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Improve atom probe tomography instrumentation, experimental /

methods, and understanding of apex electrostatics.

Thrust 1: Build a new atom probe instrument optimized for the

specific materials of interest to the semiconductor industry.

Thrust 2: Optimize atom probe measurements on commercial

tools using specimens provided by the semiconductor industry. 400 nm 100 nm 10 nm
Thrust 3: Develop modeling tools to simulate apex electrostatics Atom probe microscopes operate in the ultraviolet region of the electromagnetic spectrum.

fur AMERICA on real-world specimens of interest to the semiconductor ind ustry. The goal of Thruszf 1 is to determine t.he optlmal.laser wavelength for the specific elements, materials,
and structures of interest to the semiconductor industry.

Atom Probe Tomography Design of an EUV Atom Probe Microscope
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Conventional APT measurements are performed with voltage pulses or laser pulses.
Typically harmonics of a Nd-based laser are used having wavelengths around 532 nm, -~ EC = = RN T e e T I e
355 nm, 257 nm (2.3 eV, 3.5 eV, 4.8 eV). For samples containing materials with large Core e e BN, ey | TR IR R A A
optical band gaps these photons are not efficiently absorbed and APT measurements e B e A ' e
can be challenging.
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InGaN quantum well sample, mass spectra, and EUV APT reconstruction. NUV and EUV mass spectra for ALO.. EUV mass spectra show minimal change in peak
Using EUV light we obtained the correct indium apparent composition values. width with increase in pulse energy while NUV data show increase in peak width.
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