Parallelism and Puzzles

Cleve Moler
SIAM Annual Meeting
Denver, July 8, 2009

Part I

My Experiences with
 Parallel Computing

Conclusion

More Powerful Computers
=>
Coarser Granularity
=>
Embarrassingly Parallel

CDC 7600 Early 1970's

Cray 1 Late 1970's

FPS 164 Early 1980's

1970's - 1980's

"Parallel"
三
General purpose ops and floating point ops done simultaneously.

1979

LINPACK Benchmark

LLL
SLAC
Michigan
Toronto
Northwestern
Texss
China Lake Yale
Be11 Labs
Wisconsin
Iowa State
U. 111. Chicago

Purdue
U, G. San Diegoiesst 3.1
Yale.

$$
* \operatorname{TIME}(100)=(100 / 75) \star * 3 \operatorname{SGEFA}(75)+
$$

http://www.top500.org/

Rank	Site	Computer/Year Vendor	Cores	$\mathbf{R}_{\text {max }}$	$\mathrm{R}_{\text {peak }}$	Power
1	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8 i 3.2 Ghz / Opteron DC 1.8 GHz , Voltaire Infiniband / 2008 IBM	129600	1105.00	1456.70	2483.47
2	Oak Ridge National Laboratory United States	$\begin{aligned} & \text { Jaguar - Cray XT5 QC } \\ & 2.3 \mathrm{GHz} / 2008 \\ & \text { Cray Inc. } \end{aligned}$	150152	1059.00	1381.40	6950.60
3	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution / 2009 IBM	294912	825.50	1002.70	2268.00
4	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0/2.66 GHz I 2008 SGI	51200	487.01	608.83	2090.00
5	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60

1980 Intel 8087 ~50 kFLOPs

The iPSC System Family

Base System
Memory System
Numeric System

Name	Nodes	Memory	MFLOPS	Price
iPSC/d5	32	16 MBytes	2	$\$ 171.5 \mathrm{~K}$
IPSC/d4-MX	16	72 MBytes	1	$\$ 184.4 \mathrm{~K}$
IPSC/d4-VX	16	24 MBytes	106	$\$ 296.1 \mathrm{~K}$

Base System
Memory System
Numeric System
IPSC/d6

6432 MBytes
4
\$293.5K
iPSC/d5-MX
32144 MBytes
2
\$311.3K
iPSC/d5-vx
32
48 MBytes
212
\$516.7K

Base System
Symbolic System

IPSC/d7	128	64 MBytes	8	$\$ 524.6 \mathrm{~K}$
iPSC/d6-MX	64	288 MBytes	4	$\$ 558.2 \mathrm{~K}$
IPSC/d6-VX	64	96 MBytes	424	$\$ 947.5 \mathrm{~K}$

DISTRIBUTED GAUSSIAN ELIMINATION

```
\(n=\) order of matrix
\(p=\) number of processors
id \(=\) individual processor index
\(m=\) number of columns in id-th processor
    \(=\lceil n / p\rceil\) ог \(\lfloor n / p\rfloor\) if \(i d<\) or \(\geq(n \bmod p)\)
\(A=\) distributed matrix, stored in \(n\) by \(m\) array on each processor
\(l=1\)
for \(k=1\) to \(n\) do
if id \(=(k-1) \bmod p\) then
    find piwot in \(t\)-th column of \(A\)
    \(e=-\) (portion of \(l\)-th column of \(A\) )/pivot
    send \(e\) to all other processors
    \(l=l+1\)
    else
    wait to recv 6
    for \(j=1\) to 0 do
        \(s=a_{k, j}\)
        for \(i=k+1\) to \(n\) do
            \(a_{i, j}=a_{i, j}+s \cdot \epsilon_{i}\)
        end \(i\) loop
    end \(j\) loop
end \(k\) loop
```


Memory Considerations

$M=$ number of 64 -bit words available per processor

$$
\begin{aligned}
& \text { iPSC } \quad M \text { (thousands) } \\
& \text { Standard } 36 \\
& \text { Vector } 106 \\
& \text { Memory } 512 \\
& n\lceil n / p\rceil+3 n \leq M \\
& n_{\text {max }}=\sqrt{p M+(2 p)^{2}}-(2 p)
\end{aligned}
$$

Matrix order, LU, d7

Time, LU, d7

Megaflops, LU, d7

1986

Mike Heath, editor,
"Proceedings of the First Conference
on Hypercube Multiprocessors Knoxville, Tennessee, 1985."

