m >> b

•  P processors, block row layout

•  Classic Parallel Algorithm
•  Compute Householder vector for

each column
•  Number of messages ∝ b log P

•  Communication Avoiding
Algorithm

•  Reduction operation, with QR as
operator

•  Number of messages ∝ log P
10	

𝑊=[█​𝑊↓0 
@​𝑊↓1 @​
𝑊↓2 @​
𝑊↓3  ]	

█​
𝑅↓00 
@​
𝑅↓10 
@​
𝑅↓20 
@​
𝑅↓30  	

​
𝑅↓
01 	​
𝑅↓
11 	

​
𝑅↓
02 	

Parallel

𝑊=[█​𝑊↓0 
@​𝑊↓1 @​
𝑊↓2 @​
𝑊↓3  ]	

​
𝑅↓
00 	

​
𝑅↓
01 	

​
𝑅↓
02 	

​
𝑅↓
03 	

Sequential

𝑊=[█​𝑊↓0 
@​𝑊↓1 @​
𝑊↓2 @​
𝑊↓3  ]	

█​
𝑅↓00 
@​
𝑅↓01  	

​
𝑅↓
01 	
​
𝑅↓
11 	

​
𝑅↓
02 	​
𝑅↓
11 	

​
𝑅↓
03 	

Dual Core

CAQR
•  Demmel, Grigori, Hoemmen, Langou (2008)
•  TSQR on panels
•  Performing trailing matrix update is complicated - Q factor represented implicitly

•  Can reconstruct Householder vectors from Tall-Skinny QR (TSQR-HR)
(Ballard, Demmel, Grigori, Jacquelin, Knight, Nyugen, 2015)

11	

step 0 step 1 step 2

•  As stable as Householder QR

TSQR/CAQR implemented in
•  Intel MKL library
•  GNU Scientific Library
•  ScaLAPACK
•  Spark for data mining

•  Close to optimal
•  Assume 𝑀=𝑂(​​𝑛↑2 ∕𝑃 )
•  Choose 𝑏 near 𝑛/ ​𝑃↑1/2 

•  Words moved: 𝑂(​​𝑛↑2 ​log ⁠𝑃 ∕​𝑃↑​1∕2   )
•  Lower bound: Ω(​​𝑛↑2 ∕​𝑃↑​1∕2   )

•  Messages: 𝑂(𝑛​log ⁠𝑃 /𝑏)
•  Lower bound: Ω(​𝑃↑1/2 )

Recent work (Ayala, Claeys, Grigori)
•  Talk tomorrow in Part II (MS93)
•  Comm.-optimal low-rank approximation of

matrices arising from boundary element
problems

•  Uses CAQR factorization

Tall-Skinny LU

•  Step 1: preprocessing: select a set of b good pivot rows
•  Reduction operation with GEPP being the operator used to select

pivot rows at each node of the reduction tree
•  Like in TSQR, shape of reduction tree depends on underlying

architecture

12	

•  Similar idea as in TSQR; uses tournament pivoting

•  Stability caveat: upper bound on the growth factor is worse than for
GEPP

•  For GEPP, growth factor bounded by ​2↑𝑛−1 ; for CALU, ​2↑𝑛ℓ ,
where ℓ is the depth of the reduction tree

•  But usually stable in practice

•  Step 2: permute the b pivot rows into the first b positions in the panel;
perform LU factorization with no pivoting

𝑊=[█​𝑊↓0 @​𝑊↓1 @​𝑊↓2 @​𝑊↓3  ]=[█​Π↓00 ​𝐿↓00 ​𝑈↓00 @​
Π↓10 ​𝐿↓10 ​𝑈↓10 @​Π↓20 ​𝐿↓20 ​𝑈↓20 @​Π↓30 ​𝐿↓30 ​𝑈↓30  ]=[█​
Π↓01 ​𝐿↓01 ​𝑈↓01 @​Π↓11 ​𝐿↓11 ​𝑈↓11  ]= ​Π↓02 ​𝐿↓02 ​𝑈↓02 	

