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Introduction

Turbulent dynamical systems
I ubiquitous in geoscience, engineering, neural and

material sciences

I characterized by a large dimensional phase space and
a large dimensional space of strong instabilities, which
transfer energy throughout the system

Central math/science issues
I accurate descriptions of turbulent phenomena

I state estimation from noisy observations — data assimilation/filtering

I effective predictions with improved initial values from data assimilation

I quantifying uncertainty and model error
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Conditional Gaussian Nonlinear Systems

Many turbulent dynamical systems belong to conditional Gaussian framework.

The conditional Gaussian systems have the following abstract form (Chen & Majda, 2016),

duI = [A0(t ,uI) + A1(t ,uI)uII]dt + ΣI(t ,uI)dWI(t) (1a)

duII = [a0(t ,uI) + a1(t ,uI)uII]dt + ΣII(t ,uI)dWII(t) (1b)

Once uI(s) for s ≤ t is given, uII(t) conditioned on uI(s) becomes a Gaussian process,

p
(
uII(t)|uI(s ≤ t)

)
∼ N (ūII(t),RII(t)). (2)

I Despite the conditional Gaussianity, the coupled system (1) remains highly
nonlinear and is able to capture the non-Gaussian features as in nature.

I The conditional Gaussian distribution in (2) has closed analytic form (Liptser &

Shiryaev 2001):

duII(t) =[a0(t, uI) + a1(t, uI)uII]dt + (RIIA
∗
1 (t, uI))(ΣIΣ

∗
I )−1(t, uI) [duI − (A0(t, uI) + A1(t, uI)uII)dt] ,

dRII(t) =
{

a1(t, uI)RII + RIIa
∗
1 (t, uI) + (ΣIIΣ

∗
II )(t, uI)− (RIIA

∗
1 (t, uI))(ΣIΣ

∗
I )−1(t, uI)(RIIA

∗
1 (t, uI))∗

}
dt.
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Examples of conditional Gaussian systems.

duI = [A0(t ,uI) + A1(t ,uI)uII]dt + ΣI(t ,uI)dWI(t),

duII = [a0(t ,uI) + a1(t ,uI)uII]dt + ΣII(t ,uI)dWII(t),

Noisy Lorenz 63 model

— A simple chaotic system

dx = σ(y − x)dt + σx dWx ,

dy =
(
x(ρ− z)− y

)
dt + σy dWy ,

dz = (xy − βz)dt + σzdWz .

ρ = 28
σ = 10
β = 8/3

Stochastic parameterizations

— Capturing intermittency and random phases

du = (−γ + iω)udt + σudWu ,

dγ = −dγ(γ − γ̂)dt + σγdWγ

dω = −dω(ω − ω̂)dt + σωdWω
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Outline

1. Quantifying the uncertainty reduction and understanding the data assimilation
skill of recovering ocean flows with noisy Lagrangian tracers.

2. An efficient statistically accurate algorithm for solving the Fokker-Planck equation
in high dimensions.

3. Predicting an important atmospheric phenomenon via a low-order nonlinear
stochastic model.
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I. Recovering Geophysical Flows with Lagrangian Tracers
I Lagrangian tracers: drifters/floaters following a parcel of fluid’s movement.

I [Inverse Problems]. Data assimilation with Lagrangian tracers: recovering the
underlying velocity field with observations (from tracers).

I Only dynamics: large uncertainty due to turbulence.
I Dynamics + Observations: reducing error and uncertainty.

I What is the information gain as a function of the number of tracers? Is there a
practical information barrier?

I How to design cheap practical strategies for systems with multiscale and
turbulent features?
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Model set-up.

1. Underlying flows

Consider a random flow modeled by a finite number of Fourier modes with
random amplitudes in periodic domain (0, 2π]2,

~v(~x , t) =
∑
~k∈K

v̂~k (t) · ei~k·~x ·~r~k .

Each v̂~k (t) follows an Ornstein-Uhlenbeck (O.U.) process,

dv̂~k (t) = −d~k v̂~k (t)dt + f~k (t)dt + σ~k dW v
~k

(t).

2. Observations
The observations are given by the trajectories of L noisy Lagrangian tracers,

d~xl (t) = ~v(~xl (t), t)dt + σx dW x
l (t)

=
∑
~k∈K

v̂~k (t) · ei~k·~xl (t) ·~r~k︸ ︷︷ ︸
Nonlinear!

dt + σx dW x
l (t), l = 1, . . . , L.

