A combined GDM-ELLAM-MMOC (GEM) scheme with local volume conservation for advection dominated PDEs

H. M. Cheng (Monash University, Australia)

> SIAM GS19

March 11
Joint work with J. Droniou and K. N. Le

MONASH University

Plan

(1) Introduction
(2) Characteristic-Based Schemes for Advection-reaction PDEs

- ELLAM
- MMOC
- ELLAM-MMOC
(3) Application: The miscible flow model

4 GEM scheme
(5) Numerical tests

Advection-reaction model

$$
\left\{\begin{aligned}
\phi \frac{\partial c}{\partial t}+\nabla \cdot(\mathbf{u c)} & =f(c) \text { on } Q_{T}:=\Omega \times(0, T) \\
c(\cdot, 0) & =c_{\mathrm{ini}} \quad \text { on } \Omega
\end{aligned}\right.
$$

Advection-reaction model

$$
\left\{\begin{aligned}
\phi \frac{\partial c}{\partial t}+\nabla \cdot(\mathbf{u c}) & =f(c) \text { on } Q_{T}:=\Omega \times(0, T) \\
c(\cdot, 0) & =c_{\mathrm{ini}} \quad \text { on } \Omega
\end{aligned}\right.
$$

Assumptions on the Data

$$
\text { - } c_{\mathrm{ini}} \in L^{\infty}(\Omega)
$$

Advection-reaction model

$$
\left\{\begin{aligned}
\phi \frac{\partial c}{\partial t}+\nabla \cdot(\mathbf{u c}) & =f(c) \text { on } Q_{T}:=\Omega \times(0, T) \\
c(\cdot, 0) & =c_{\mathrm{ini}} \quad \text { on } \Omega
\end{aligned}\right.
$$

Assumptions on the Data

- $c_{\mathrm{ini}} \in L^{\infty}(\Omega)$
- $\phi \in L^{\infty}(\Omega)$ with $\phi_{*}>0$ s.t. $\phi \geq \phi_{*}$ a.e. on Ω

Advection-reaction model

$$
\left\{\begin{aligned}
\phi \frac{\partial c}{\partial t}+\nabla \cdot(\mathbf{u c}) & =f(c) \text { on } Q_{T}:=\Omega \times(0, T) \\
c(\cdot, 0) & =c_{\mathrm{ini}} \quad \text { on } \Omega
\end{aligned}\right.
$$

Assumptions on the Data

- $c_{\mathrm{ini}} \in L^{\infty}(\Omega)$
- $\phi \in L^{\infty}(\Omega)$ with $\phi_{*}>0$ s.t. $\phi \geq \phi_{*}$ a.e. on Ω
- $\mathbf{u} \in L^{\infty}\left(0, T ; L^{2}(\Omega)^{d}\right)$ and $\nabla \cdot \mathbf{u} \in L^{\infty}\left(Q_{T}\right)$
- $\mathbf{u} \cdot \mathbf{n}=0$ on $\partial \Omega$

Advection-reaction model

$$
\left\{\begin{aligned}
\phi \frac{\partial c}{\partial t}+\nabla \cdot(\mathbf{u c)} & =f(c) \text { on } Q_{T}:=\Omega \times(0, T) \\
c(\cdot, 0) & =c_{\mathrm{ini}} \quad \text { on } \Omega
\end{aligned}\right.
$$

Assumptions on the Data

- $c_{\mathrm{ini}} \in L^{\infty}(\Omega)$
- $\phi \in L^{\infty}(\Omega)$ with $\phi_{*}>0$ s.t. $\phi \geq \phi_{*}$ a.e. on Ω
- $\mathbf{u} \in L^{\infty}\left(0, T ; L^{2}(\Omega)^{d}\right)$ and $\nabla \cdot \mathbf{u} \in L^{\infty}\left(Q_{T}\right)$
- $\mathbf{u} \cdot \mathbf{n}=0$ on $\partial \Omega$
- $f(c)=f(c, \boldsymbol{x}, t): \mathbb{R} \times Q_{T} \rightarrow \mathbb{R}$ is Lipschitz continuous w.r.t. its first variable and $f(0, \cdot, \cdot) \in L^{\infty}\left(Q_{T}\right)$.

Gradient discretisation

Gradient discretisation: $\mathcal{D}=\left(X_{\mathcal{D}}, \Pi_{\mathcal{D}}, \nabla_{\mathcal{D}}\right)$ with

- $X_{\mathcal{D}}$ finite dimensional space (encodes the unknowns).
- $\Pi_{\mathcal{D}}: X_{\mathcal{D}} \rightarrow L^{\infty}(\Omega)$ (reconstructs a function).
- $\nabla_{\mathcal{D}}: X_{\mathcal{D}} \rightarrow L^{\infty}(\Omega)^{d}$ (reconstructs a gradient).

Plan

(1) Introduction

(2) Characteristic-Based Schemes for Advection-reaction PDEs

- ELLAM
- MMOC
- ELLAM-MMOC
(3) Application: The miscible flow model
(4) GEM scheme
(5) Numerical tests

Plan

(1) Introduction
(2) Characteristic-Based Schemes for Advection-reaction PDEs

- ELLAM
- MMOC
- ELLAM-MMOC
(3) Application: The miscible flow model

4 GEM scheme
(5) Numerical tests

Weak formulation and proper choice of test functions

Weak formulation between two time steps $t^{(n)}$ and $t^{(n+1)}$: for $\varphi \in C^{\infty}\left(\bar{\Omega} \times\left[t^{(n)}, t^{(n+1)}\right]\right):$

$$
\begin{aligned}
& -\int_{t^{(n)}}^{t^{(n+1)}} \int_{\Omega} c\left(\phi \partial_{t} \varphi+\mathbf{u} \cdot \nabla \varphi\right) \\
& +\int_{\Omega} \phi c\left(t^{(n+1)}\right) \varphi\left(t^{(n+1)}\right)-\int_{\Omega} \phi c\left(t^{(n)}\right) \varphi\left(t^{(n)}\right) \\
& =\int_{t^{(n)}}^{t^{(n+1)}} \int_{\Omega} f(c, \boldsymbol{x}, t) d \boldsymbol{x} d t
\end{aligned}
$$