"Embarrassingly Parallel"

One important way in which LINPACK and EISPACK will be used on such machines is in applications with many tasks involving matrices small enough to be stored on a single processor. The conventional subroutines can be used on the individual processors with no modification. We call such applications "embarrassingly parallel" to emphasize the fact that, while there is a high degree of parallelism and it is possible to make efficient use of many processors, the granularity is large enough that no cooperation between the processors is required within the matrix computations.

" ${ }^{\text {neaks }}$

To fully utilize the system, we must consider problems involving many matrices ..., or matrices of larger order. ... The performance is strongly dependent on the two parameters, n and p. For a given p, there is a maximum value of n determined by the amount of memory available. ...

$$
\overline{n_{\max }} \approx \sqrt{ } p M
$$

"Megaflops per Gallon"

THE UNIVERSE OF SUPERCOMPUTING

TRY PRICE

THE UNIVERSE OF SUPERCOMPUTING

1990-2005

I am hardly involved in parallel computing, except for ...

Why there isn't a parallel MATLAB

Our experience has made us skeptical
by Cleve Moler

There actually have been a few experimental vessiore of MATLAB for parallel computes. None of them hax been efflective enough tojusity development beyond the experimental prototype Bat we hive learned enough from these experiences to make us sieptial about the viability of a filly functional MATLAB running on todey's paralld nachines There arethree basc difficuitio:

- Mensory model

- Granulartly
- Basiness stuation

Memory model

The most important a tiribute of a parallel computer is its memory model. Large-cale, manively paralle computers have potentially thousinds of processors and ditribitad memary. that is, each processor has its own memory. Smaller scale machines, inclinding some high-end workstations, have oaly a few processors and shand memary.

A good example of a ditributed memory parallel computer is one of the first commertially walable parallel computers. the Intel iPSC, where we tried to make our fint parallel MatLaia almost ten years ago. It had up to 128 nodes-exch a separate single board computer with an Inted microprocessor and maybe hall a megabyte of memory. In principle, each note could evecutea different program, but we usially ran the same program on all of them. Each node could rend messages direcdy to its nearest neighbors and indirectly to all the other nods. The whole machine was controlled by a front-end host, which inttated takk, collected results, and handled all I/O.

We ran MartuB on the host and gave names with captal letters to the functions in the parallel math itbrary. So INV (A) or PFT (X) would start wth a matrix in the host memory, split It into equally staxd tubmatrias, send axch of the sabmatitos to a node, invoke the parallel rout ine, and then collect the resuls back on the host. It took far longer to distribute the data than it did to do the computation. Any matrix that would fit intomenory on the hos was too small to make effictiveuse of the parallel computer iseel.

The situation hasn" tchanged very much in ten years.

MATLAB is lot beger, and parallel computes are a lat faxter But dutributed memary is itill a lindamertal difficulty. One of MATLAB's mort attractive features is its menory model These are no declaratiors orallocations-is is all handled automatically. The ley quetion is: Whare are the maties stared? itis still true today that any matrix that fis into the host memory should probatly stay there.

Granularity

A limle over five yars ago, ve had a parald MATLAB on a shared memary muiliprocessoc, the Archant Titan, hat we didn't tell the wrild about it. The mest effictive use of the machire, as well x today's mulliprocescr worbtations, \& yleady done antanallcally by the operating sytem. MATLAB hoold nun on only one processor, while other taks. lile the X-Windows serve, ise the ather proxesoss. In typical use MATLAB spents anly a smill portion of is tine in routines that can be perallelised like the ons in the math libray. It spends mach more time inplaces like the parser, the interppoter, and the graphiss roitines, where ary parallelisn is dificult to find.

There are some special situstions where paralld computuion within MatLas would be effective For example, mppose I want tofind ufut firxtion of a large number of matritas have elgenvalues in the lef half plare. The obvious plaxe to poalleliet this is on the outer logp. It's not necxasyy to use more than one processor to generate a single matrix or to compute its elgenvalies. The only place the processens would need to cooperate is in merging their fral count. However, to get MATLAB to handle this kind di paralldim would requife fundmental charges to lts archlthecture.