3. Conditional Gaussian data assimilation framework — p(U|X).
U = (v̂1, ...v̂K)T , X = (x1,x , x1,y , ..., xL,x , xL,y )T

Observations: dX = PX (X)Udt + Σx dWX ,

Underlying flow: dU = −ΓUdt + F(t)dt + ΣudWu .
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1. Recovering random incompressible flows
First rigorous math theory

(Chen, Majda & Tong, Nonlinearity, 2014)

Prior distribution based only on the model p(Ut ) ∼ N (matt
t ,Ratt

t )

Posterior distribution combining model and obs p(Ut |Xs≤t ) ∼ N (mt ,Rt )

To quantify the uncertainty reduction in the posterior distribution p(Ut |Xs≤t ) related to
the prior p(Ut ), the relative entropy is adopted:

P(p(Ut |Xs≤t ), p(Ut )) =

∫
p(Ut |Xs≤t ) ln

p(Ut |Xs≤t )

p(Ut )

For Gaussian distributions,

P(p(Ut |Xs≤t ), p(Ut ))

=
1
2

[
(mt −matt

t )∗(Ratt
t )−1(mt −matt

t )
]

· · ·Signal

+
1
2

[
tr(Rt (Ratt

t )−1)− |K| − ln det(Rt (Ratt
t )−1)

]
· · ·Dispersion
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Uncertainty reduction:

P(p(Ut |Xs≤t ), p(Ut ))

=
1
2

[
(mt −matt

t )∗(Ratt
t )−1(mt −matt

t )
]

· · ·Signal

+
1
2

[
tr(Rt (Ratt

t )−1)− |K| − ln det(Rt (Ratt
t )−1)

]
· · ·Dispersion

Theorem (Uncertainty Reduction)

As L→∞, there exists a fixed time s0 > 0 such that for a.s. ~vs≤t

For any t > s0, Signal→
1
2

(Ut −matt
t )∗R−1

att (Ut −matt
t ) in P~vs≤t

,

For any t > 0,
Dispersion
|K|+2

4 ln L
→ 1 in P~vs≤t

.

Reducing the uncertainty by a fixed amount requires an exponential
increase in the number of tracers — A practical information barrier!
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2. Noisy Lagrangian tracers
for recovering random rotating compressible flows

(Chen, Majda & Tong, JNLS 2015; Chen & Majda, MWR, 2016)

Starting model – 2D shallow water equation (SWE),

∂~u
∂t

+ ε−1~u⊥ = −ε−1∇η,

∂η

∂t
+ ε−1∇ · ~u = 0, ε : the Rossby number.

Two types of modes in the SWE:

1. Geostrophically balanced (GB) modes: ω~k,B = 0; incompressible.

2. Gravity modes: ω~k,± = ±ε−1
√
|~k |2 + 1; compressible.

– Rotating shallow water models with multiscale features:[
~u(~x , t)
η(~x , t)

]
=

∑
~k∈K,α∈{B,±}

v̂~k,α(t) exp(i~k · ~x)~r~k,α,

dv̂~k,B = (−dB v̂~k,B + f~k,B(t))dt + σ~k,BdW~k,B ,

dv̂~k,± =
(

(−dg + iω~k,±)v̂~k,± + f~k,±(t)
)

dt + σ~k,±dW~k,±,

– Highly nonlinear observations mixing GB and gravity modes! 9 / 22



Designing cheap practical strategy (filter) to recover the GB flows

Filter Name Forecast Model Observations
1. Full Filter Full Model Full Obs Practical but Expensive
2. GB Filter GB Dynamics GB Modes Idealized
3. Reduced Filter GB Dynamics Full Obs Practical and Cheap

Notations for the posterior estimation of the GB flows:

Full filter: N (mF
t ,R

F
t ) GB filter: N (mG

t ,R
G
t ) Reduced filter: N (mR

t ,R
R
t )

Theorem (Recovering the large-scale GB flows)

Assume initially the same Gaussian distribution and no correlation between GB and
gravity parts. For any fixed q ≥ 1,T ≥ 0 there is an ε-uniform constant M,[

E~vF sup
t≤T
‖mF

t −mG
t ‖

2q

] 1
2q

≤ εM
[
E~vF sup

t≤T
‖RF

t − RG
t ‖

2q

] 1
2q

≤ εM

[
E sup

t≤T
‖mF

t −mR
t ‖

2q

] 1
2q

≤ εM
[
E sup

t≤T
‖RF

t − RR
t ‖

2q

] 1
2q

≤ εM

Conclusion: Comparable high skill in recovering GB modes for all the filters in the
geophysical scenario with small Rossby number ε.
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Outline

1. Quantifying the uncertainty reduction and understanding the data assimilation
skill of recovering ocean flows with noisy Lagrangian tracers.

