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Qutline

» Review of sparsity based image restoration models

> Wavelet frames based image restoration and relation to

variational and PDE models
» Piecewise smooth image model by wavelet frames
» Asymptotic analysis and relation to Mumford-Shah functional
> Numerical experiments

» Concluding remarks

Jian-Feng Cai, B. Dong and Zuowei Shen, Image restorations: a wavelet frame based model
for piecewise smooth functions and beyond, Applied and Computational Harmonic
Analysis, 201 6.



Image Restoration Model

» Image Restoration Problems

f=Au+n
e Denoising, when A is identity operator
e Deblurring, when A is some blurring operator
* Inpainting, when A is some restriction operator
« CT/MR Imaging, when A is partial Radon/Fourier
transform

» Challenges: large-scale & ill-posed



How to Obtain a Good Recovery

> Variational and Optimization Models
min AR(u) + || Au — f]|?
= Total variation (TV) znd generalizations:  R(u) = ||Vul|; or [ Dul;
= Wavelet frame based:  R(u) = ||[Wul|; or |[Wullo
< l-norm v.s. 0-norm:

[Zhang, Dong and Lu, Math Comput. 2013] & [Dong and Zhang, JSC, 2013]

= Others: total generalized variation, low rank, NLM, BM3D, dictionary learning, etc.

> PDEs and Iterative Algorithms

= Perona-Malik equation, shock-filtering (Rudin & Osher), etc

L g OB HPL

w =3 Far Po(Duu) = AY(Au—f), with D = (55, ..., ——57)

=1

= Iterative shrinkage algorithm
uF = WS o (Wur) —AT(Au " — ), k=1,2,--
> What do they have in common?

Shrinkage in sparse domain under transformation!
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91, — v T — A*( Ay — 8| — ((— -
Uy = ; ey Oy(Du,u) — A*(Au — f), with D = (f’)g_»ﬁ-i ..... IR )

= Iterative shrinkage algorithm
uF = WS o (Wur) —AT(Au " — ), k=1,2,--

“Dong and Shen, Image restoration: a data-driven perspective, Proceedings of the
International Congress of Industrial and Applied Mathematics (ICIAM), 2015”



Tight Frames in R”

» Orthonormal basis
er = (0,1)", e = (1,0)" I__)
> Riesz basis

€1 — (Ojl)—rjeg T

» Tight frame: Mercedes-Benz frame

2 2 V3 1 2 V3 1
€1 = \/;(Ov 1)T?€2 =/ 5% __)T363 =\/ 7 (= __)T

3 2 2

> Expansions: I
Unique ¥V = (ri€] + (x99, Vv € RQ
Not unique U = (\1€1 + (iv€9 + (ige3, VU € R? 62/\



Wavelet Frames

> General frame system: X = {g; : j € Z} C Lo(RY)

* They are redundant systems satisfying

A3, < D190 < BIfIIE,@ey. V€ La(RY)

JEL
* and we have

f=) (1903 YfE€LyR?

jez.
> Wavelet frames: given W := {¢1...., 901} C Lo(RY)

X(W) = {trnr: 1 <0< LinelZkel"}

red

25 (2" - —k), 0> 0:;

where Uy = J /  Affi .
Pl { 2(,1(1{1/){.(2,3 . _2,‘,?’_’]’6)3 n < 0. Quasi-Affine system

> A wavelet frame is called a tight wavelet frame if A=B=1



MRA-Based Tight VWavelet Frames

> Refinable and wavelet functions
@uﬁﬁ§:admm2_ﬁ)-m:&dgjwww@-4w (=1,2,....q.
> Unitary extension principle (UEP) [Ron and Shen, 1997]:

d q
D @@ =1 and > an(&a§+v) =0,
= =) € {0,719\ {0} and € € [, 7]
> Discrete 2D transformation:
Wu = {Wg,,;u 0 < [ < L — 10 < '2.1?'3.2 < 7“}
[ Wiiu = a;;|—] ® u, ]

az[k‘} = Qg [k’ﬂa.gg Ufg} 0 < 'Z°1j 'iQ < r. (/fh /fg) < Z2.

a;[27'k], ke 2'7%

0, k¢?2'72

> Lecture notes: [Dong and Shen, MRA-Based Wavelet Frames and
Applications, |AS Lecture Notes Series,2012]

a;i=a;®a_10®...0apo with a;;lk] = {



Connections: Analysis Based Model and

Variational Model
» [Cai, Dong, Osher and Shen, JAMS, 2012]:

1 . Converges 1
@) wul+ 31401 "> Nl + 2140~ flo

For any differential operator when proper parameter is chosen.




Connections: Analysis Based Model and

Variational Model
» [Cai, Dong, Osher and Shen, JAMS, 2012]:

Converges

1 1
@) Wl + 514 =11 = DY)l + 5040 - flE,00

For any differential operator when proper parameter is chosen.