Weak formulation and proper choice of test functions

Weak formulation between two time steps $t^{(n)}$ and $t^{(n+1)}$: for $\varphi \in C^{\infty}\left(\bar{\Omega} \times\left[t^{(n)}, t^{(n+1)}\right]\right):$

$$
\begin{aligned}
& -\int_{t^{(n)}}^{t^{(n+1)}} \int_{\Omega} c\left(\phi \partial_{t} \varphi+\mathbf{u} \cdot \nabla \varphi\right) \\
& +\int_{\Omega} \phi c\left(t^{(n+1)}\right) \varphi\left(t^{(n+1)}\right)-\int_{\Omega} \phi c\left(t^{(n)}\right) \varphi\left(t^{(n)}\right) \\
& =\int_{t^{(n)}}^{t^{(n+1)}} \int_{\Omega} f(c, \boldsymbol{x}, t) d \boldsymbol{x} d t .
\end{aligned}
$$

Choice of test function: φ that satisfy $\phi \partial_{t} \varphi+\mathbf{u} \cdot \nabla \varphi=0 \ldots$

Weak formulation and proper choice of test functions

Weak formulation between two time steps $t^{(n)}$ and $t^{(n+1)}$: for $\varphi \in C^{\infty}\left(\bar{\Omega} \times\left[t^{(n)}, t^{(n+1)}\right]\right)$:

$$
\begin{aligned}
& \\
& +\int_{\Omega} \phi c\left(t^{(n+1)}\right) \varphi\left(t^{(n+1)}\right)-\int_{\Omega} \phi c\left(t^{(n)}\right) \varphi\left(t^{(n)}\right) \\
& =\int_{t^{(n)}}^{t^{(n+1)}} \int_{\Omega} f(c, \boldsymbol{x}, t) d \boldsymbol{x} d t .
\end{aligned}
$$

Choice of test function: φ that satisfy $\phi \partial_{t} \varphi+\mathbf{u} \cdot \nabla \varphi=0 \ldots$

Weak formulation and proper choice of test functions

Weak formulation between two time steps $t^{(n)}$ and $t^{(n+1)}$: for $\varphi \in C^{\infty}\left(\bar{\Omega} \times\left[t^{(n)}, t^{(n+1)}\right]\right)$:

$$
\begin{aligned}
& \\
& +\int_{\Omega} \phi c\left(t^{(n+1)}\right) \varphi\left(t^{(n+1)}\right)-\int_{\Omega} \phi c\left(t^{(n)}\right) \varphi\left(t^{(n)}\right) \\
& =\int_{t^{(n)}}^{t^{(n+1)}} \int_{\Omega} f(c, \boldsymbol{x}, t) d \boldsymbol{x} d t .
\end{aligned}
$$

Choice of test function: φ that satisfy $\phi \partial_{t} \varphi+\mathbf{u} \cdot \nabla \varphi=0 \ldots$

- With $\frac{d F_{t}}{d t}=\frac{\mathbf{u}^{(n+1)}\left(F_{t}\right)}{\phi\left(F_{t}\right)}, F_{0}(x)=\boldsymbol{x}$, we have

$$
\varphi(\boldsymbol{x}, t)=\varphi\left(F_{t^{(n+1)}-t}(x), t^{(n+1)}\right) .
$$

- Given \mathcal{C} gradient discretisation,

Find $c^{(n+1)} \in X_{\mathcal{C}}$ such that for all $z \in X_{\mathcal{C}}$,

$$
\begin{aligned}
& \int_{\Omega} \phi \Pi_{\mathcal{C}} c^{(n+1)} \Pi_{\mathcal{C}} z-\int_{\Omega} \phi \Pi_{\mathcal{C}} c^{(n)} v_{z}\left(t^{(n)}\right) \\
& \quad=w \delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f_{n} v_{z}\left(t^{(n)}\right)+(1-w) \delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f_{n+1} \Pi_{\mathcal{C}} Z
\end{aligned}
$$

where $w \in[0,1], f_{k}:=f\left(\Pi_{\mathcal{C}} c^{(k)}, \cdot, t^{(k)}\right)$

- Given \mathcal{C} gradient discretisation,

Find $c^{(n+1)} \in X_{\mathcal{C}}$ such that for all $z \in X_{\mathcal{C}}$,

$$
\begin{aligned}
& \int_{\Omega} \phi \Pi_{\mathcal{C}} c^{(n+1)} \Pi_{\mathcal{C}} z-\int_{\Omega} \phi \Pi_{\mathcal{C}} c^{(n)} v_{z}\left(t^{(n)}\right) \\
& \quad=w \delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f_{n} v_{z}\left(t^{(n)}\right)+(1-w) \delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f_{n+1} \Pi_{\mathcal{C}} Z
\end{aligned}
$$

where $w \in[0,1], f_{k}:=f\left(\Pi_{\mathcal{C}} c^{(k)}, \cdot, t^{(k)}\right)$ and $v_{z}: \Omega \times\left(t^{(n)}, t^{(n+1)}\right] \rightarrow \mathbb{R}$ solves
$\phi \partial_{t} v_{z}+\mathbf{u}^{(n+1)} \cdot \nabla v_{z}=0$ on $\left(t^{(n)}, t^{(n+1)}\right), \quad v_{z}\left(\cdot, t^{(n+1)}\right)=\Pi_{\mathcal{C}} z$,
with $\mathbf{u}^{(n+1)} \in L^{2}(\Omega)^{d}$ and $\nabla \cdot \mathbf{u}^{(n+1)} \in L^{\infty}(\Omega)$.