​Π↓2↑𝑇 ​Π↓1↑𝑇 ​Π↓0↑𝑇 𝑊=𝐿𝑈	

CALU
•  (Grigori, Demmel, Xiang, 2008), (Khabou, Demmel, Grigori, Gu, 2012)

•  Assume 2D grid of P processors, using a 2D block cyclic layout with square
blocks of size b

For ib = 1 to n-1 step b
1. Find permutation for current panel using TSLU
2. Apply all row permutations (pdlaswp)

 - broadcast pivot information along the rows of the grid
3. Compute panel factorization (dtrsm)
4. Compute block row of U (pdtrsm)

 - broadcast right diagonal part of L of current panel
5. Update trailing matrix (pdgemm)

 - broadcast right block column of L
 - broadcast down block row of U

13	

CALU implemented in
•  Cray’s libsci
•  To be implemented in

LAPACK/ScaLAPACK

𝑀=𝑂(​​𝑛↑2 ∕𝑃 ), choose 𝑏 near 𝑛/ ​𝑃↑1/2 
•  Words: 𝑂(​​𝑛↑2 ​log ⁠𝑃 ∕​𝑃↑​1∕2   ) ; Lower bound: Ω(​​𝑛↑2 ∕​
𝑃↑​1∕2   )

•  Messages: 𝑂(𝑛​log ⁠𝑃 /𝑏) ; Lower bound: Ω(​𝑃↑1/2 )

Sparse Matrix Computations
•  Sparse Matrix x Vector (SpMV) (𝑦 = 𝐴𝑥)

•  Very communication-bound; no reuse
•  Lower bound depends on sparsity

structure, algorithm used (1D rowwise/
colwise, 2D, etc.)

•  Communication cost depends on
partition

•  Hypergraph models capture
communication dependencies
(Catalyurek, Aykanat, 1999)

•  minimize hypergraph cut =
minimize words moved

14	

•  Repeated SpMVs (𝑌=[𝐴𝑥, ​𝐴↑2 𝑥,…, ​𝐴↑𝑘 𝑥])
•  Naive approach: k repeated SpMVs
•  Communication-avoiding approach: "matrix powers kernel"

•  see, e.g., (Demmel, Hoemmen, Mohiyuddin, Yelick, 2008)
•  Avoids communication:

•  In serial, by exploiting temporal locality in reading 𝐴, reading
vectors

•  In parallel, by doing only 1 ‘expand’ phase (instead of 𝑘).
•  Requires sufficiently low ‘surface-to-volume’ ratio

0 10 20 30
x

Ax

A2x

A3x

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 40 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 40 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 40 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 40 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 40 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4

0 10 20 30
x

Ax

A2x

A3x

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 40 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 40 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 40 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 40 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 40 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 40 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 40 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4

Example:	tridiagonal	matrix,	s	=	3,	n	=	40,	p	=	4	

Naïve	algorithm:	
s	messages	per	neighbor	

Matrix	powers	
op)miza)on:	

1	message	per	neighbor	

Parallel Matrix Powers Kernel

15	

Sparse Matrix Computations

•  Sparse matrix x sparse matrix
•  (Ballard, Druinsky, Knight, Schwartz, 2016)
•  Fine-grained and coarse-grained hypergraph models for sparse

matrix-matrix multiplication
•  Identifying a communication-optimal algorithm for particular input

matrices is equivalent to solving a hypergraph partitioning problem

•  Sparse matrix x dense matrix

•  Building block of an increasing number of applications in many
areas such as machine learning and graph algorithms

•  (Koanantakool, Azad, Buluc, Morozov, Oh, Oliker, Yelick, 2016)
•  Communication lower bounds
•  New communication-avoiding algorithms based on 1.5D

decomposition
•  Outperform 2D and 3D variants in both theory and practice

16	

Krylov subspace methods

•  In each iteration,
•  Add a dimension to the Krylov subspace

–  Forms nested sequence of Krylov
subspaces

 ​𝒦↓1 (𝐴, ​𝑟↓0 )⊂ ​𝒦↓2 (𝐴, ​𝑟↓0 )⊂⋯
⊂ ​𝒦↓𝑖 (𝐴, ​𝑟↓0 )