Gheorem. Let the objective functionals of the analysis based model
and the variational model be F,, (u) and E(u) respectively, then:
(1) E,(u) = E(u) for each u € W(Q);
(2) En(w,) — E(u) for every sequence u, — u. Consequently, £,
[-converges to E;
(3) If w) is an e-optimal solution to E,,, i.e. E,(u)) < inf, E,(u)+e,
then

\ limsup £, (uw)) < inf E(u) + €. /




Connections: Analysis Based Model and

Variational Model
» [Cai, Dong, Osher and Shen, JAMS, 2012]:

1 . Converges 1
@) wul+ 31401 "> Nl + 2140~ flo

For any differential operator when proper parameter is chosen.

» The connections give us

* Geometric interpretations of the wavelet frame transform (WFT)

* WFT provides flexible and good discretization for differential operators

300

Standard Discretization Piecewise Linear WFT



Connections: Analysis Based Model and

Variational Model
» [Cai, Dong, Osher and Shen, JAMS, 2012]:

1
@ Walls + 5| Au— f

For any differential operator when proper parameter is chosen.

Converges

) | i1
5 —> /\\ -‘u.)||1 + §||AU- - f||22(Q)

» The connections give us

* Geometric interpretations of the wavelet frame transform (WFT)

* WFT provides flexible and good discretization for differential operators

* Different discretizations affect reconstruction results

* Good regularization should contain differential operators with varied orders (e.g., total

generalized variation [Bredies, Kunisch, and Pock, 2010])

> Leads to new applications of wavelet frames:

% Image segmentation: [Dong, Chien and Shen, 2010]
% Surface reconstruction from point clouds: [Dong and Shen, 201 1]



Wavelet Shrinkage and Nonlinear PDEs

» [Dong, Jiang and Shen, preprint, 2015]

——

u' = W' S (Wuh ), k=12,
C L e 8)@1 B)BL ):

Uty = 3.0 (I)E(Du: u‘)a with Du = ( \
— du

nnnnn

» Theoretical justification available for quasilinear parabolic
equations.

> Lead to new PDE models such as:

L
B¢ OBy OBLy N 0P
_ Bl - ...
e Cug = > (0P o (0 G ) e

} — kAT (Au— f)

» Lead to new wavelet frame shrinkage algorithms:
u = (T —pATAW' S o (Wub Y + AT f
where
Sak—l(Wuk_l) = {Sal.p,n(Wluk—l)(Wguk_l) 0 g l g Lev — 131 E F g L}

A7 (A(dym)? + 4(dom)?
So:;-_n(d)(dl.n-dQ.n) =d(;_n (1 - h—z(f( ( = ) ];: ((2‘ ) ))




Modeling Images

> [Existing generic image models

* Functions in BV space (variational and PDE models)
* Functions in bounded TGV space
* Functions in Besov spaces (wavelets and wavelet frames)

* Functions in SBV space (Mumford-Shah)

> Modeling images as piecewise smooth functions




Wavelet Frame Based Model for
Piecewise Smooth Function

> Wavelet frame based image restoratlon model
inf |3 Walpel2+ |l - Walg], + 3| Au — £[3

2

where A Walp |3 = > ZZ)\“ (W, ju) K]

kcO2\I [=0 i€Bb
1

0 When I' = 0., the model reduces to Tikhonov regularization
model (over-smoothing)

> ilk] ‘ (Wi iu)|K]

1€B

Iy - Walpll =) [LZl (

kel | [=0

0 When I'“ = 0 , the model reduces to the analysis based model
(introducing unwanted singularities)

2, .
O The term [[[A - Waulp.|5 is to introduce enough smoothness
away from singularities

0 The term [I[v - Wulp||; regularizes both jumps and hidden
jumps

O The model is solved by alternative optimization strategy



Fast Algorithm

> Alternative optimization
> Fixing jump set, recover image

ub = arg min

2 1 9
min |\ Wl gy |+ 1l Walpas I+ 5l Au - £

¥

wbd = argmin L[| Au — FI2 + L[| Wu — &~ + b2,
lin 2

9
5 + H['}’ . d](rk—l)l

d’ = arg ngn H (A - d](rk—])r'-‘
b =t + (Wuki — d).

T Ld — Wurd — 1|3,

> Fixing image, estimate jump set

k= arg min

2 K
+[rwd|
rco? 2

P\ : Wuk} e

$
> walel| (Wi fp

(1<

el

N3 L—1
) < Z Z)\;‘i[p]‘(wx.—auk)[?]