2. An efficient statistically accurate algorithm for solving the Fokker-Planck equation
in high dimensions.

3. Predicting an important atmospheric phenomenon via a low-order nonlinear
stochastic model.
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II. An Efficient Statistically Accurate Algorithm for Solving the
Fokker-Planck Equation in Large Dimensions

(Chen & Majda, JCP, 2017, PNAS, 2017; Chen, Majda & Tong, SIAM UQ, 2017)

Consider a general nonlinear dynamical system with noise,

du = F(u, t)dt + Σ(u, t)dW.

The Fokker-Planck equation describes the time evolution of the
probability density function (PDF) associated with u,

∂

∂t
p(u, t) = −∇u

(
F(u, t)p(u, t)

)
+

1
2
∇u · ∇u(ΣΣT (u, t)p(u, t)).

t

Initial Phase

Steady State

Transient Phases

I important in solving p(u, t) for both steady state and transient phases.

I features in many applications: large dimensions and strong non-Gaussianity.

no general analytical solution for the Fokker-Planck equation

numerical approaches: finite element, finite difference, direct Monte Carlo simulation
suffering from curse of dimensionality!
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An Efficient Statistically Accurate Algorithm with a Hybrid Strategy
(Chen & Majda, JCP, 2017)

Assume the dimension of uI is low while that of uII can be large.

duI = [A0(t ,uI) + A1(t ,uI)uII]dt + ΣI(t ,uI)dWI(t),

duII = [a0(t ,uI) + a1(t ,uI)uII]dt + ΣII(t ,uI)dWII(t).

Step 1. Sample L trajectories of uI (e.g., by Monte Carlo), namely ui
I(s ≤ t), i = 1, . . . , L.

Step 2. p(uII(t)) is given by L conditional Gaussian distributions,

p(uII(t)) = lim
L→∞

1
L

L∑
i=1

p
(

uII(t)|ui
I(s ≤ t)

)
.

I Each p
(
uII(t)|ui

I(s ≤ t)
)

is optimal.

I Each p
(
uII(t)|ui

I(s ≤ t)
)

has closed analytic form.

I p
(
uII(t)|ui

I(s ≤ t)
)

with different i can be solved in
a parallel way.

Computationally efficient and accurate!

Practically, only a small number of samples L is needed.

12 / 22
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Step 3. p(uI(t)) is computed using a Gaussian kernel method (Botev et al., 2010),

p
(
uI(t)

)
= lim

L→∞

1
L

L∑
i=1

KH

(
uI(t)− ui

I(t)
)
.

Step 4. The joint PDF is given by a Gaussian mixture,

p(uI(t),uII(t)) = lim
L→∞

1
L

L∑
i=1

(
KH(uI(t)− ui

I(t)) · p(uII(t)|ui
I(s ≤ t))

)
.

I Practically, L ∼ O(100) is able to handle systems with Dim(uI) ≤ 3 and
Dim(uII) ∼ O(10).

I Rigorous analysis shows that a much smaller L is needed compared with direct
Monte Carlo methods especially when Dim(uII) is large (Chen, Majda & Tong 2018).

I For system with much larger dimensions, block decomposition and statistical
symmetry can be applied. See Majda’s talk in MS6 (Chen & Majda, PNSA, 2017).
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A simple numerical illustration: The noisy Lorenz 63 Model.

dx = σ(y − x)dt + σx dWx ,

dy =
(
x(ρ− z)− y

)
dt + σy dWy ,

dz = (xy − βz)dt + σzdWz .

σ = 10, ρ = 28, β = 8/3, σx = σy = σz = 10.

⇐= Recovering the PDFs at a transient
phase t = 0.33.