•  Orthogonalize (with respect to some ​𝒞↓𝑖 )
•  Select approximate solution ​𝑥↓𝑖 ∈ ​𝑥↓0 + ​

𝒦↓𝑖 (𝐴, ​𝑟↓0 )

 using ​𝑟↓𝑖 =𝑏−𝐴​𝑥↓𝑖 ⊥ ​𝒞↓𝑖 

•  Krylov Subspace Method is a projection process onto the Krylov subspace

 ​𝒦↓𝑖 (𝐴, ​𝑟↓0 )=span{​𝑟↓0 , 𝐴​𝑟↓0 , ​𝐴↑2 ​𝑟↓0 , …, ​𝐴↑𝑖−1 ​𝑟↓0 }

where 𝐴 is an 𝑁×𝑁 matrix and ​𝑟↓0 =𝑏−𝐴​𝑥↓0  is a length-𝑁 vector

•  Linear systems 𝐴𝑥=𝑏, eigenvalue problems, singular value problems, least squares,
etc.

•  Ex: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual
(GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.

4	

×	

×	

SpMV	

orthogonalize	

Communication-avoiding (s-step) KSMs
•  Idea: Compute blocks of 𝑠 iterations at once

•  Compute updates in a different basis (using matrix powers kernel)
•  Communicate every 𝑠 iterations instead of every iteration
•  Reduces number of synchronizations per iteration by a factor of s

•  An idea rediscovered many times…
•  First related work: s-dimensional steepest descent, least squares

•  Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68)
•  Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g.,

Van Rosendale (1983); Chronopoulos and Gear (1989)

28	

•  Another approach: "pipelined" Krylov subspace methods
•  Reduce the cost of synchronization by enabling overlapping of All-

Reduces and other computations

Recent work (Yamazaki, Hoemmen, Dongarra, Luszczek)
•  Talk tomorrow in Part II (MS93)
•  Performance comparison of s-step and pipelined Krylov subspace methods
•  New approach that combines these two techniques

CA-CG (s-step CG)
Outer Loop

Compute basis
(Matrix powers)

O(​𝑠↑2 ) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s	
)mes	

​𝑟↓0 =𝑏−𝐴​𝑥↓0 , ​𝑝↓0 = ​𝑟↓0 
for 𝑘=0:nmax/𝑠

 Compute ​𝒴↓𝑘  and ​ℬ↓𝑘  such that 𝐴​​𝒴 
↓𝑘 = ​𝒴↓𝑘 ​ℬ↓𝑘  and

 span(​𝒴↓𝑘 ) = ​𝒦↓𝑠+1 (𝐴, ​
𝑝↓𝑠𝑘 )+ ​𝒦↓𝑠 (𝐴, ​𝑟↓𝑠𝑘 )

 ​𝒢↓𝑘 = ​𝒴↓𝑘↑𝑇 ​𝒴↓𝑘 
 ​​𝑥↓0↑′ =0, 𝑟↓0↑′ = ​𝑒↓𝑠+2 , ​
𝑝↓0↑′ = ​𝑒↓1 
 for 𝑗=1:𝑠

 ​𝛼↓𝑠𝑘+𝑗−1 = ​​𝑟↓𝑗−1↑′𝑇 ​
𝒢↓𝑘 ​𝑟↓𝑗−1↑′ /​𝑝↓𝑗−1↑′𝑇 ​𝒢↓𝑘 ​
ℬ↓𝑘 ​𝑝↓𝑗−1↑′  
 ​𝑥↓𝑗↑′ = ​𝑥↓𝑗−1↑′ + ​𝛼↓𝑠𝑘+𝑗
−1 ​𝑝↓𝑗−1↑′ 
 ​𝑟↓𝑗↑′ = ​𝑟↓𝑗−1↑′  − ​𝛼↓𝑠𝑘+𝑗
−1 ​ℬ↓𝑘 ​𝑝↓𝑗−1↑′ 
 ​𝛽↓𝑠𝑘+𝑗 = ​​𝑟↓𝑗↑′𝑇 ​𝒢↓𝑘 ​𝑟↓𝑗↑
′ /​𝑟↓𝑗−1↑′𝑇 ​𝒢↓𝑘 ​𝑟↓𝑗−1↑′  

