Cooperative Computing for Autonomous Data Centers

Jon Berry (Sandia National Laboratories)
Mike Collins (Christopher Newport University)
Aaron Kearns (U. New Mexico)
Cynthia A. Phillips (Sandia National Laboratories)
Jared Saia (U. New Mexico)
Randy Smith (Sandia National Laboratories

Center for Computing Research

A New Distributed Computing Model

Alice and Bob (or more) independently create social graphs G_{A} and G_{B}.

- Alice and Bob each know nothing of the other's graph.
- Shared namespace. Overlap at nodes.

Goal: Cooperate to compute algorithms over G_{A} union G_{B} with limited sharing: $\mathrm{O}\left(\log ^{\mathrm{k}} \mathrm{n}\right.$) total communication for size n graphs, constant k

Another Limited Sharing Model

Goal: Cooperate to compute algorithms over $G_{A} \cup G_{B}\left(\cup G_{C} \ldots\right)$
Alice gets no information beyond answer in honest-but-curious model.

- Secure multiparty computation
- Few players, large data

Sandia National laboratories

Motivation

- Company mergers (Brickell and Shmatikov)
- B\&S algorithm assumes node names are known
- National security: connect-the-dots for counterterrorism
- Nodes are people
- Exploit structure of social networks

Result: Low-Communication s-t Connectivity

- s-t connectivity for social graphs: $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$ bits for n -node social networks
- $\Omega(\mathrm{n} \log \mathrm{n})$ lower bound for general graphs (Hajnal, Maass, Turàn)
- Edges partitioned, 2 parties

Social Network Structure

- Social networks have a giant component: second smallest component of size $\mathrm{O}(\log \mathrm{n})$

Social Network Structure

- Normal connection growth (Easley and Kleinberg)
- Observed in social networks (long distance phone call, linkedin, etc)
- Theoretically in Chung-Lu graphs with power-law exponent between $1+\varepsilon$ and 3.47

Assumptions

- Alice's graph G_{A} and Bob's graph G_{B} both have giant components
- These giant components intersect
- Can verify with $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$ communication with high probability if intersect by a constant fraction (say 1\%)

Shell Expansion

- Like breadth-first-search, "layer" is connected piece in G_{A} or G_{B}
- Key: don't explore too much of the graph(s)

Low-Sharing s-t Connectivity Algorithm

- Alice and Bob agree on a value γ (polylog in n)
- Algorithm is correct iff γ at least size of $2^{\text {nd }}$ largest component
- Do shell expansion (BFS) from both s and t
- Stopping criteria:

1. s shell merges with t shell (yes)
2. No new nodes added in some step (no)
3. Shell merges with giant component of G_{A} or G_{B} (yes)
4. Shell size exceeds γ. Stop before sending. (yes)

- With a good guess, $\gamma=0(\log n)$, so $O\left(\log ^{2} n\right)$ bits communicated

More Than Two Centers

- Do shell expansion in a loop
- Center that adds a node removes it when it comes back (so each center sees it once)

Query processor

- The query processor starts both the s and t shells (containing only the one node if necessary
- Looks like the 2-processor protocol with all the other processors merged.

Secure Multiparty Computation Version

- Alice and Bob can determine that a path connects s and t without revealing anything about: the path, nodes seen by either party
- Similar to a model used by Brickell and Shmatikov
- They assume known node names (shared customer lists)
- Secure multiparty computation
- Usually many parties, small data (circuits, oblivious RAM)
- We have small number of parties, large data

Tool \#1

- Secret sharing
- Secrets are in a finite field
- Use a polynomial of degree d to encode a value, $d+1$ shares
- All shares reveal secret, d reveals nothing
- Solution is y intercept, secrets are polynomials at other x
- Key: Given a share of x (called $[x]_{i}$) and a share of y (called $[y]_{i}$), can get a share of the sum by adding shares: $[x+y]_{i}=x_{i}+y_{i}$

Tool \#2: Secure MUX

$$
\operatorname{MUX}(c, a, b)= \begin{cases}a, & c \neq 0 \\ b, & \text { otherwise }\end{cases}
$$

- Need to be able to securely compute shares of MUX(c,a,b), given shares of $\mathrm{a}, \mathrm{b}, \mathrm{c}$
- Information-theoretically secure protocols if at least 3 centers (Ben-or, Goldwasser, Wigderson)
- For 2 centers need Yao's garbled circuits (crytographic)
- This is expensive, requires communication

Algorithm Overview

- Secret share component names for each node (both Bob and Alice)
- Secret-shared shell expansion from s
- For each node compute secret-shared binary variable:
- $P(v)$ is 1 if node v in same component as s, else 0
- In end reveal $P(t)$ by combining secret shares
- Can do this with hidden names

First Version: Shared Node Names

- Alice computes connected components
- x_{v} is component label for node v

$$
-x_{b}=1, x_{p}=2, x_{j}=3, x_{r}=4
$$

- Alice computes shares $\left[\mathrm{x}_{\mathrm{v}}\right]_{\mathrm{a}},\left[\mathrm{x}_{\mathrm{v}}\right]_{\mathrm{b}}$ and gives all $\left[\mathrm{x}_{\mathrm{v}}\right]_{\mathrm{b}}$ to Bob.

- Bob does the same. His node labels are y_{v}, shares $\left[y_{v}\right]_{a},\left[y_{v}\right]_{b}$. He gives $\left[y_{v}\right]_{a}$ to Alice.