LMC = 20, 000 samples is needed us-
ing direct Monte Carlo for reaching the
same accuracy as L = 200 in the algo-
rithm here!
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III. Predicting the Large-Scale Madden-Julian Oscillation
The Madden-Julian Oscillation (MJO) (Lau & Waliser 2011):

I the dominant mode of tropical intraseasonal (30-90 days) variability in boreal winter

I a slow eastward moving large-scale envelope of convection

I affecting tropical and global weather patterns

Extracting the large-scale MJO from the noisy and turbulent raw data:
I A novel nonlinear techniques, Nonlinear Laplacian Spectral Analysis (NLSA), is applied

to the cloudiness data of dimensions O(105) (Giannakis & Majda, PNAS, 2012).

I NLSA captures nonlinear dynamical features such as intermittency and extreme events.

Tb : brightness temperature. (Movie source: Chen, Majda & Giannakis, Geophys. Res. Lett., 2014.)
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NLSA Large-Scale MJO Patterns
= Spatial Basis (1) × Time Series (1) + Spatial Basis (2) × Time Series (2)

NLSA Time-Series Techniques =⇒ 2 components of MJO Cloud Patterns
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Physics-Constrained Low-Order Stochastic Model

du1 = (−du(t) u1 − ω̂ u2) dt + σu dWu1 ,

du2 = (−du(t) u2 + ω̂ u1) dt + σu dWu2 ,

with
du(t) = du0 + du1 sin(ωf t + φ).
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,

I Observed variables u1, u2: MJO 1 and MJO 2 indices from NLSA.

I Standard regression model, insufficient in capturing the key features.
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I Observed variables u1, u2: MJO 1 and MJO 2 indices from NLSA.

I Hidden variables v , ω: stochastic damping and stochastic phase.

I Energy-conserving nonlinear interactions between (u1, u2) and (v , ω).
(Majda, Harlim, 2012)

Prediction. Given the initial values of (u1, u2) and (v , ω), run an ensemble forecast.

t
0

t
1

truth

ensemble mean ensemble
spread

ensemble member
How to determine the initial values of the hidden
variables v , ω?

Effective data assimilation of p
(
uII(t)|uI(s ≤ t)

)
based on the conditional Gaussian framework!

17 / 22



Physics-Constrained Low-Order Stochastic Model

du1 = (−du(t) u1 + γ v u1−ω u2) dt + σu dWu1 ,

du2 = (−du(t) u2 + γ v u2 +ω u1) dt + σu dWu2 ,

dv = (−dv v − γ (u2
1 + u2

2)) dt + σv dWv ,

dω = (−dωω + ω̂) dt + σω dWω ,

with
du(t) = du0 + du1 sin(ωf t + φ).

1984 1986 1988 1990 1992
−5

0

5

1984 1986 1988 1990 1992
−5

0

5

I Observed variables u1, u2: MJO 1 and MJO 2 indices from NLSA.

I Hidden variables v , ω: stochastic damping and stochastic phase.

I Energy-conserving nonlinear interactions between (u1, u2) and (v , ω).
(Majda, Harlim, 2012)

Prediction. Given the initial values of (u1, u2) and (v , ω), run an ensemble forecast.

t
0

t
1

truth

ensemble mean ensemble
spread

ensemble member
How to determine the initial values of the hidden
variables v , ω?

Effective data assimilation of p
(
uII(t)|uI(s ≤ t)

)
based on the conditional Gaussian framework!

17 / 22



Physics-Constrained Low-Order Stochastic Model

du1 = (−du(t) u1 + γ v u1−ω u2) dt + σu dWu1 ,

du2 = (−du(t) u2 + γ v u2 +ω u1) dt + σu dWu2 ,

dv = (−dv v − γ (u2
1 + u2

2)) dt + σv dWv ,

dω = (−dωω + ω̂) dt + σω dWω ,

with
du(t) = du0 + du1 sin(ωf t + φ).

1984 1986 1988 1990 1992
−5

0

5

1984 1986 1988 1990 1992
−5

0

5

I Observed variables u1, u2: MJO 1 and MJO 2 indices from NLSA.

I Hidden variables v , ω: stochastic damping and stochastic phase.

I Energy-conserving nonlinear interactions between (u1, u2) and (v , ω).
(Majda, Harlim, 2012)

Prediction. Given the initial values of (u1, u2) and (v , ω), run an ensemble forecast.

t
0

t
1

truth

ensemble mean ensemble
spread

ensemble member

How to determine the initial values of the hidden
variables v , ω?

Effective data assimilation of p
(
uII(t)|uI(s ≤ t)

)
based on the conditional Gaussian framework!