=0 icB

(=0

r*{pe@zz E(

|



Piecewise Sobolev Space

> Piecewise Sobolev space: U;Q; =Q, Uy, = Q;
H({Q5}) = {f € La(Q) : 1 llrs g0, 1 < oo}

T F?i‘-l}'

[ f I g, -3 = S I e, + Hf””'“'_i._}(gg}. )
=

=1

> Trace operator is a linear bounded operator defined on

C>®(B) C H*(B) as: T(u) = ul|gp for u € C(B).
> Key observations: (u, D" ¢nx) = (u,Vnx) and integration by parts
Proposition. Let u € H*(B) and ¢ € C*(B) with B C Q a Lipschitz domain

with piecewise C'' boundary dB. Then, for any 1 < [#] < s, we have the
following formula of integration by parts

jieD; 1<I<]i| OB

where T(-) is the trace operator defined on H*(B), and the set D; indicates
the type of differential operators that appears on u at the boundary after the
operation of integration by parts:

D; := {jg<?:1‘jngZ—l;jg<j,'+1:l:1,2_...._.|’i‘}.



Asymptotic Analysis: Linking to
Continuum

> WVe proved that the discrete objective function Gamma-converges
to the energy functional of the following (new) variational problem

m/ ‘ (u) — %5 (u)
.i’]i‘j

+N22/ ( “’”+ (Dju) — (D u)

m

inf v - DUH + )| ds
uE'H'l'”({f-’-j“} . A}, {11,;'-}'} Z

, 3
ds

1 12
+ EHAU — fHLg(Q)




Asymptotic Analysis: Linking to
Continuum

> WVe proved that the discrete objective function Gamma-converges
to the energy functional of the following (new) variational problem

" Joint vanishing moment = |
~inf |v - Dul|3 + Z

m; i 9
sy [ (Z 55(Diw) = T5(Diw) ) s
j=1 i \|Ji|=1

‘."_:;-'r(n) - ‘E;(rr)

13| =

1 12
+ EHAU — fHLg(Q)

O The term ]1 ds takes care of the jumps



Asymptotic Analysis: Linking to
Continuum

> WVe proved that the discrete objective function Gamma-converges
to the energy functional of the following (new) variational problem

Joint vanishing moment = |

m

inf | |v - Dul|3 + Z
j=1

ucH! S50 AT AT 5 Joint vanishing moment = 2

1 012
Is| + EHAU = [z,

ds takes care of the jumps

O The term ]1

‘."_:;-'r(n) - ‘E;(rr)

1

O The term fr __ (;} (D) —‘EZ}(Di.u)\‘-) s takes care of first order hidden jumps



Asymptotic Analysis: Linking to
Continuum

> WVe proved that the discrete objective function Gamma-converges
to the energy functional of the following (new) variational problem

" Joint vanishing moment = |

inf | |v - Dul3 + Z
j=1

ucH! 'H({Q.L} H. A1 {l‘J._\;. Joint vanishing moment = 2

1 12
Is| + 5l Au = flL,0)

ds takes care of the jumps

‘."_:;-'r(n) - 'E;(H)

O The term /l

1

Tt (Do) T (D).
,ij_j_(Dr,u) LM(D,_U)

O The term /F __ (;} 2) s takes care of first order hidden jumps

O The discrete model has far richer structure in general, whose corresponding
variational model in continuum is more complicated



Asymptotic Analysis: Linking to
Continuum

> WVe proved that the discrete objective function Gamma-converges
to the energy functional of the following (new) variational problem

i Joint vanishing moment = |

inf | |v - Dul3 —1—2 11

uE’H"--*({&"BII.‘;}). {I'; }, {1“}._\;. / / Joint vanishing moment = 2

;] H[l
2 !

a ds takes care of the jumps

T (1) - 5, (1)

1

Q The term [F __ (;} T (Dyu) —E},;(Df.u)\'-) s takes care of first order hidden jumps

O The discrete model has far richer structure in general, whose corresponding
variational model in continuum is more complicated

O A special case of the above variational model is related to the well-known
Mumford-Shah functional

. 1 .
_ Val* + T+ < lu— fI7, ¢
Vfgz.\r‘ ul® 4 p| T + 5 |u fHLQ(Q)



Numerical Results: Deblurring

Analysis based
model .

PSNR=31.72

Piecewise
smooth model

PSNR=34.27




Numerical Results: Deblurring

Goldgate Interior Pitt Samantha

Deblurring Results

Image Name || Analysis Based Model | Our Approach

Car 27.3194 27.0443
Goldgate 27.5312 27.8618
Interior 29.6087 30.0355
Pitt 29.4654 29.6716

Samantha 30.9207 31.0085




Conclusions

> What we have done:
= Piecewise smooth image restoration model
= Asymptotic analysis and relation to Mumford-
Shah functional
= Numerical experiments support our modeling
concept

> What yet need to be done:

= Regularization on the jump set

= Full asymptotic analysis without assuming jump
set is known

= Application to image segmentation



Thanks for Your Attention
and

Questions?

:/ |G

\e

Webpage: http://bicmr.pku.edu.cn/~dongbin
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