 ​𝑝↓𝑗↑′ = ​𝑟↓𝑗↑′ + ​𝛽↓𝑠𝑘+𝑗 ​
𝑝↓𝑗−1↑′ 
 end

 ​[𝑥↓𝑠(𝑘+1) − ​
𝑥↓𝑠𝑘 , ​𝑟↓𝑠(𝑘+1) , ​𝑝↓𝑠(𝑘+1) ]= ​
𝒴↓𝑘 [​𝑥↓𝑠↑′ , ​𝑟↓𝑠↑′ , ​𝑝↓𝑠↑′ ]

end

31	

CA-CG (s-step CG)
s-step	CA-CG	with	monomial	basis	(𝒴=[​𝑝↓𝑖 ,𝐴​𝑝↓𝑖 ,…, ​𝐴↑𝑠 ​𝑝↓𝑖 , ​𝑟↓𝑖 ,𝐴​𝑟↓𝑖 ,…​𝐴↑𝑠−1 ​
𝑟↓𝑖 ])	

35	

𝐴:	bcsstk03	from	UFSMC,	𝑏:	equal	components	in	
the	eigenbasis	of	𝐴	and	‖𝑏‖=1	

𝑁=112, 𝜅(𝐴)≈7e6	

Changes to how the
recurrences are
computed can
exacerbate finite
precision effects of
convergence delay
and loss of accuracy!

•  CA variants are designed to reduce the time/iteration
•  But what we really want to minimize is the runtime, subject to some

constraint on accuracy,

runtime = (time/iteration) x (# iterations)

Optimizing CA iterative solvers

•  Known that attainable accuracy and convergence rate in CA Krylov subspace
methods depends on conditioning of the generated s-step bases

•  (C. and Demmel, 2014), (C. and Demmel, 2015), (Philippe and Reichel,
2012)

•  Using finite precision analysis, can develop ways to improve numerical behavior
while still avoiding communication in each iteration

•  e.g., residual replacement (C. and Demmel, 2014), adaptive basis size (C.
2016)

•  To reduce communication, can also focus on reducing the number of iterations
•  Preconditioning

•  Challenging to implement in a CA way, but sometimes possible, e.g.,
ILU (Grigori, Moufawad, 2015), SPAI (Dehnavi, Demmel, Fernández,
2014), DD (Yamazaki, Rajamanickam, Boman, Hoemmen, Heroux,
Tomov, 2014)

•  Enlarged basis methods (Grigori, Moufawad, Nataf, 2016), (Al Daas,
Grigori, Hénon, Ricoux, 2017)

12	

Extensions: Strassen's Matmul

•  Ballard, Demmel, Holtz, Schwartz (2011 SPAA, 2012 JACM, 2014 CACM)

22	

Classical	𝑂(​𝑛↑3 )	
matmul	

Strassen's	𝑂(​𝑛↑lg
7 )	matmul	

Strassen-like	𝑂(​
𝑛↑𝜔 )	matmul	

words	moved:	 Ω(​𝑀/𝑃 ⋅ ​(​𝑛/
√⁠𝑀  )↑3 )	

Ω(​𝑀/𝑃 ⋅ ​(​𝑛/
√⁠𝑀  )↑lg 7 )	

Ω(​𝑀/𝑃 ⋅ ​(​𝑛/
√⁠𝑀  )↑𝜔 )	

•  New communication-optimal
parallelization of Strassen’s
algorithm

•  Outperforms all previous matrix
multiplication algorithms

(Strong scaling on a Cray XT4)

Recent work: (Schwartz	and	Karstadt)	
•  4th talk in this MS
•  New faster version of Strassen's alg.
•  Communication costs,

parallelization, extension to other
Strassen-like algorithms

Extensions: Tensor Computations

•  For tensor contractions, generalized lower bounds apply
•  Cyclops Tensor Framework (Solomonik, Matthews, Hammond,