17 / 22



Physics-Constrained Low-Order Stochastic Model

du1 = (−du(t) u1 + γ v u1−ω u2) dt + σu dWu1 ,

du2 = (−du(t) u2 + γ v u2 +ω u1) dt + σu dWu2 ,

dv = (−dv v − γ (u2
1 + u2

2)) dt + σv dWv ,

dω = (−dωω + ω̂) dt + σω dWω ,

with
du(t) = du0 + du1 sin(ωf t + φ).

1984 1986 1988 1990 1992
−5

0

5

1984 1986 1988 1990 1992
−5

0

5

I Observed variables u1, u2: MJO 1 and MJO 2 indices from NLSA.

I Hidden variables v , ω: stochastic damping and stochastic phase.

I Energy-conserving nonlinear interactions between (u1, u2) and (v , ω).
(Majda, Harlim, 2012)

Prediction. Given the initial values of (u1, u2) and (v , ω), run an ensemble forecast.

t
0

t
1

truth

ensemble mean ensemble
spread

ensemble member
How to determine the initial values of the hidden
variables v , ω?

Effective data assimilation of p
(
uII(t)|uI(s ≤ t)

)
based on the conditional Gaussian framework!

17 / 22



Physics-Constrained Low-Order Stochastic Model

du1 = (−du(t) u1 + γ v u1−ω u2) dt + σu dWu1 ,

du2 = (−du(t) u2 + γ v u2 +ω u1) dt + σu dWu2 ,

dv = (−dv v − γ (u2
1 + u2

2)) dt + σv dWv ,

dω = (−dωω + ω̂) dt + σω dWω ,

with
du(t) = du0 + du1 sin(ωf t + φ).

1984 1986 1988 1990 1992
−5

0

5

1984 1986 1988 1990 1992
−5

0

5

I Observed variables u1, u2: MJO 1 and MJO 2 indices from NLSA.

I Hidden variables v , ω: stochastic damping and stochastic phase.

I Energy-conserving nonlinear interactions between (u1, u2) and (v , ω).
(Majda, Harlim, 2012)

Prediction. Given the initial values of (u1, u2) and (v , ω), run an ensemble forecast.

t
0

t
1

truth

ensemble mean ensemble
spread

ensemble member
How to determine the initial values of the hidden
variables v , ω?

Effective data assimilation of p
(
uII(t)|uI(s ≤ t)

)
based on the conditional Gaussian framework!

17 / 22



Calibration of parameters using Information Theory (Robust parameters)
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almost perfectly capturing the observational statistics
(correlation functions, highly non-Gaussian PDFs, and power spectrums)
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Example: forecasting in year 2002
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I Ensemble mean prediction is skillful for 25-50 days in different years.

I Ensemble spread captures the onset and demise of the MJO events and the
long-range forecast uncertainty.

I Small uncertainty spread at short terms indicates the accuracy of the ensemble
mean prediction.
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Other Topics of Conditional Gaussian Systems

duI = [A0(t ,uI) + A1(t ,uI)uII]dt + ΣI(t ,uI)dWI(t),

duII = [a0(t ,uI) + a1(t ,uI)uII]dt + ΣII(t ,uI)dWII(t).

1. parameter estimation

2. predicting rare and extreme events

3. exploring the causality between different processes

4. data assimilation and the prediction of spatial-extended systems

Example 1: Boussinesq equation.

∇ · u = 0,

∂u

∂t
+ u · ∇u = −

1

ρ0
∇p + ν∇2u− gαT ,

∂T

∂t
+ u · ∇T = κ∇2T + F .

– Observe velocity u + noise.

– Recover temperature T .

Example 2: Stochastic skeleton model for the MJO.

(Thual, Majda & Stechmann, 2014)

ut − yv − θx = 0,

yu − θy = 0,

θt − ux − vy = H̄a− sθ,

qt + Q̄(ux + vy ) = −H̄a + sq
,

at = Γqa.

– Observe wave activity a + noise.

– Recover temperature q and velocity u, v .

(Chen and Majda, Monthly Weather Review, 2015)
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Summary

A conditional Gaussian framework for uncertainty quantification, data assimilation and
prediction is developed,

duI = [A0(t ,uI) + A1(t ,uI)uII]dt + ΣI(t ,uI)dWI(t),

duII = [a0(t ,uI) + a1(t ,uI)uII]dt + ΣII(t ,uI)dWII(t).

Despite the conditional Gaussianity, the system remains highly nonlinear and is able to
capture the non-Gaussian features as observed in nature.

