REDUCED ORDER MODELING IN MULTISPECTRAL PHOTOACOUSTIC TOMOGRAPHY

Arvind Saibaba

Sarah Vallélian

Statistical and Applied Mathematical Sciences Institute & North Carolina State University

May 26, 2016

OUTLINE

MULTISPECTRAL PAT Prospects for Brain Imaging Forward and Inverse Problems

MS-PAT INVERSION

REDUCED ORDER MODELING

PHOTOACOUSTIC TOMOGRAPHY

Figure: The photoacoustic tomography experiment.

PAT FOR BRAIN IMAGING

Advantages

- High contrast and high resolution
- Noninvasive, nondestructive, inexpensive
- Multispectral imaging capability for better reconstructions
- Multiscale imaging capability
- Success in small animals

Figure: Photoacoustic tomography on multiple scales. S. Hu and L. Wang, Front. Neuroenergetics 2010.

FORWARD PROBLEM

Forward Problem: To compute the ultrasound pressure field at the detector array assuming that we know all properties of the medium.

- 1. Use the illumination pattern and *optical properties* to determine the absorbed optical energy, converted into pressure by the photoacoustic effect. (diffusion equation)
- 2. Use the internal pressure as an initial condition and propagate it with the given ultrasound speed to the detectors. (wave equation)

INVERSE PROBLEM

Inverse Problem: To recover the interior optical properties, using the ultrasound pressure measurements at the detector array as data.

One-step reconstruction via non-linear least squares is most flexible in terms of data, enforcing/requiring prior knowledge. T. Ding, K. Ren and S. V., Inverse Problems 2015.

TYPICAL RECONSTRUCTIONS

Naive approach: 40×40 image, single wavelength, 5 mins. Data contains 1% random noise. Relative *L*2 error: 0.19

MULTISPECTRAL PAT

Prospects for Brain Imaging Forward and Inverse Problem

MS-PAT INVERSION

REDUCED ORDER MODELING

MULTISPECTRAL PAT HAS ADDITIONAL UNKNOWNS

Figure: Chromophores for biomedical optical imaging. T.G. Phan and A. Bullen, Immunol. Cell Biol. 2010.

Wavelength Dependence

• $D(\mathbf{x}, \lambda) = \alpha(\lambda) D(\mathbf{x})$

•
$$\Upsilon(\mathbf{x}, \lambda) = \gamma(\lambda) \Upsilon(\mathbf{x})$$

•
$$\mu(\mathbf{x},\lambda) = \sum_{k=1}^{K} \sigma_k(\lambda) \mu_k(\mathbf{x})$$

FORWARD PROBLEM

Diffusion Equation

$$\begin{array}{rcl} -\nabla \cdot D(\mathbf{x},\lambda) \nabla \phi + \mu(\mathbf{x},\lambda) \phi &=& 0, & \text{in } \Omega \times \mathcal{L} \\ \phi &=& g(\mathbf{x},\lambda), & \text{on } \partial \Omega \times \mathcal{L}. \end{array}$$

Wave Equation

$$\begin{array}{rcl} \displaystyle \frac{1}{c^2(\mathbf{x})} \frac{\partial^2 p}{\partial t^2} - \Delta p &=& 0, & \text{ in } \mathbb{R}_+ \times \mathbb{R}^d \times \mathcal{L} \\ \displaystyle p(0,\mathbf{x},\lambda) &=& \Upsilon(\mathbf{x},\lambda)\mu(\mathbf{x},\lambda)\phi\chi_{\Omega}(\mathbf{x}), & \text{ in } \mathbb{R}^d \times \mathcal{L} \\ \displaystyle \frac{\partial p}{\partial t}(0,\mathbf{x},\lambda) &=& 0, & \text{ in } \mathbb{R}^d \times \mathcal{L}. \end{array}$$

Measurements

 $m_{\lambda} := p(t, \mathbf{x}, \lambda)$ at certain times $(0, \tau)$, locations Σ , wavelengths \mathcal{L}

SOLVING THE INVERSE PROBLEM IS COSTLY

Given $\Upsilon(\mathbf{x}, \lambda), D(\mathbf{x}, \lambda)$, and $\{\sigma_k(\lambda)\}_{k=1}^K$ Solution Unknown $\boldsymbol{\mu} = \{\mu_k(\mathbf{x})\}_{k=1}^K$

$$\boldsymbol{\mu}^* = \arg\min J(\boldsymbol{\mu}) := \frac{1}{2} \sum_{\lambda \in \mathcal{L}} \|m_{\lambda} - \Lambda(\boldsymbol{\mu}; \lambda)\|^2 + \alpha \mathcal{R}(\boldsymbol{\mu})$$