ELLAM scheme - condensed

- $f^{(n, w)}(x):=\left(w f\left(x, t^{(n)}\right),(1-w) f\left(x, t^{(n+1)}\right)\right)$
- $g_{F}(\boldsymbol{x}):=\left(g\left(F_{\delta t^{\left(n+\frac{1}{2}\right)}}(\boldsymbol{x})\right), g(x)\right)$
- $f^{(n, w)}(\boldsymbol{x}):=\left(w f\left(\boldsymbol{x}, t^{(n)}\right),(1-w) f\left(\boldsymbol{x}, t^{(n+1)}\right)\right)$
- $g_{F}(\boldsymbol{x}):=\left(g\left(F_{\delta t^{\left(n+\frac{1}{2}\right)}}(\boldsymbol{x})\right), g(\boldsymbol{x})\right)$

Find $c^{(n+1)} \in X_{\mathcal{C}}$ such that for all $z \in X_{\mathcal{C}}$,

$$
\int_{\Omega} \phi \Pi_{\mathcal{C}} c^{(n+1)} \Pi_{\mathcal{C}} z-\int_{\Omega} \phi \Pi_{\mathcal{C}} c^{(n)} v_{z}\left(t^{(n)}\right)=\delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f^{(n, w)} \cdot\left(\Pi_{\mathcal{C}} z\right)_{F}
$$

Piecewise constant approximations

- For each $K \in \mathcal{M}$, take $\Pi_{C} z_{K}=\mathbb{1}_{K}$

Piecewise constant approximations

- For each $K \in \mathcal{M}$, take $\Pi_{(K)} Z_{K}=\mathbb{1}_{K}$
\Rightarrow write $\Pi_{\mathcal{C}} C^{(k)}=\sum_{K \in \mathcal{M}} c_{K}^{(k)} \mathbb{1}_{K}$

Piecewise constant approximations

- For each $K \in \mathcal{M}$, take $\Pi_{C} Z_{K}=\mathbb{1}_{K}$
- write $\Pi_{\mathcal{C}} c^{(k)}=\sum_{K \in \mathcal{M}} c_{K}^{(k)} \mathbb{1}_{K}$

Find $c^{(n+1)} \in X_{\mathcal{C}}$ such that

$$
\begin{aligned}
\int_{K} \phi c_{K}^{(n+1)} d \boldsymbol{x}= & \int_{\Omega} \phi \sum_{M \in \mathcal{M}} c_{M}^{(n)} \mathbb{1}_{M}(\boldsymbol{x}) \mathbb{1}_{K}\left(F_{\delta t^{\left(n+\frac{1}{2}\right)}}(\boldsymbol{x})\right) d \boldsymbol{x} \\
& +\delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f^{(n, w)} \cdot\left(\mathbb{1}_{K}\right)_{F} d \boldsymbol{x}
\end{aligned}
$$

Piecewise constant approximations

- For each $K \in \mathcal{M}$, take $\Pi_{C} Z_{K}=\mathbb{1}_{K}$
- write $\Pi_{\mathcal{C}} c^{(k)}=\sum_{K \in \mathcal{M}} c_{K}^{(k)} \mathbb{1}_{K}$

$$
\begin{aligned}
|K|_{\phi} c_{K}^{(n+1)} & =\sum_{M \in \mathcal{M}}\left|M \cap F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)\right|_{\phi} c_{M}^{(n)} \\
& +\delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f^{(n, w)} \cdot\left(\mathbb{1}_{K}\right) F d \boldsymbol{x}
\end{aligned}
$$

Mass Balance Properties

Mass Balance Properties

$$
\begin{aligned}
\sum_{K \in \mathcal{M}}|K|_{\phi} c_{K}^{(n+1)} & =\sum_{M \in \mathcal{M}}|M|_{\phi} c_{M}^{(n)} \\
& +\sum_{K \in \mathcal{M}} \delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f^{(n, w)} \cdot \mathbf{e d} \boldsymbol{x}
\end{aligned}
$$

where $\mathbf{e}:=(1,1)$.

Mass Balance Properties

$$
\begin{aligned}
\sum_{K \in \mathcal{M}}|K|_{\phi} c_{K}^{(n+1)} & =\sum_{M \in \mathcal{M}}|M|_{\phi} c_{M}^{(n)} \\
& +\sum_{K \in \mathcal{M}} \delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f^{(n, w)} \cdot \mathbf{e d} \boldsymbol{x}
\end{aligned}
$$

where $\mathbf{e}:=(1,1)$.

- discrete mass balance error

$$
\begin{aligned}
e_{\text {mass }}:= & \left.\left|\sum_{K \in \mathcal{M}}\right| K\right|_{\phi} c_{K}^{(n+1)}-\sum_{M \in \mathcal{M}}|M|_{\phi} c_{M}^{(n)} \\
& \left.-\sum_{K \in \mathcal{M}} \delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f^{(n, w)} \cdot \mathbf{e d} d x \right\rvert\,
\end{aligned}
$$

Mass Balance Properties

- discrete mass balance error

$$
\begin{aligned}
e_{\text {mass }}:= & \left.\left|\sum_{K \in \mathcal{M}}\right| K\right|_{\phi} c_{K}^{(n+1)}-\sum_{M \in \mathcal{M}}|M|_{\phi} c_{M}^{(n)} \\
& \left.-\sum_{K \in \mathcal{M}} \delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f^{(n, w)} \cdot \mathbf{e d} d \boldsymbol{x} \right\rvert\,
\end{aligned}
$$

- ELLAM scheme

For each $K \in \mathcal{M}$,

$$
\begin{aligned}
|K|_{\phi} c_{K}^{(n+1)} & =\sum_{M \in \mathcal{M}}\left|M \cap F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)\right|_{\phi} c_{M}^{(n)} \\
& +\delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f^{(n, w)} \cdot\left(\mathbb{1}_{K}\right)_{F} d \boldsymbol{x} .
\end{aligned}
$$

Mass Balance Properties

- discrete mass balance error

$$
\begin{aligned}
e_{\text {mass }}:= & \left.\left|\sum_{K \in \mathcal{M}}\right| K\right|_{\phi} c_{K}^{(n+1)}-\sum_{M \in \mathcal{M}}|M|_{\phi} c_{M}^{(n)} \\
& \left.-\sum_{K \in \mathcal{M}} \delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f^{(n, w)} \cdot \mathbf{e d x} \right\rvert\,
\end{aligned}
$$

- ELLAM scheme

For each $K \in \mathcal{M}$,

$$
\begin{aligned}
|K|_{\phi} c_{K}^{(n+1)} & =\sum_{M \in \mathcal{M}}\left|M \cap F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)\right|_{\phi} c_{M}^{(n)} \\
& +\delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f^{(n, w)} \cdot\left(\mathbb{1}_{K}\right)_{F} d \boldsymbol{x} .
\end{aligned}
$$

- Sum over $K \in \mathcal{M}$.