1. Quantifying the uncertainty reduction and understanding the data assimilation
skill of recovering ocean flows with noisy Lagrangian tracers

I first rigorous theory showing the practical information barrier
I cheap practical strategies for recovering the multiscale turbulent geophysical flows

2. An efficient statistically accurate algorithm for solving the Fokker-Planck equation
in high dimensions with strongly non-Gaussian features

I computationally efficient and accurate, much cheaper than Monte Carlo
I overcoming the curse of dimensionality

3. Predicting the large-scale MJO via a low-order nonlinear stochastic model
I energy-conserving nonlinear interactions between the observed and hidden variables
I almost perfectly capturing the observed highly non-Gaussian statistics
I skillful prediction and long-term uncertainty quantification
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Appendix 1: More details of parameter estimation.

1. Estimating one additive parameter γ∗ in a linear scalar model,

du = (A0u + A1γ
∗)dt + σudWu .

Direct approach Stochastic parameterized equations
Convergence rate algebraic exponential
Error as t →∞ zero usually non-zero
σu ↓ convergence rate ↑ convergence rate ↑

2. Estimating one multiplicative parameter γ∗ in a linear scalar model,

du = (A0 − γ∗u)dt + σudWu ,

Direct approach Stochastic parameterized equations
σu ↓ with A0 6= 0 convergence rate ↑ convergence rate ↑
σu ↓ with A0 = 0 independent of σu convergence rate ↑

3. Estimating one multiplicative parameter γ∗ in a cubic nonlinear scalar model,

du = (A0 − γ∗u3)dt + σudWu ,

Direct approach Stochastic parameterized equations
σu ↓ convergence rate ↓ convergence rate ↑

4. Estimating four different parameters a∗, b∗, c∗ and f∗ in a cubic nonlinear scalar model,

du = (a∗u + b∗u2 − c∗u3 + f∗)dt + σudWu ,

Direct approach Stochastic parameterized equations
σu ↓ may not converge to the truth convergence rate ↑



Appendix 2: Data assimilation and prediction of spatial extended turbulent systems.

a. Stochastic skeleton model for the MJO (Majda & Stechmann, PNAS 2009; Thual, M & S, JAS 2014)

ut − yv − θx = 0,

yu − θy = 0,

θt − ux − vy = H̄a− sθ,

qt + Q̄(ux + vy ) = −H̄a + sq
,

a = stochastic birth-death process,

The expectation of convective activity a satisfies at = Γqa.

b. Meridional (y direction) truncation + characteristic form. u, θ ⇐⇒ K ,R.

Kt + Kx = (Sθ − H̄A)/2, Rt − Rx/3 = (Sθ − H̄A)/3.

c. Design nonlinear filter with judicious model error

Observed:
dÂk

dt
= Γ

∑
−M+1≤s≤M

Q̂sÂk−s + σA
k ẆA

k ,

Unobserved:
dK̂k

dt
= (−ilk−d̄K

k )K̂k +
1

2

(
Ŝθk − H̄Âk

)
+ σK

k ẆK
k ,

dR̂k

dt
= ...,

dQ̂k

dt
=

[Conditional Gaussian system!]

Recover the initial values of K ,R and Q and run the dy-
namical model for prediction.

(Chen & Majda, Monthly Weather Review 2015)

d. Further applying an effectively reduced
filter for small-scale waves (k � 1).

dK̂k

dt
= −ilk K̂k︸ ︷︷ ︸

fast inertial oscillation

+
1

2

(
Ŝθk − H̄Âk

)
︸ ︷︷ ︸

slow external forcing

.

Average out the fast oscillations,

˜̂Kk =
Ŝθk − H̄Âk

2ilk
.
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Appendix 3: Derivations of the efficient statistically accurate algorithm.

