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Motivation and Approach

Address the limitations of existing OCD technologies

» Break parameter correlations by massive increase in number of incident angles measured.
— Correlations occur when signal response to 2+ parameters are effectively the same.
— When correlations occur, measurement capability is reduced.

* Reduce probe size
— Some array sizes are below 10um.
— Probe within array variation, especially close to the edge of arrays.

Approach
* Instrument based on microscopy with small field size: probe size limited by diffraction to = 1um or larger.



Non-interferometric Methods
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BPR — Beam Profile Reflectometry (673 nm)
— Pupil plane: multiple angles, one wavelength, one

intensity.

BPE — Beam Profile Ellipsometry (673 nm)

— Pupil plane: multiple angles, one wavelength, full
Mueller Matrix.

AE — Absolute Ellipsometry (633nm)
Vis — Visible Spectrometry (470-870 nm)

BB — BroadBand Spectrometry (190-840 nm)
RCSE — Rotating Compensator Spectroscopic

Ellipsometry (190-840)

— One angle, spectroscopic, full Mueller Matrix.
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Interferometry
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complex reflectance of the sample ¢
Polarizer
« Examples: SIPE (J. Jung et al, Proc. SPIE Interference
11611, Metrology, Inspection, and Process generator Nomarski
Control for Semiconductor Manufacturing orism
XXXV, 2021).
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Pupil Plane Interferometry
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Motivation and Approach

Address the limitations of existing OCD technologies

» Break parameter correlations by massive increase in number of incident angles measured.
— Correlations occur when signal response to 2+ parameters are effectively the same.
— When correlations occur, measurement capability is reduced.

* Reduce probe size
— Some array sizes are below 10um.
— Probe within array variation, especially close to the edge of arrays.

Approach

* Instrument based on microscopy with small field size: probe size limited by diffraction to = 1um or larger.

Pupil plane detection allows measurement of sample reflection at many incident angles.
— Unlike in the image plane, each pixel is at a unigue angle, simplifying simulation of the signal formation.

Use interferometry to extract complex reflectance.

Use standard model fitting approaches to estimate sample parameters from measured data.



Signal Processing Wavenumber

difference

Original data Take FFT at each pixel Remove pupil
. (—>K intensity variation and
Multiple images as path )
FFT is complex source spectrum

difference changes
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Instrument Realization

Adjustment vs. Stability




Simplified Analytical Model
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Simulations of Gate-All Around Transistor: CD Sensitivity
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Simulations of DRAM Bit Line Gate Etch: Overlay Sensitivity

Sensitivity to property change

Signal intensity projections

0.1nm CD change

Pattern symmetry is
retained

0.1nm overlay

Pattern rotates and
becomes
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Data Selection

Reduce data volume to a selectable number of the most useful data points
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Thin Film Signal and Simulation
1045nm SiO,

Signal Magnitude vs. AOI Signal Phase (radian) vs. AOI

« Good use of phase data requires a common “zero phase”
769.2 nm for all data points.

625.0 nm - Platform drift changes phase.

* The tool must be stable throughout the measurement.
454.5 nm
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Measurement Case 1: 360nm pitch 1:1 Grating

« Good use of phase requires
wavelength-to-wavelength
continuity.

 Platform stability is vital.
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Measurement Case 2: Poly CD

Oxide

« Good use of phase requires
wavelength-to-wavelength
continuity.

» Platform stability is vital.
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Vibration

1(z) = Ipc + Iyc(2) = S(k,AOI, Azimuth, t)(1 + C(k, AOI, Azimuth, Z)ei’;z) Simulation: 7nm noise at 18Hz

\ Modulation
Source intensity, tool Signal envelope: sample

Single frequency noise: z(t) = Vt + Asin 2rf,t

aC
N0|Se |n Slgnal :F'T {E dZ} (k) = lkA?T{C}(k i an'Z/V) 0.42 0.83 125 167 209 25 2.92 3.34 376 417

Wavenymber [1/um]

Common path noise gives rise to single frequency bands in the

Experimental data
spectrum 1 ——

Motion noise inside the interferometer gives rise to side bands inthe =« :
spectrum

The noise contribution is independent of AOI

The noise (f) frequency / side band is at f,/FA. (Frame rate F, sample
spacing A; FA =V = scan speed).

1 64.9 1288 192.6 256.5 3204 384.3 448.1 512
N

Noise is important if it appears inside the measured spectral range... Common path Motion noise

« ...e.g.iff,=0! Low frequency noise is important. noise onto
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The Future #1: Increasing Data Utilization

« Dominant non-random noise:
* low frequency vibration

 focus error (Z stage capability). 1.0 Iilon-ra dom nojse dominate
@ . S
« Random noise e
« Shot noise in camera % Platform
« camera well depth, g s
- light intensity $0.1 ‘%%_
* exposure time ’7%@ ,
 High frequency vibration. %%)f
* If dynamic noise dominates then precision improves %@

only slowly with increasing number of data points. 001
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The Future #2: Shorter Wavelengths
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Conclusions

 Pupll plane interferometry is a viable OCD technique
— Separation of incident angles enables a viable signal formation model.
— Then use familiar model fitting methods to extract OCD parameters.

— Requires reduction of the data to a manageable number of highly effective data
points.

— Phase data should be continuous throughout the data set.
— The tool must be very stable during data acquisition.

* Probe size is much smaller than other methods.

» Significant improvement in measurement capability is feasible
— By utilizing as much of possible of the acquired data cylinder.

— Implies a change of strategy from simulation and fitting towards machine learning
methods.
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