Mass Balance Properties

- discrete mass balance error

$$
\begin{aligned}
e_{\text {mass }}:= & \left.\left|\sum_{K \in \mathcal{M}}\right| K\right|_{\phi} c_{K}^{(n+1)}-\sum_{M \in \mathcal{M}}|M|_{\phi} c_{M}^{(n)} \\
& \left.-\sum_{K \in \mathcal{M}} \delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f^{(n, w)} \cdot \mathbf{e d} d \boldsymbol{x} \right\rvert\,
\end{aligned}
$$

- ELLAM scheme

For each $K \in \mathcal{M}$,

$$
\begin{aligned}
|K|_{\phi} c_{K}^{(n+1)} & =\sum_{M \in \mathcal{M}}\left|M \cap F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)\right|_{\phi} c_{M}^{(n)} \\
& +\delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f^{(n, w)} \cdot\left(\mathbb{1}_{K}\right)_{F} d \boldsymbol{x} .
\end{aligned}
$$

- $e_{\text {mass }}=0$.

Interpretation

- ELLAM scheme (piecewise constant approximations)

Interpretation

- ELLAM scheme (piecewise constant approximations)

$$
\begin{aligned}
|K|_{\phi} c_{K}^{(n+1)} & =\sum_{M \in \mathcal{M}}\left|M \cap F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)\right|_{\phi} c_{M}^{(n)} \\
& +\delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f^{(n, w)} \cdot\left(\mathbb{1}_{K}\right) F d \boldsymbol{x}
\end{aligned}
$$

$$
|K|_{\phi} c_{K}^{(n+1)}=\sum_{M \in \mathcal{M}}\left|M \cap F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)\right|_{\phi} c_{M}^{(n)}
$$

Figure: Interpretation: Piecewise constant approximations

$$
|K|_{\phi} C_{K}^{(n+1)}=\sum_{M \in \mathcal{M}}\left|M \cap F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)\right|_{\phi} c_{M}^{(n)}
$$

Figure: Interpretation: Piecewise constant approximations

$$
|K|_{\phi} c_{K}^{(n+1)}=\sum_{M \in \mathcal{M}}\left|M \cap F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)\right|_{\phi} c_{M}^{(n)}
$$

Figure: Numerical implementation: Piecewise constant approximations

H. M. Cheng, J. Droniou and K. N. Le

Local volume conservation

- $|\widetilde{K}| \neq\left|F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)\right|$

Local volume conservation

- $|\widetilde{K}| \neq\left|F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)\right|$

- $|\widetilde{K}| \neq\left|F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)\right|$

Figure: Trace back regions \widetilde{K}_{i} (left: initial; right: illustration of possible perturbed cells after local volume adjustments).

- $|\widetilde{K}| \neq\left|F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)\right|$

Figure: Trace back regions \widetilde{K}_{i} (left: initial; right: illustration of possible perturbed cells after local volume adjustments).

- Note: Dotted figures are not explicitly computed

Volume adjustment algorithm

Volume adjustment algorithm

i) Measure the defect in local volume conservation $e_{K_{1}}:=\left|F_{-\delta t^{\left(n+\frac{1}{2}\right)}}\left(K_{1}\right)\right|-\left|\widetilde{K}_{1}\right|$.
i) Measure the defect in local volume conservation $e_{K_{1}}:=\left|F_{-\delta t^{\left(n+\frac{1}{2}\right)}}\left(K_{1}\right)\right|-\left|\widetilde{K}_{1}\right|$.
ii) Compute the magnitude $|\mathbf{u}|$ of \mathbf{u} at the tracked midpoints and also check whether \mathbf{u} points into \widetilde{K}_{1} or not.
i) Measure the defect in local volume conservation $e_{K_{1}}:=\left|F_{-\delta t^{\left(n+\frac{1}{2}\right)}}\left(K_{1}\right)\right|-\left|\widetilde{K}_{1}\right|$.
ii) Compute the magnitude $|\mathbf{u}|$ of \mathbf{u} at the tracked midpoints and also check whether \mathbf{u} points into \widetilde{K}_{1} or not.
iii) Obtain local volume conservation for K_{1} by

$$
\left|\widetilde{K}_{1} \cap M_{i}\right| \leadsto\left|\widetilde{K}_{1} \cap M_{i}\right|+\frac{\left|\mathbf{u}_{1, i}\right|}{\sum_{j=2}^{4}\left|\mathbf{u}_{1, j}\right|} e_{K_{1}} .
$$

i) Measure the defect in local volume conservation

$$
e_{K_{1}}:=\left|F_{-\delta t^{\left(n+\frac{1}{2}\right)}}\left(K_{1}\right)\right|-\left|\widetilde{K}_{1}\right| .
$$

ii) Compute the magnitude $|\mathbf{u}|$ of \mathbf{u} at the tracked midpoints and also check whether \mathbf{u} points into \widetilde{K}_{1} or not.
iii) Obtain local volume conservation for K_{1} by

$$
\left|\widetilde{K}_{1} \cap M_{i}\right| \leadsto\left|\widetilde{K}_{1} \cap M_{i}\right|+\frac{\left|\mathbf{u}_{1, i}\right|}{\sum_{j=2}^{4}\left|\mathbf{u}_{1, j}\right|} e_{K_{1}} .
$$

iv) Adjust volumes of cells adjacent to \widetilde{K}_{1}.
i) Measure the defect in local volume conservation

$$
e_{K_{1}}:=\left|F_{-\delta t^{\left(n+\frac{1}{2}\right)}}\left(K_{1}\right)\right|-\left|\widetilde{K}_{1}\right| .
$$

ii) Compute the magnitude $|\mathbf{u}|$ of \mathbf{u} at the tracked midpoints and also check whether \mathbf{u} points into \widetilde{K}_{1} or not.
iii) Obtain local volume conservation for K_{1} by

$$
\left|\widetilde{K}_{1} \cap M_{i}\right| \leadsto\left|\widetilde{K}_{1} \cap M_{i}\right|+\frac{\left|\mathbf{u}_{1, i}\right|}{\sum_{j=2}^{4}\left|\mathbf{u}_{1, j}\right|} e_{K_{1}} .
$$

iv) Adjust volumes of cells adjacent to \widetilde{K}_{1}.