First, the joint distribution of uI and uII at time t can be written as

p
(

uI(t), uII(t)
)

=

∫
p
(

uII(t), uI(t) | uI(s ≤ t)
)

p
(

uI(s ≤ t)
)

duI(s ≤ t) (2)

Here, according to the basic probability relationship p(x, y|z) = p(x|y, z) p(y|z), we have the following

p
(

uII(t), uI(t) | uI(s ≤ t)
)

= p
(

uII(t) | uI(s ≤ t)
)

p
(

uI(t) | uI(s ≤ t)
)
. (3)

The second term on the right hand side of (3) is actually a delta function peaking at the conditioned value of uI at
time t . In fact, if we replace the condition inside the PDF uI(s ≤ t) by ui

I(s ≤ t), we have

p
(

uI(t) | ui
I(s ≤ t)

)
= δ(uI(t)− ui

I(t)) (4)

In addition,

p(uI(s ≤ t)) = lim
L→∞

1

L

L∑
i=1

δ
(

uI(s ≤ t)− ui
I(s ≤ t)

)
. (5)

Therefore, inserting (3)–(5) into (2) yields

p
(

uI(t), uII(t)
)

=

∫
p
(

uII(t), uI(t) | uI(s ≤ t)
)

p
(

uI(s ≤ t)
)

duI(s ≤ t)

= lim
L→∞

1

L

L∑
i=1

δ
(

uI(t)− ui
I(t)
)

p
(

uII(t) | ui
I(s ≤ t)

) (6)

Next, we make use of the kernel approximation KH(uI(t)− ui
I(t)) for δ

(
uI(t)− ui

I(t)
)

. Note that in the limit

L→∞ the bandwidth goes to zero and the kernel approximation converges to δ
(

uI(t)− ui
I(t)
)

, which leads to

(6) that is consistent with solving the Fokker-Planck equation for the joint PDF.



Appendix 4: Rigorous analysis of the error.

The mean integrated squared error (MISE) of any estimated density p̂t (uI,uII) is the
average L2 distance to the true density pt (uI,uII):

MISE = E
∫
|pt (uI,uII)− p̂t (uI,uII)|2duIduII

= E
∫
|p̂t (uI,uII)− p̄t (uI,uII)|2duIduII︸ ︷︷ ︸

Variance

+

∫
|pt (uI,uII)− p̄t (uI,uII)|2duIduII︸ ︷︷ ︸

Bias

Theorem: Error estimation in two different methods.
Consider the following two ways of estimating the density pt .

p̃t : Kernel density estimation for the joint PDF.

p̂t : Hybrid method — Kernel density + conditional Gaussian estimation.

With the same L, the error in the bias

p̃t Bias bound ≥ p̂t Bias bound,

and in the variance
p̃t Variance bound
p̂t Variance bound

=
H−

NII
2 C

E
√

det(RII(t))
−1 .

Here E
√

det(RII(t)) does not decrease as L but H does!!

When H shrinks and NII becomes large, H−
NII
2 increases dramatically. 15 / 22



Theorem: Error estimation in two different methods.
(Continued)

p̃t : Kernel density estimation for the joint PDF.

p̂t : Hybrid method — Kernel density + conditional Gaussian estimation.

We have the following MISE estimations:

p̃t : MISE ∼ O
(

L
− 4

4+NI+NII

)
and p̂t : MISE ∼ O

(
L
− 4

4+NI

)
The error in the hybrid method does not depend on NII.
— Beating the curse of dimensionality in uII!

To reach the same accuracy, the sample number L̃ used in p̃t and the sample number
L̂ used in p̂t must satisfy

L̃ = L̂
1+

NII
4+NI .

L̃ can be much larger than L̂ especially when NII :=Dim(uII) is large.

Example:
Dim(uI) = 3 and Dim(uII) = 7.
L̂ = 1, 000 samples in p̂t requires L̃ = 1, 000, 000 samples in p̃t .
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Beating the curse of dimension with block decompositions (Chen & Majda, PNAS, 2017)

Updating the full covariance matrix is expensive for very large dimensional systems.

In many multiscale or multilevel dynamical systems, the state variables under certain
conditions can be decomposed as

u =
⋃
k

uk , uk = (uI,k ,uII,k ),

I the evolution of uII,k is fully coupled with that of all other uII,k′ , and

I the evolution of RII,k has no interaction with that of RII,k′ — allowing the
algorithm to solve much larger dynamical systems with parallel runs.