Business siluation

It doenrit make good bisinuss remse for is tounderther funchmental dhanges in MATLAFs architecture. These are not enough potential customens with parallel machines. Most of the MatLaB community would rather seeus devote orr efforts to improwing our conventional uniprocessor software. So. wn will continue to track developments in paralilicomputag bat we don'texpect to get sertously involvel agion in the near fithure. ©

Cleve's Corner, 1995
 Why there isn't a parallel MATLAB

- Memory model
- Granularity
- Business situation

2005

Ron Choy's Web page at MIT lists 27 Parallel MATLABs.
None of them are from The MathWorks

Parallel Computing Today

Quad Core Microprocessor

Multicore Parallelism

- Fine grained
- Multithreaded
- Shared memory
- Automatic
- Dangerous
- Not scalable
- Memory bandwidth
- ISMOP (Its' a Small Matter of Programming)

ORNL Jaguar 180,828 cores

Multicomputer Parallelism

- Coarse grained
- Message passing
- Distributed memory
- Explicit

Parallel MATLAB

- Introduced in 2005
- NOT for top 500, but everybody else
- Now at Version 4.2
- Parallel Computing Toolbox
- Distributed Computing Server

Parallel Computing Toolbox

- 58 local "labs"
- parfor
- spmd
- distributed arrays

Distributed Computing Server

- > 8 "labs"
- Interface to job managers

Embarrassingly Parallel Multithreaded Benchmarks

- MATLAB 7.4 (R2007a)
- 16 dual-processor, dual-core Opterons
- $1 \leq$ labs ≤ 64
- $1 \leq$ threads ≤ 4
- ode
- fft
- LU
- sparse

ODE

Sparse

Multithreaded benchmarks

- MATLAB 7.9 (R2009b)
- HP D5100 home computer
- Intel Core2 QUAD CPU, 2.83 GHz
- threads = [1, 2, 4]
- LU (1000)
- fft(2^20)
- ode, van der Pol, $0 \leq t \leq 400$
- sparse
, delsq(numgrid('L', 300))
- SVD (1000)

Matrix benchmarks, vary size

- LU (n)
- sparse
, delsq(numgrid('L', g))

FLOPs Don't Count Anymore

- Memory Touches
- Power Consumption
- Parallelism

What Can Be Parallelized?

- Programming is the easy part
- Discovering parallelism is hard
- No algorithmic theory

Embarrassingly Parallel

- "Fully Parallel"
- Monte Carlo
- Parameter sweeps
- Most prevalent

GPUs and FPGAs

- Today's FPS 164

Effective Parallelism

- Twice as much output
- Two sets of parameters
- NOT twice as fast
- Multithreading is a bad idea

Conclusion

More Powerful Computers
=>
Coarser Granularity
=>
Embarrassingly Parallel

Part II

Experiments with MATLAB

http://www.mathworks.com/moler/exm

Experiments with MATLAB

Preface
Iteration
Fibonacci Numbers
Calendars and Clocks
T Puzzle
Matrices
Fractal Fern
Magic Squares
TicTacToe Magic
Game of Life
Mandelbrot Set
Linear Equations
Google PageRank
Ordinary Differential Equations
Exponential Function
Predators and Prey
Shallow Water Equations
Orbits
Sudoku

Homework:

Friday the 13 th is unlucky, but is it unlikely?

What is the probability that the 13 th of any month is on a Friday?

See Experiments with MATLAB/Calendars.

Approximate Derivative

$$
y p=(a \cdot \wedge(t+h)-a \cdot \wedge t) / h
$$

Rotation

$z=\exp (i * t h e t a) *(z-m u)+m u$

Gosper glider gun

Life

$$
\begin{aligned}
& Y=X(:, p)+X(:, q)+X(p,:)+X(q,:)+\ldots \\
& X(p, p)+X(q, q)+X(p, q)+X(q, p) ; \\
& X=(X \&(Y==2)) \mid(Y==3)
\end{aligned}
$$

Mandelbrot

$z=z . * z+z 0 ;$
ky (abs (z) < 2) = d;