$$
\left|\widetilde{K}_{2} \cap M_{2}\right| \leadsto\left|\widetilde{K}_{2} \cap M_{2}\right|-\frac{\left|\mathbf{u}_{1,2}\right|}{\sum_{j=2}^{4}\left|\mathbf{u}_{1, j}\right|} e_{K_{1}}
$$

Steep back-tracked regions

Figure: Mesh cells K

Figure: Back-tracked regions $F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)$

Plan

(1) Introduction
(2) Characteristic-Based Schemes for Advection-reaction PDEs

- ELLAM
- MMOC
- ELLAM-MMOC
(3) Application: The miscible flow model

4 GEM scheme
(5) Numerical tests

MMOC

MMOC

- characteristics-based scheme
- characteristics-based scheme
- characteristic derivative is approximated in a different manner compared to ELLAM

Piecewise constant approximations

- MMOC

Piecewise constant approximations

- MMOC

$$
\begin{aligned}
|K|_{\phi} c_{K}^{(n+1)}= & \sum_{M \in \mathcal{M}}\left|F_{\delta t^{\left(n+\frac{1}{2}\right)}}(M) \cap K\right|_{\phi} c_{M}^{(n)} \\
& +\delta t^{\left(n+\frac{1}{2}\right)} \int_{K} f^{(n, w)} \cdot \mathbf{e d} \mathbf{x} \\
& -\delta t^{\left(n+\frac{1}{2}\right)} \int_{K}\left[\left(c_{K}\right)^{(n, w)} \nabla \cdot \mathbf{u}^{(n+1)}\right] \cdot \mathbf{e d} \boldsymbol{x}
\end{aligned}
$$

Piecewise constant approximations

- MMOC

$$
\begin{aligned}
|K|_{\phi} c_{K}^{(n+1)}= & \sum_{M \in \mathcal{M}}\left|F_{\delta t^{\left(n+\frac{1}{2}\right)}}(M) \cap K\right|_{\phi} c_{M}^{(n)} \\
& +\delta t^{\left(n+\frac{1}{2}\right)} \int_{K} f^{(n, w)} \cdot \mathbf{e d} \mathbf{x} \\
& -\delta t^{\left(n+\frac{1}{2}\right)} \int_{K}\left[\left(c_{K}\right)^{(n, w)} \nabla \cdot \mathbf{u}^{(n+1)}\right] \cdot \mathbf{e d} \boldsymbol{x}
\end{aligned}
$$

- ELLAM

$$
\begin{aligned}
|K|_{\phi} c_{K}^{(n+1)} & =\sum_{M \in \mathcal{M}}\left|M \cap F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)\right|_{\phi} c_{M}^{(n)} \\
& +\delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} f^{(n, w)} \cdot\left(\mathbb{1}_{K}\right) F d \boldsymbol{x}
\end{aligned}
$$

Obtaining mass balance for MMOC

Obtaining mass balance for MMOC

$-\delta t^{\left(n+\frac{1}{2}\right)} \rightarrow 0$

Obtaining mass balance for MMOC

$-\delta t^{\left(n+\frac{1}{2}\right)} \rightarrow 0$
$-\nabla \cdot \mathbf{u}^{(n+1)}=0$

Obtaining mass balance for MMOC

$-\delta t^{\left(n+\frac{1}{2}\right)} \rightarrow 0$
$-\nabla \cdot \mathbf{u}^{(n+1)}=0$
$\rightarrow c$ is almost constant in the non-divergence free regions

$$
|K|_{\phi} c_{K}^{(n+1)}=\sum_{M \in \mathcal{M}}\left|F_{\delta t^{\left(n+\frac{1}{2}\right)}}(M) \cap K\right|_{\phi} c_{M}^{(n)}
$$

Figure: Interpretation: Piecewise constant approximations

Forward-tracked regions

Figure: Back-tracked regions
$F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)$

Figure: Forward-tracked regions $F_{\delta t^{\left(n+\frac{1}{2}\right)}}(K)$

Plan

(1) Introduction

(2) Characteristic-Based Schemes for Advection-reaction PDEs

- ELLAM
- MMOC
- ELLAM-MMOC
(3) Application: The miscible flow model

4 GEM scheme
(5) Numerical tests

ELLAM-MMOC formulation

advection-reaction equation

$$
\phi \frac{\partial c}{\partial t}+\nabla \cdot(\mathbf{u c})=f(c)
$$

ELLAM-MMOC formulation

advection-reaction equation

$$
\phi \frac{\partial c}{\partial t}+\nabla \cdot(\mathbf{u c})=f(c)
$$

- $\boldsymbol{c}=\alpha c+(1-\alpha) c$

ELLAM-MMOC formulation

advection-reaction equation

$$
\begin{aligned}
\phi \frac{\partial(\alpha c)}{\partial t}+\nabla \cdot((\alpha c) \mathbf{u}) & +\phi \frac{\partial((1-\alpha) c)}{\partial t} \\
& +\nabla \cdot(((1-\alpha) c) \mathbf{u})=\alpha f+(1-\alpha) f .
\end{aligned}
$$

Piecewise constant approximations

- For each cell $K \in \mathcal{M}$, take $\Pi_{\mathcal{C}} z_{K}=\mathbb{1}_{K}$.

