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Outline 

 Review of sparsity based image restoration models 

 Wavelet frames based image restoration and relation to 

variational and PDE models 

 Piecewise smooth image model by wavelet frames 

 Asymptotic analysis and relation to Mumford-Shah functional 

 Numerical experiments 

 Concluding remarks 

Jian-Feng Cai, B. Dong and Zuowei Shen, Image restorations: a wavelet frame based model 
for piecewise smooth functions and beyond,  Applied and Computational Harmonic 
Analysis, 2016. 



Image Restoration Model 
  Image Restoration Problems 

 
 
 
 
 
 
 

 Challenges: large-scale & ill-posed 
 
 
 
 

 

• Denoising, when      is identity operator 

• Deblurring, when      is some blurring operator 

• Inpainting, when      is some restriction operator 

• CT/MR Imaging, when      is partial Radon/Fourier 

  transform  



How to Obtain a Good Recovery 
 Variational and Optimization Models 

 
 Total variation (TV) and generalizations:  

 Wavelet frame based: 

 1-norm v.s. 0-norm: 

 [Zhang, Dong and Lu, Math Comput. 2013] & [Dong and Zhang, JSC, 2013] 

 Others: total generalized variation, low rank, NLM, BM3D, dictionary learning, etc. 

 PDEs and Iterative Algorithms 
 Perona-Malik equation, shock-filtering (Rudin & Osher), etc 

 

 

 Iterative shrinkage algorithm 

 
 What do they have in common?  

Shrinkage in sparse domain under transformation! 
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 1-norm v.s. 0-norm: 

 [Zhang, Dong and Lu, Math Comput. 2013] & [Dong and Zhang, JSC, 2013] 

 Others: total generalized variation, low rank, NLM, BM3D, dictionary learning, etc. 

 PDEs and Iterative Algorithms 
 Perona-Malik equation, shock-filtering (Rudin & Osher), etc 

 

 

 Iterative shrinkage algorithm 

 
 “Dong and Shen, Image restoration: a data-driven perspective, Proceedings of the 

International Congress of Industrial and Applied Mathematics (ICIAM), 2015” 
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Tight Frames in  
Orthonormal basis 

 
 Riesz basis 

 
 

 Tight frame: Mercedes-Benz frame 
 
 

 Expansions: 
 Unique 

Not unique 



Wavelet Frames 
 General frame system:      

 
 
 
 

 Wavelet frames: given 
 
 

  
 A wavelet frame is called a tight wavelet frame if A=B=1 

• They are redundant systems satisfying 
 
 

• and we have 
 

 

where            Quasi-Affine system 



MRA-Based Tight Wavelet Frames 
 Refinable and wavelet functions 

 

 Unitary extension principle (UEP) [Ron and Shen, 1997]: 

 

 

 

 Discrete 2D transformation: 

 

 

 

 

 

 Lecture notes: [Dong and Shen, MRA-Based Wavelet Frames and 
Applications, IAS Lecture Notes Series,2012] 



Connections: Analysis Based Model and 
Variational Model 
  [Cai, Dong, Osher and Shen, JAMS, 2012]: 

 
 
 

 
 

Converges 

For any differential operator when proper parameter is chosen. 
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Connections: Analysis Based Model and 
Variational Model 
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  The connections give us 
 
 
 
 

  
 Leads to new applications of wavelet frames: 

 
 

Converges 

• Geometric interpretations of the wavelet frame transform (WFT) 

• WFT provides flexible and good discretization for differential operators 

• Different discretizations affect reconstruction results 

• Good regularization should contain differential operators with varied orders (e.g., total 

generalized variation [Bredies, Kunisch, and Pock, 2010]) 

For any differential operator when proper parameter is chosen. 

Standard Discretization Piecewise Linear WFT 



Connections: Analysis Based Model and 
Variational Model 
  [Cai, Dong, Osher and Shen, JAMS, 2012]: 

 
 
 

  The connections give us 
 
 
 
 

  
 Leads to new applications of wavelet frames: 

 
 

Converges 

• Geometric interpretations of the wavelet frame transform (WFT) 

• WFT provides flexible and good discretization for differential operators 

• Different discretizations affect reconstruction results 

• Good regularization should contain differential operators with varied orders (e.g., total 

generalized variation [Bredies, Kunisch, and Pock, 2010]) 

 Image segmentation: [Dong, Chien and Shen, 2010] 
 Surface reconstruction from point clouds: [Dong and Shen, 2011] 

For any differential operator when proper parameter is chosen. 



Wavelet Shrinkage and Nonlinear PDEs 

 [Dong, Jiang and Shen, preprint, 2015] 
 
 
 
 

 Theoretical justification available for quasilinear parabolic 
equations. 

 Lead to new PDE models such as: 
 
 

 Lead to new wavelet frame shrinkage algorithms: 

where 
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Modeling Images 
  Existing generic image models 

 
 
 
 
 

  Modeling images as piecewise smooth functions 

• Functions in BV space (variational and PDE models) 

• Functions in bounded TGV space 

• Functions in Besov spaces (wavelets and wavelet frames) 

• Functions in SBV space (Mumford-Shah) 



Wavelet Frame Based Model for 
Piecewise Smooth Function 
  Wavelet frame based image restoration model 

 
 
 
 
  When            , the model reduces to Tikhonov regularization 

model (over-smoothing) 
  When             , the model reduces to the analysis based model 

(introducing unwanted singularities) 
  The term                      is to introduce enough smoothness 

away from singularities 
  The term                      regularizes both jumps and hidden 

jumps  
  The model is solved by alternative optimization strategy 
 

where 



Fast Algorithm 

Alternative optimization 
  Fixing jump set, recover image 

 
 
 
 
 

  Fixing image, estimate jump set 



Piecewise Sobolev Space 
 Piecewise Sobolev space: 

 
 
 

 Trace operator is a linear bounded operator defined on 
 

 Key observations:                                   and integration by parts 



Asymptotic Analysis: Linking to 
Continuum 
  We proved that the discrete objective function Gamma-converges 

to the energy functional of the following (new) variational problem 
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Asymptotic Analysis: Linking to 
Continuum 
  We proved that the discrete objective function Gamma-converges 

to the energy functional of the following (new) variational problem 
 
 
 
 
  The term                           takes care of the jumps 

 

  The term                                           takes care of first order hidden jumps  

  The discrete model has far richer structure in general, whose corresponding 
variational model in continuum is more complicated 

  A special case of the above variational model is related to the well-known 
Mumford-Shah functional 

Joint vanishing moment = 1 

Joint vanishing moment = 2 



Numerical Results: Deblurring 

Analysis based 
model 
 
PSNR=31.72 

Piecewise 
smooth model 
 
PSNR=34.27 



Numerical Results: Deblurring 

Car Goldgate Interior Pitt Samantha 

Deblurring Results 



Conclusions 
 What we have done: 
 Piecewise smooth image restoration model 
 Asymptotic analysis and relation to Mumford-

Shah functional 
 Numerical experiments support our modeling 

concept 

 What yet need to be done: 
 Regularization on the jump set 
 Full asymptotic analysis without assuming jump 

set is known 
 Application to image segmentation 



Thanks for Your Attention 
and  

Questions? 

Webpage:  http://bicmr.pku.edu.cn/~dongbin 
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