Solve via e.g. quasi-Newton method, dimension is a problem:

- Compute $\Lambda(\mu; \lambda)$ for a given unknown μ at each iteration (solving 2 PDEs)
 - diffusion: solve linear system of size *N* # pixels
 - wave: dominant cost $\sim \mathcal{O}(N^2)$ in 2d
- ► Compute the gradient for a given unknown µ at each iteration (solving 2 adjoint PDEs)

At each iteration, must solve at all wavelengths!

REALISTIC PROBLEM SIZE

- ► N = 1 million: 3*d* image of size 1 cm³ (approx. size of mouse brain), 100 μ m resolution
- N_{λ} = 10-200: different wavelengths for optical imaging
- K = 2 4: chromophores
- $N_r = 50-300$: # ultrasound receivers
- ► *N_t* : # time points measured

Main Issue Repeated solution of large-scale systems

TYPICAL RECONSTRUCTIONS

Naive approach: 40×40 images, 100 wavelengths, 4 hours. Data contains 1% random noise. Relative *L*2 error for the pair: 0.03

MULTISPECTRAL PAT

Prospects for Brain Imaging Forward and Inverse Problems

MS-PAT INVERSION

REDUCED ORDER MODELING

WHAT IS REDUCED-ORDER MODELING (ROM)?

Many ROMs use projection over a reduced-space basis: $x \approx \mathbf{V}x_r$

- $x \in \mathbb{R}^N$ is full-scale output
- $x_r \in \mathbb{R}^R$ is reduced-order output
- Columns of $\mathbf{V} \in \mathbb{R}^{N \times R}$ are O.N. basis vectors, $R \ll N$

ROM ACROSS WAVELENGTHS

Goal: Avoid solving the PDEs for all wavelengths whenever possible

- Photon density $\phi(\mathbf{x}, \lambda)$ is a smooth function of λ
- Diffusion system is parameterized as

$$\left(\alpha(\lambda)\mathbf{K} + \sum_{k=1}^{K} \sigma_k(\lambda)\mathbf{M}_k\right)\phi = \mathbf{b}(\lambda)$$

- *Optimal* ROM for wavelength-dependence: truncate SVD of $\phi \in \mathbb{R}^{N \times N_{\lambda}}$; too expensive
- Alternative: greedy basis construction

REDUCTION STRATEGY

Given the diffusion model as linear system $\mathbf{A}\phi = \mathbf{b}$, iteratively construct a projection matrix $\mathbf{V} \in \mathbb{R}^{N \times R}$ ($R \ll N_{\lambda}$):

- 1. First column of V is normalized solution ϕ_1 to system eqns at an initial wavelength λ_1
- 2. Galerkin project the linear system with **V** and solve for reduced soln ϕ_r at all wavelengths
- 3. Compute the residual norm at all wavelengths
- 4. Pick the wavelength λ_j with largest residual; add ϕ_j to **V** after ortho-normalization
- 5. Stop when residual at all remaining wavelengths is below tolerance

TEST - TWO CHROMOPHORES

 $N_{\lambda} = 200$ wavelengths reduced to R = 18. Relative error $\|\mathbf{b}(\lambda) - \mathbf{A}(\lambda)\mathbf{V}\phi\|$ for all wavelengths decreases as R increases. No loss of accuracy.

SAVINGS

Operation	# Diffusion Solves	# Wave Solves
Forward map	$N_{\lambda} \rightarrow R$	$N_{\lambda} \to R$
Gradient	$N_{\lambda} \rightarrow R$	$N_{\lambda} \to R$

For the current value of μ ,

Forward Map:

- Reduce # of diffusion solves
- Compress the initial condition of wave
- Reduce # of wave solves

Gradient:

- Compress the residual m_λ − Λ(µ; λ)
- Reduce # of adjoint wave solves
- Compress the source of adjoint diffusion
- Reduce # of adjoint diffusion solves

SUMMARY

- Photoacoustic tomography is an emerging modality with applications to brain imaging
- Reduced-order modeling can approximate the PDE solutions in lower dimensions, cheaply
- ▶ We developed a ROM framework for multispectral, multispecies PAT
- Tradeoff: setup cost for the ROMs vs. computational savings in the inverse problem

Thank you!