Piecewise constant approximations

- For each cell $K \in \mathcal{M}$, take $\Pi_{\mathcal{C}} z_{K}=\mathbb{1}_{K}$.
- Write $\Pi_{\mathcal{C}} c^{(k)}=\sum_{K \in \mathcal{M}} c_{K}^{(k)} \mathbb{1}_{K}$.

Piecewise constant approximations

- For each cell $K \in \mathcal{M}$, take $\Pi_{\mathcal{C}} z_{K}=\mathbb{1}_{K}$.
- Write $\Pi_{\mathcal{C}} C^{(k)}=\sum_{K \in \mathcal{M}} c_{K}^{(k)} \mathbb{1}_{K}$.
- Choose α piecewise constant, 1 for ELLAM, 0 for MMOC.

$$
\begin{aligned}
c_{K}^{(n+1)}|K|_{\phi} & -\sum_{M \in \mathcal{M}_{\mathrm{ELLAM}}} c_{M}^{(n)}\left|M \cap F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)\right|_{\phi} \\
& -\sum_{M \in \mathcal{M}_{\mathrm{MMOC}}} c_{M}^{(n)}\left|F_{\delta t^{\left(n+\frac{1}{2}\right)}}(M) \cap K\right|_{\phi} \\
= & \delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega} \alpha f^{(n, w)} \cdot\left(\mathbb{1}_{K}\right) F \\
& +\delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega}\left[(1-\alpha) f^{(n, w)} \cdot \mathbf{e}\right] \mathbb{1}_{K} \\
& -\delta t^{\left(n+\frac{1}{2}\right)} \int_{\Omega}\left[(1-\alpha) \nabla \cdot \mathbf{u}^{(n+1)}\left(\Pi_{\mathcal{C}} C\right)^{(n, w)} \cdot \mathbf{e}\right] \mathbb{1}_{K}
\end{aligned}
$$

Obtaining mass balance for ELLAM-MMOC

Obtaining mass balance for ELLAM-MMOC

- $\delta t^{\left(n+\frac{1}{2}\right)} \rightarrow 0$

Obtaining mass balance for ELLAM-MMOC

$-\delta t^{\left(n+\frac{1}{2}\right)} \rightarrow 0$
$-\nabla \cdot \mathbf{u}^{(n+1)}=0$

Obtaining mass balance for ELLAM-MMOC

$-\delta t^{\left(n+\frac{1}{2}\right)} \rightarrow 0$
$-\nabla \cdot \mathbf{u}^{(n+1)}=0$

- $(1-\alpha) c$ is almost constant in the non-divergence free regions

Plan

(1) Introduction
(2) Characteristic-Based Schemes for Advection-reaction PDEs

- ELLAM
- MMOC
- ELLAM-MMOC
(3) Application: The miscible flow model

4) GEM scheme
(5) Numerical tests

Enhanced oil recovery

$$
\begin{gathered}
\left\{\begin{aligned}
\nabla \cdot \mathbf{u} & =q^{+}-q^{-} \\
\mathbf{u} & =-\frac{\mathbf{K}}{\mu(c)} \nabla p
\end{aligned}\right. \\
\phi \frac{\partial c}{\partial t}+\nabla \cdot(\mathbf{u c}-\mathbf{D}(\mathbf{x}, \mathbf{u}) \nabla c)+q^{-} c=q^{+}
\end{gathered}
$$

Unknowns

- $p(\mathbf{x}, t)$ - pressure of the mixture
- $\mathbf{u}(\mathbf{x}, t)$ - Darcy velocity
- $c(\mathbf{x}, t)$ - concentration of the injected solvent

Parameters

- $\mathbf{K}(\mathbf{x})$ - permeability tensor
- $\phi(\mathbf{x})$ - porosity

Source Terms

- q^{+}- injection well
- q^{-}- production well

Model for enhanced oil recovery

Diffusion Tensor

$$
\mathbf{D}(\mathbf{x}, \mathbf{u})=\phi(\mathbf{x})\left[d_{m} \mathbf{I}+d_{l}|\mathbf{u}| \mathcal{P}(\mathbf{u})+d_{t}|\mathbf{u}|(\mathbf{I}-\mathcal{P}(\mathbf{u}))\right]
$$

- d_{m}-molecular diffusion coefficient
- d_{l} - longitudinal dispersion coefficient
- d_{t} - transverse dispersion coefficient
- $\mathcal{P}(\mathbf{u})$ - the projection matrix along the direction of \mathbf{u}

Viscosity

$$
\mu(c)=\mu(0)\left[(1-c)+M^{1 / 4} c\right]^{-4}
$$

- $M=\mu(0) / \mu(1)$ - mobility ratio of the two fluids

No-flow Boundary Conditions

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{n} & =0, & & \text { on } \partial \Omega \times[0, T] \\
(\mathbf{D} \nabla \mathrm{c}) \cdot \mathbf{n} & =0, & & \text { on } \partial \Omega \times[0, T]
\end{aligned}
$$

Pressure Equation

$$
\left\{\begin{aligned}
\nabla \cdot \mathbf{u} & =q \\
\mathbf{u} & =-\frac{\mathbf{K}}{\mu(c)} \nabla p \quad \text { in } Q_{T}:=\Omega \times[0, T] .
\end{aligned}\right.
$$

- anisotropic diffusion equation

Pressure Equation

$$
\left\{\begin{aligned}
\nabla \cdot \mathbf{u} & =q \\
\mathbf{u} & =-\frac{\mathbf{K}}{\mu(c)} \nabla p \quad \text { in } Q_{T}:=\Omega \times[0, T] .
\end{aligned}\right.
$$

- anisotropic diffusion equation

Concentration Equation

$$
\phi \frac{\partial c}{\partial t}+\nabla \cdot(\mathbf{u c}-\mathbf{D}(\mathbf{x}, \mathbf{u}) \nabla c)+q^{-} c=q^{+} \quad \text { in } Q_{T}
$$