Stanton, Demmel, 2014)
•  A massively parallel tensor contraction framework for coupled-

cluster computations
•  Avoids communication by exploiting replication, dynamically

selecting a parallel decomposition with the least communication
cost

23	

Recent work (Ballard, Knight, Rouse)
•  3rd talk in this MS!
•  Matricized-tensor times Khatri-Rao product (MTTKRP)

•  Bottleneck in CANDECOMP/PARAFAC decomposition of a
tensor

•  Communication lower bounds for sequential and parallel memory
models, communication costs of existing algorithms

Extension: Machine Learning
Algorithms
•  CA-SVMs (You, Demmel, Czechowski, Song, Vuduc, 2015)

24	

Recent work (Devarakonda, Fountoulakis, Demmel, Mahoney)
•  Talk tomorrow in Part II (MS93)
•  Communication-avoiding primal and dual block coordinate descent

methods for regularized least-squares
•  Extends results on CA-KSMs

Recent work (Koanantakool, Oh, Morozov, Buluc, Oliker, Yelick)
•  Talk tomorrow in Part II (MS93)
•  Communication-Avoiding Sparse Inverse Covariance Matrix

Estimation
•  Main bottleneck: iterative sparse-dense matmul
•  For the first time, enables analyzing high-dimensional data sets with

millions of variables and arbitrary underlying graph structures
•  Experimental results using 3D brain fMRI data sets

Generalization: Arbitrary Nested Loops
•  Beyond Linear Algebra: Affine Array References

•  e.g., A(i + 2j; 3k + 4)
•  (Christ, Demmel, Knight, Scanlon, Yelick, 2013); (Knight, 2015)

•  Extend previous lower bounds to larger class of programs
•  Lower bounds are computable - proof via Hölder-Brascamp-Lieb (HBL)

theory
•  Matching upper bounds (i.e., optimal algorithms) in special cases: linear

algebra, tensor contraction, direct N–body, database join, etc. (when
array references pick a subset of the loop indices)

•  Ongoing work addresses attainability in the general case

25	

Recent work (Knight)
•  2nd talk in this MS!
•  Application of HBL theory to

Convolutional Neural
Networks (CNNs)

Generalization: Write-Avoiding Algorithms
•  (C., Demmel, Grigori, Knight, Koanantakool, Schwartz, Simhadri, 2016)

26	

•  Writes can be much more expensive than reads in some current and emerging
storage devices such as nonvolatile memories.

“communication-avoiding” (CA): minimize the sum of reads and writes
"write-avoiding" (WA): CA and also do asymptotically fewer writes than reads

•  Some CA algorithms are also WA
•  Matrix multiply, Cholesky, TRSM, direct N-body

•  For some algorithms, WA algorithm cannot exist (#writes must be within a
constant factor of the total # of reads and writes; "bounded reuse")

•  Strassen matmul, Cooley-Tukey FFT, cache oblivious (CO) algorithms for
classical linear algebra (no WACO algs!)

Lots of speedups…

•  Up to 12x faster for 2.5D matmul on 64K core IBM BG/P

•  Up to 3x faster for tensor contractions on 2K core Cray XE/6

•  Up to 6.2x faster for All-Pairs-Shortest-Path on 24K core Cray CE6

•  Up to 2.1x faster for 2.5D LU on 64K core IBM BG/P

•  Up to 11.8x faster for direct N-body on 32K core IBM BG/P

•  Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU

•  Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere

•  Up to 2x faster for 2.5D Strassen on 38K core Cray XT4

•  Up to 4.2x faster for MiniGMG benchmark bottom solver, using CA-
BICGSTAB (2.5x for overall solve), 2.5x / 1.5x for combustion simulation
code

•  Up to 42x for Parallel Direct 3-Body

These and many more recent papers available at bebop.cs.berkeley.edu

Thank you!

erinc@cims.nyu.edu
math.nyu.edu/~erinc

28	