Constraint on Component Labels

- Let P be a large prime, $\mathrm{P}>\mathrm{n}^{2}$ (n is \# nodes). Field is integers mod P .
- Pick an $M>n$ such that $M^{2}<P$. Require $1<x_{v}<M$ for Alice. Bob's labels are $t M$ for some $1<t<M$.

Key: Alice's labels are different order(s) of magnitude from Bob's:

- Alice's components: 1,2,3
- Bob's components: 1000, 2000, 3000

Sandia

Propagating Connectivity Information

- P_{v} is a binary variable set to 0 iff there exists a node u such that $x_{u}=x_{s}$ and $y_{u}=y_{v}$.

Alice

Bob

Algorithm 1 OddStep

1: $P_{v}=1$
2: for node u do
3: $\quad P_{v} \leftarrow \operatorname{MUX}\left(\left(x_{s}-x_{u}+y_{u}-y_{v}\right), P_{v}, 0\right)$
4: end for

Propagating Connectivity Information

- Pv is a binary variable set to 0 iff there exists a node u such that $x_{u}=x_{s}$ and $y_{u}=y_{v}$.

Alice

Bob

- Update the y_{w}, to show connectivity to s

$$
y_{v} \leftarrow \operatorname{MUX}\left(P_{v}, y_{v}, y_{s}\right)
$$

Propagating Other Way Too

- $P v$ is a binary variable set to 0 iff there exists a node u such that $x_{u}=x_{s}$ and $y_{u}=y_{v}$.

Alice

Bob

Algorithm 2 EvenStep
1: $P_{v}=1$
2: for node u do
3: $\quad P_{v} \leftarrow \operatorname{MUX}\left(\left(y_{s}-y_{u}+x_{u}-x_{v}\right), P_{v}, 0\right)$
4: end for

Propagating Connectivity Information

- Pv is a binary variable set to 0 iff there exists a node u such that $x_{u}=x_{s}$ and $y_{u}=y_{v}$.

Alice

Bob

- Update the x_{w}, to show connectivity to s

$$
x_{v} \leftarrow \operatorname{MUX}\left(P_{v}, x_{v}, x_{s}\right)
$$

Example

- Here are the labels at the start:

- $P_{a}=0$ because $x_{s}-x_{a}+y_{a}-y_{a}=0 \quad(u=a)$
- $P_{b}=0$ because $x_{s}-x_{a}+y_{a}-y_{b}=0 \quad(u=a)$
- So y_{a} and y_{b} are set to y_{s}

Example

- $P_{b}=0$ because $y_{s}-y_{b}+x_{b}-x_{b}=0 \quad(u=b)$
- $P_{c}=0$ because $y_{s}-y_{b}+x_{b}-x_{c}=0 \quad(u=b)$
- So x_{b} and x_{c} are set to x_{s}

Example

- The next step sets $y_{t}=10=y_{s}$
- From that point on $P_{t}=0$
- After enough steps, compare shares to decode P_{t}.
- Enough steps: diameter (at most $\mathrm{n}-1$), or j if only care about paths of length at most j

Complexity

- If there are n nodes and (known) diameter d
- O(d) major steps
- O(n^{2}) work (MUXs) per major step
- But can do work for intermediate node u in parallel so O(n) communication rounds per major step

Hiding Names

- Arrays of names and labels
- Arbitrary, except s, t are first

Dummy node

s	t	c	b	q	a	e	a	β	δ
Names									

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline X_{s} & X_{t} & X_{c} & X_{b} & X_{q} & X_{a} & X_{e} & X_{a} & X_{\beta} & X_{\delta} \\
\hline
\end{array}
$$

s	t	a	q	g	e	h	b	ζ	μ

Bob

| y_{s} | y_{t} | y_{a} | y_{q} | y_{g} | y_{e} | y_{h} | y_{b} | y_{ζ} | y_{μ} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad Labels

Secret-Shared Permutation

- Secret-shared y^{\prime} array effectively permutes Bob's labels to
match

Secret Names

- Compute using MUX (just comparisons of unknown objects)
- Then use y^{\prime} instead of y in previous algorithm

$$
\begin{array}{ll}
\text { for } j \text { do } \\
y_{j}^{\prime} \leftarrow 0 & \text { Secret-shared } \\
\text { for } i \text { do } \\
y_{j}^{\prime} \leftarrow y_{j}^{\prime}+\operatorname{MUX}\left(\hat{x}_{j}-\hat{y}_{i}, 0, y_{i}\right)
\end{array}
$$

end for
end for
Then the parties compute shares of P_{k} as

$$
\begin{aligned}
& P_{k} \leftarrow 1 \\
& \text { for } j \text { do } \\
& \quad P_{k} \leftarrow \operatorname{MUX}\left(x_{s}-x_{j}+y_{j}^{\prime}-y_{k}^{\prime}, P_{k}, 0\right)
\end{aligned}
$$

end for

Concluding Thoughts

- Exploiting social network structure
- Degree distribution
- Community structure (clustering coefficients)
- Etc
- We have considered evolutionary/social properties
- Beware of non-human behavior in online social networks
J. Berry, M. Collins, Aaron Kearns, C. Phillips, J. Saia, R. Smith, "Cooperative computing for autonomous data centers," Proceedings of the IEEE International Parallel and Distributed Processing Symposium, May 2015.