Example: A stochastic coupled FitzHugh-Nagumo model (Lindner et al., 2004).

a prototype model in excitable media, describing activation and deac-

tivation dynamics of spiking neurons by external input currents

ε
dui

dt
= ui −

1
3

u3
i + du(ui+1 + ui−1 − 2ui )− vi +

√
εδ1Ẇui ,

dvi

dt
= ui + a + δ2Ẇvi , i = 1, . . . ,N. N = 500 −→

With constant parameters and homogeneous initial values,
the model satisfies statistical symmetry.
Due to the statistical symmetry, only L = 1 samples is
needed in the algorithm to recover two-point statistics!
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Example: A two-layer Lorenz 96 model (modified from Arnold, Moroz & Palmer, 2013)

dui

dt
= ui−1(ui+1 − ui−2) +

J∑
j=1

γi,j ui vi,j − d̄i ui + F + σuẆui , i = 1, . . . , I,

dvi,j

dt
= −dvi,j vi,j − γj u2

i + σi,j Ẇvi,j , j = 1, . . . , J,

with I = 40 and J = 5. The total number of dimension is 240.
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I L = 500 is used in the algorithm for recovering one-point and two-point statistics.

I As comparison, truth is generated using Monte Carlo with LMC = 150, 000.



dui

dt
= ui−1(ui+1 − ui−2) +

J∑
j=1

γi,j ui vi,j − d̄i ui + F + σuẆui ,

dvi,j

dt
= −dvi,j vi,j − γj u

2
i + σi,j Ẇvi,j , i = 1, . . . , I, j = 1, . . . , J



Appendix 5: Data assimilation of ocean flows using Lagrangian tracers
More realistic scenario — nonlinear coupling of GB and gravity modes:

dv̂~k,B = (−dB v̂~k,B + f~k,B(t))dt + σ~k,BdW~k,B(t),

dv̂~k,± =
(

(−dg + iω~k,±+i v̂~k,B)v̂~k,± + f~k,±(t)
)

dt + σ~k,±dW~k,±(t).

Linear models without i v̂~k,B are used as imperfect forecast models such that the

corresponding filters belong to the conditional Gaussian framework.
I Assessing model error for approximate filters through information theory.

Combination of three information measures (Chen & Majda, 2015; Branicki & Majda, 2014).

1. Shannon entropy of residual∼ root-mean-square error.

2. Mutual information∼ pattern correlation.

3. Relative entropy: an indicator of assessing the disparity in the amplitudes and peaks — important in
quantifying extreme events!

P(π, πM ) =

∫
π(u) ln

π(u)

πM (u)
du
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Appendix 6: Nonlinear Laplacian Spectrum Analysis (NLSA).

I NLSA is a nonlinear data analysis technique that combines ideas from lagged embedding
(Packard et al. 1980; Sauer et al. 1991), machine learning (Coifman and Lafon 2006; Belkin
and Niyogi 2003), adaptive weights and spectral entropy criteria to extract spatiotemporal
modes of variability from high-dimensional time series.

I These modes are computed utilizing the eigenfunctions of a discrete analog of
Laplace-Beltrami operator, which can be thought of as a local analog of the temporal
covariance matrix employed in EOF and EEOF techniques, but adapted to the nonlinear
geometry of data generated by complex dynamical systems.

I NLSA by design requires no ad hoc pre-processing of data such as detrending or
spatiotemporal filtering of the full data set and it captures both intermittency and low
frequency variability.

I The NLSA modes have higher memory and predictability compared with those extracted via
EEOF analysis.



Procedure:

1. construct a time lagged embedding dataset utilizing Takens’ method of delay (Takens et al.
1981). Denote q the lagged embedding window size. Then the lagged embedding matrix
can be written as

X =


z1 z2 · · · zn−q+1
z2 z3 · · · zn−q+2
.
.
.

.

.

.
. . .

.

.

.
zq−1 zq · · · zn−1

zq zq+1 · · · zn

 .

2. Compute the kernel matrix K with entries Kij = K (X(ti ),X(tj )) given by

K (X(ti ),X(tj )) = exp

(
−
‖X(ti )− X(tj )‖2

εξ(ti )ξ(tj )

)
,

where ξ(ti ) = ‖X(ti )− X(ti−1)‖ and X(ti ) = (zi , . . . , zi+q−1)T .
The kernel matrix K can be thought as a nonlinear analogy of the temporal covariance
matrix in the singular spectrum analysis (Ghil et al. 2002), while this nonlinearity is crucial in
capturing both intermittency and low-frequent variability.

3. The NLSA temporal patterns φ(ti ) are then determined by the eigenvectors of the Laplacian
matrix L = I − P,

Lφk = λkφk , φk = (φ1k , φ2k , . . . φSk )T
,

where

qi =
S∑

j=1

Kij , K ′ij =
Kij

qi qj
, di =

S∑
j=1

K ij′, Pij =
Kij

di
, S = n − q.
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