- advection-diffusion-reaction equation
- mostly advection dominated

Plan

(1) Introduction

(2) Characteristic-Based Schemes for Advection-reaction PDEs

- ELLAM
- MMOC
- ELLAM-MMOC
(3) Application: The miscible flow model

4) GEM scheme
(5) Numerical tests

Time-stepping: decouples the system
$0=t^{(0)}<t^{(1)}<\cdots<t^{(N)}=T$ time steps.
Starting from initial concentration c_{0}, for $n=0, \ldots, N-1$,
$0=t^{(0)}<t^{(1)}<\cdots<t^{(N)}=T$ time steps.
Starting from initial concentration c_{0}, for $n=0, \ldots, N-1$,
(I) Pressure equation: find approximation $p^{(n+1)}$ of p at $t^{(n+1)}$ by using $c^{(n)}$.
$0=t^{(0)}<t^{(1)}<\cdots<t^{(N)}=T$ time steps.
Starting from initial concentration c_{0}, for $n=0, \ldots, N-1$,
(I) Pressure equation: find approximation $p^{(n+1)}$ of p at $t^{(n+1)}$ by using $c^{(n)}$.
(II) Reconstruction of velocity: reconstruct $\mathbf{u}^{(n+1)}$ Darcy velocity in $H_{\text {div }}(\Omega)$ from $p^{(n+1)}$.

(II) Reconstruction of $H_{\text {div }}$ Darcy velocity

- $p^{(n+1)} \in X_{\mathcal{P}}$ known, find $\mathbf{u}^{(n+1)} \in H_{\text {div }}(\Omega)$ approximation of $-\frac{\mathrm{K}}{\mu\left(c\left(t^{(n)}\right)\right)} \nabla p\left(t^{(n+1)}\right)$.

(II) Reconstruction of $H_{\text {div }}$ Darcy velocity

- $p^{(n+1)} \in X_{\mathcal{P}}$ known, find $\mathbf{u}^{(n+1)} \in H_{\text {div }}(\Omega)$ approximation of $-\frac{\mathbf{K}}{\mu\left(c\left(t^{(n)}\right)\right)} \nabla p\left(t^{(n+1)}\right)$.
- HMM produces fluxes at the cell faces. These fluxes can be used to re-construct $\mathbf{u}^{(n+1)}$ which is $\mathbb{R} \mathbb{T}_{0}$ on a subdivision of each cell.

(II) Reconstruction of $H_{\text {div }}$ Darcy velocity

- $p^{(n+1)} \in X_{\mathcal{P}}$ known, find $\mathbf{u}^{(n+1)} \in H_{\text {div }}(\Omega)$ approximation of $-\frac{\mathrm{K}}{\mu\left(c\left(t^{(n)}\right)\right)} \nabla p\left(t^{(n+1)}\right)$.
- HMM produces fluxes at the cell faces. These fluxes can be used to re-construct $\mathbf{u}^{(n+1)}$ which is $\mathbb{R} \mathbb{T}_{0}$ on a subdivision of each cell.

Figure: Triangulation of a cell

$0=t^{(0)}<t^{(1)}<\cdots<t^{(N)}=T$ time steps.
Starting from initial concentration c_{0}, for $n=0, \ldots, N-1$,
(I) Pressure equation: find approximation $p^{(n+1)}$ of p at $t^{(n+1)}$ by using $c^{(n)}$.
(II) Reconstruction of velocity: reconstruct $\mathbf{u}^{(n+1)}$ Darcy velocity in $H_{\text {div }}(\Omega)$ from $p^{(n+1)}$.
(III) Concentration equation: find approximation $c^{(n+1)}$ of c at $t^{(n+1)}$ using $p^{(n+1)}$ and $\mathbf{u}^{(n+1)}$ for the characteristics (ELLAM-MMOC).

Choices for α

Choices for α

- (αc) : ELLAM

Choices for α

- (αc) : ELLAM
- $((1-\alpha) c):$ MMOC

Choices for α

- HMM-ELLAM: $\alpha=1$ on Ω

Choices for α

- HMM-ELLAM: $\alpha=1$ on Ω
- HMM-MMOC: $\alpha=0$ on Ω

Choices for α

- HMM-ELLAM: $\alpha=1$ on Ω
- HMM-MMOC: $\alpha=0$ on Ω
- HMM-GEM:

$$
\alpha(\boldsymbol{x})= \begin{cases}1 & \text { if }\left|\boldsymbol{x}-C_{+}\right| \geq\left|\boldsymbol{x}-C_{-}\right| \\ 0 & \text { otherwise }\end{cases}
$$

Choices for α

- HMM-ELLAM: $\alpha=1$ on Ω
- HMM-MMOC: $\alpha=0$ on Ω
- HMM-GEM:

$$
\alpha(\boldsymbol{x})= \begin{cases}1 & \text { if }\left|\boldsymbol{x}-C_{+}\right| \geq\left|\boldsymbol{x}-C_{-}\right| \\ 0 & \text { otherwise }\end{cases}
$$

- C_{+}injection well
- C- production well

Plan

(1) Introduction

(2) Characteristic-Based Schemes for Advection-reaction PDEs

- ELLAM
- MMOC
- ELLAM-MMOC
(3) Application: The miscible flow model
(4) GEM scheme
(5) Numerical tests

Injection well: $(1000,1000)$

flow rate: $30 \mathrm{ft}^{2} /$ day
Porosity: $\phi=0.1$
Permeability: $\mathrm{K}=80 \mathrm{D}$
Diffusion-dispersion:

$$
\begin{aligned}
& \phi d_{m}=0 \mathrm{ft}^{2} / \text { day } \\
& \phi d_{l}=5 \mathrm{ft}^{2} / \text { day } \\
& \phi d_{t}=0.5 \mathrm{ft}^{2} / \text { day }
\end{aligned}
$$

Viscosity:
Oil viscosity: 1 cp
Mobility ratio: 41
Production well: $(0,0)$
flow rate: $30 \mathrm{ft}^{2} /$ day

Initial condition: $c(0)=0$
Time step: $\delta t=36$ days

Mesh Types

Figure: Cartesian Mesh

Figure: Hexahedral Mesh

Mesh Types

Figure: Kershaw Mesh

H. M. Cheng, J. Droniou and K. N. Le

Cartesian mesh

Figure: HMM-ELLAM

Figure: HMM-MMOC

Cartesian mesh

Figure: HMM-GEM, 1 point per edge

Figure: HMM-GEM, 3 points per edge

Cartesian mesh

Table: Comparison between HMM-ELLAM, HMM-MMOC and HMM-GEM schemes, Cartesian mesh

	points per edge	overshoot	$e_{\text {mass }}^{(N)}$	recovery
HMM-ELLAM	1	1.11%	0.19%	70.09%
HMM-ELLAM	3	0.18%	0.21%	69.76%
HMM-MMOC	1	$<0.01 \%$	5.60%	71.97%
HMM-MMOC	3	$<0.01 \%$	2.80%	69.94%
HMM-GEM	1	$<0.01 \%$	2.35%	68.44%
HMM-GEM	3	$<0.01 \%$	0.85%	69.14%

Figure: HMM-ELLAM

Figure: HMM-MMOC

Figure: HMM-ELLAM (with local volume adjustment)

Figure: HMM-GEM

Table: Comparison between HMM-ELLAM, HMM-MMOC and HMM-GEM scheme, hexahedral mesh, $\Delta t=18$ days

	points per edge	overshoot	$e_{\text {mass }}$	recovery
HMM-ELLAM (no adjustment)	$\left\lceil\log _{2}\left(m_{K \text { reg }}\right)\right\rceil$	3.65%	0.62%	62.50%
HMM-ELLAM (adjusted)	$2\left\lceil\log _{2}\left(m_{K \text { reg }}\right)\right\rceil+1$	4.47%	0.19%	63.41%
HMM-MMOC	$\left\lceil\log _{2}\left(m_{K \text { reg }}\right)\right\rceil$	$<0.01 \%$	1.82%	61.43%
HMM-GEM	$2\left\lceil\log _{2}\left(m_{K \text { reg }}\right)\right\rceil+1$	0.26%	0.70%	64.02%

Forward-tracked regions

Figure: Back-tracked regions
$F_{-\delta t^{\left(n+\frac{1}{2}\right)}}(K)$

Figure: Forward-tracked regions $F_{\delta t^{\left(n+\frac{1}{2}\right)}}(K)$

Figure: HMM-ELLAM

Figure: HMM-MMOC

Figure: HMM-GEM

Table: Comparison between HMM-ELLAM, HMM-MMOC and HMM-GEM scheme, Kershaw mesh

	points per edge	overshoot	$e_{\text {mass }}$	recovery
HMM-ELLAM	$\left\lceil\log _{2}\left(m_{\text {Kreg }}\right)\right\rceil$	0.28%	0.38%	72.63%
HMM-MMOC	$\left\lceil\log _{2}\left(m_{\text {Kreg }}\right)\right\rceil$	0%	4.28%	73.21%
HMM-GEM	$\left\lceil\log _{2}\left(m_{\text {Kreg }}\right)\right\rceil$	0.32%	0.13%	72.36%

Conclusion

- Mass balance analysis for characteristics based schemes
- ELLAM
- MMOC
- ELLAM-MMOC

Conclusion

- Mass balance analysis for characteristics based schemes
- ELLAM
- MMOC
- ELLAM-MMOC
- Local volume conservation

Conclusion

- Mass balance analysis for characteristics based schemes
- ELLAM
- MMOC
- ELLAM-MMOC
- Local volume conservation
- Gradient Discretisation Method-ELLAM-MMOC (GEM) scheme
- acceptable mass balance
- improvement on HMM-ELLAM

Conclusion

- Mass balance analysis for characteristics based schemes
- ELLAM
- MMOC
- ELLAM-MMOC
- Local volume conservation
- Gradient Discretisation Method-ELLAM-MMOC (GEM) scheme
- acceptable mass balance
- improvement on HMM-ELLAM
- convergence

Conclusion

- Mass balance analysis for characteristics based schemes
- ELLAM
- MMOC
- ELLAM-MMOC
- Local volume conservation
- Gradient Discretisation Method-ELLAM-MMOC (GEM) scheme
- acceptable mass balance
- improvement on HMM-ELLAM
- convergence

Main papers:

- A combined GDM-ELLAM-MMOC scheme for advection dominated PDEs. Cheng, Droniou and Le 2018. https://arxiv.org/abs/1805.05585.
- Convergence analysis of a family of ELLAM schemes for a fully coupled model of miscible displacement in porous media. Cheng, Droniou and Le 2018. Numerische Mathematik. https://arxiv.org/abs/1710.01897.

GDM textbook: The gradient discretisation method. Droniou, Eymard, Gallouët, Guichard and Herbin 2018. Mathematics \& Applications, volume 82, Springer. https://hal.archives-ouvertes.fr/hal-01382358.

ELLAM:

- Arbogast and Wheeler, SIAM J. Numer. Anal., 32(2):404-424, 1995.
- Russell and Celia, Advances in Water Resources, 25(8):1215-1231, 2002.
- H. Wang, Liang, Ewing, Lyons and Qin, SIAM J. Sci. Comput., 22(2):561-581, 2000.
- Arbogast and Huang, SIAM Journal on Scientific Computing, 28(6):2001-2022, 2006.
- H. Wang, SIAM J. Numer. Anal., 46(4):2133-2152, 2008.
- Arbogast and W.-H. Wang, SIAM J. Numer. Anal., 48(3):797-823, 2010.

MMOC:

- Douglas and Russell, SIAM J. Numer. Anal. 19(5):871-885, 1982.
- Douglas, Furtado, and Pereira, Computational Geosciences, 1(2):155-190, 1997.
- Huang, C.-S., Computational Geosciences, 4(2):165-184, 2000.

Thank you.

